1 | MODULE LSCP_TOOLS_MOD |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
8 | SUBROUTINE FALLICE_VELOCITY(klon,iwc,temp,rho,pres,ptconv,velo) |
---|
9 | |
---|
10 | ! Ref: |
---|
11 | ! Stubenrauch, C. J., Bonazzola, M., |
---|
12 | ! Protopapadaki, S. E., & Musat, I. (2019). |
---|
13 | ! New cloud system metrics to assess bulk |
---|
14 | ! ice cloud schemes in a GCM. Journal of |
---|
15 | ! Advances in Modeling Earth Systems, 11, |
---|
16 | ! 3212–3234. https://doi.org/10.1029/2019MS001642 |
---|
17 | |
---|
18 | |
---|
19 | IMPLICIT NONE |
---|
20 | |
---|
21 | INCLUDE "nuage.h" |
---|
22 | INCLUDE "fisrtilp.h" |
---|
23 | |
---|
24 | INTEGER, INTENT(IN) :: klon |
---|
25 | REAL, INTENT(IN), DIMENSION(klon) :: iwc ! specific ice water content [kg/m3] |
---|
26 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature [K] |
---|
27 | REAL, INTENT(IN), DIMENSION(klon) :: rho ! dry air density [kg/m3] |
---|
28 | REAL, INTENT(IN), DIMENSION(klon) :: pres ! air pressure [Pa] |
---|
29 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv ! convective point [-] |
---|
30 | |
---|
31 | REAL, INTENT(OUT), DIMENSION(klon) :: velo ! fallspeed velocity of crystals [m/s] |
---|
32 | |
---|
33 | |
---|
34 | INTEGER i |
---|
35 | REAL logvm,iwcg,tempc,phpa,cvel,dvel,fallv_tun |
---|
36 | REAL m2ice, m2snow, vmice, vmsnow |
---|
37 | REAL aice, bice, asnow, bsnow |
---|
38 | |
---|
39 | |
---|
40 | DO i=1,klon |
---|
41 | |
---|
42 | IF (ptconv(i)) THEN |
---|
43 | fallv_tun=ffallv_con |
---|
44 | ELSE |
---|
45 | fallv_tun=ffallv_lsc |
---|
46 | ENDIF |
---|
47 | |
---|
48 | tempc=temp(i)-273.15 ! celcius temp |
---|
49 | iwcg=iwc(i)*1000. ! iwc in g/m3 |
---|
50 | phpa=pres(i)/100. ! pressure in hPa |
---|
51 | |
---|
52 | IF (iflag_vice .EQ. 1) THEN |
---|
53 | ! so-called 'empirical parameterization' in Stubenrauch et al. 2019 |
---|
54 | if (tempc .GE. -60.0) then |
---|
55 | |
---|
56 | logvm= -0.0000414122*tempc*tempc*log(iwcg)-0.00538922*tempc*log(iwcg) & |
---|
57 | -0.0516344*log(iwcg)+0.00216078*tempc + 1.9714 |
---|
58 | velo(i)=exp(logvm) |
---|
59 | else |
---|
60 | velo(i)=65.0*(iwcg**0.2)*(150./phpa)**0.15 |
---|
61 | endif |
---|
62 | |
---|
63 | velo(i)=fallv_tun*velo(i)/100.0 ! from cm/s to m/s |
---|
64 | dvel=0.2 |
---|
65 | cvel=fallv_tun*65.0*(rho(i)**0.2)*(150./phpa)**0.15 |
---|
66 | |
---|
67 | ELSE IF (iflag_vice .EQ. 2) THEN |
---|
68 | ! so called PSDM empirical coherent bulk ice scheme in Stubenrauch et al. 2019 |
---|
69 | aice=0.587 |
---|
70 | bice=2.45 |
---|
71 | asnow=0.0444 |
---|
72 | bsnow=2.1 |
---|
73 | |
---|
74 | m2ice=((iwcg*0.001/aice)/(exp(13.6-bice*7.76+0.479*bice**2)* & |
---|
75 | exp((-0.0361+bice*0.0151+0.00149*bice**2)*tempc))) & |
---|
76 | **(1./(0.807+bice*0.00581+0.0457*bice**2)) |
---|
77 | |
---|
78 | vmice=100.*1042.4*exp(13.6-(bice+1)*7.76+0.479*(bice+1.)**2)*exp((-0.0361+& |
---|
79 | (bice+1.)*0.0151+0.00149*(bice+1.)**2)*tempc)& |
---|
80 | *(m2ice**(0.807+(bice+1.)*0.00581+0.0457*(bice+1.)**2))/(iwcg*0.001/aice) |
---|
81 | |
---|
82 | |
---|
83 | vmice=vmice*((1000./phpa)**0.2) |
---|
84 | |
---|
85 | m2snow=((iwcg*0.001/asnow)/(exp(13.6-bsnow*7.76+0.479*bsnow**2)* & |
---|
86 | exp((-0.0361+bsnow*0.0151+0.00149*bsnow**2)*tempc))) & |
---|
87 | **(1./(0.807+bsnow*0.00581+0.0457*bsnow**2)) |
---|
88 | |
---|
89 | |
---|
90 | vmsnow=100.*14.3*exp(13.6-(bsnow+.416)*7.76+0.479*(bsnow+.416)**2)& |
---|
91 | *exp((-0.0361+(bsnow+.416)*0.0151+0.00149*(bsnow+.416)**2)*tempc)& |
---|
92 | *(m2snow**(0.807+(bsnow+.416)*0.00581+0.0457*(bsnow+.416)**2))/(iwcg*0.001/asnow) |
---|
93 | |
---|
94 | vmsnow=vmsnow*((1000./phpa)**0.35) |
---|
95 | |
---|
96 | velo(i)=fallv_tun*min(vmsnow,vmice)/100. ! to m/s |
---|
97 | dvel=0.2 |
---|
98 | cvel=velo(i)/((iwc(i)*rho(i))**dvel) |
---|
99 | |
---|
100 | ELSE |
---|
101 | ! By default, fallspeed velocity of ice crystals according to Heymsfield & Donner 1990 |
---|
102 | velo(i) = fallv_tun*3.29/2.0 * ((iwc(i))**0.16) |
---|
103 | dvel=0.16 |
---|
104 | cvel=fallv_tun*3.29/2.0*(rho(i)**0.16) |
---|
105 | ENDIF |
---|
106 | |
---|
107 | ENDDO |
---|
108 | |
---|
109 | END SUBROUTINE FALLICE_VELOCITY |
---|
110 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
111 | |
---|
112 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
113 | SUBROUTINE ICEFRAC_LSCP(klon, temp, sig, icefrac, dicefracdT) |
---|
114 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
115 | |
---|
116 | ! Compute the ice fraction 1-xliq (see e.g. |
---|
117 | ! Doutriaux-Boucher & Quaas 2004, section 2.2.) |
---|
118 | ! as a function of temperature |
---|
119 | ! see also Fig 3 of Madeleine et al. 2020, JAMES |
---|
120 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
121 | |
---|
122 | |
---|
123 | USE print_control_mod, ONLY: lunout, prt_level |
---|
124 | |
---|
125 | IMPLICIT none |
---|
126 | |
---|
127 | |
---|
128 | INCLUDE "YOMCST.h" |
---|
129 | INCLUDE "nuage.h" |
---|
130 | INCLUDE "clesphys.h" |
---|
131 | |
---|
132 | |
---|
133 | ! nuage.h contains: |
---|
134 | ! t_glace_min: if T < Tmin, the cloud is only made of water ice |
---|
135 | ! t_glace_max: if T > Tmax, the cloud is only made of liquid water |
---|
136 | ! exposant_glace: controls the sharpness of the transition |
---|
137 | |
---|
138 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
139 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature |
---|
140 | REAL, INTENT(IN), DIMENSION(klon) :: sig |
---|
141 | REAL, INTENT(OUT), DIMENSION(klon) :: icefrac |
---|
142 | REAL, INTENT(OUT), DIMENSION(klon) :: dicefracdT |
---|
143 | |
---|
144 | |
---|
145 | INTEGER i |
---|
146 | REAL sig0,www,tmin_tmp,liqfrac_tmp |
---|
147 | REAL Dv, denomdep,beta,qsi,dqsidt |
---|
148 | INTEGER exposant_glace_old |
---|
149 | REAL t_glace_min_old |
---|
150 | LOGICAL ice_thermo |
---|
151 | |
---|
152 | sig0=0.8 |
---|
153 | t_glace_min_old = RTT - 15.0 |
---|
154 | ice_thermo = (iflag_ice_thermo .EQ. 1).OR.(iflag_ice_thermo .GE. 3) |
---|
155 | IF (ice_thermo) THEN |
---|
156 | exposant_glace_old = 2 |
---|
157 | ELSE |
---|
158 | exposant_glace_old = 6 |
---|
159 | ENDIF |
---|
160 | |
---|
161 | |
---|
162 | ! calculation of icefrac and dicefrac/dT |
---|
163 | |
---|
164 | DO i=1,klon |
---|
165 | |
---|
166 | IF (iflag_t_glace.EQ.1) THEN |
---|
167 | ! Transition to ice close to surface for T<Tmax |
---|
168 | ! w=1 at the surface and 0 for sig < sig0 |
---|
169 | www=(max(sig(i)-sig0,0.))/(1.-sig0) |
---|
170 | ELSEIF (iflag_t_glace.GE.2) THEN |
---|
171 | ! No convertion to ice close to surface |
---|
172 | www = 0. |
---|
173 | ENDIF |
---|
174 | |
---|
175 | tmin_tmp=www*t_glace_max+(1.-www)*t_glace_min |
---|
176 | liqfrac_tmp= (temp(i)-tmin_tmp) / (t_glace_max-tmin_tmp) |
---|
177 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
178 | |
---|
179 | IF (iflag_t_glace.GE.3) THEN |
---|
180 | icefrac(i) = 1.0-liqfrac_tmp**exposant_glace |
---|
181 | IF ((icefrac(i) .GT.0.) .AND. (liqfrac_tmp .GT. 0)) THEN |
---|
182 | dicefracdT(i)= exposant_glace * ((liqfrac_tmp)**(exposant_glace-1.)) & |
---|
183 | / (t_glace_min - t_glace_max) |
---|
184 | ELSE |
---|
185 | |
---|
186 | dicefracdT(i)=0. |
---|
187 | ENDIF |
---|
188 | |
---|
189 | ELSE |
---|
190 | icefrac(i) = (1.0-liqfrac_tmp)**exposant_glace |
---|
191 | IF (icefrac(i) .GT.0.) THEN |
---|
192 | dicefracdT(i)= exposant_glace * (icefrac(i)**(exposant_glace-1.)) & |
---|
193 | / (t_glace_min - t_glace_max) |
---|
194 | ENDIF |
---|
195 | |
---|
196 | IF ((icefrac(i).EQ.0).OR.(icefrac(i).EQ.1)) THEN |
---|
197 | dicefracdT(i)=0. |
---|
198 | ENDIF |
---|
199 | |
---|
200 | ENDIF |
---|
201 | |
---|
202 | ENDDO |
---|
203 | |
---|
204 | |
---|
205 | RETURN |
---|
206 | |
---|
207 | END SUBROUTINE ICEFRAC_LSCP |
---|
208 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
209 | |
---|
210 | |
---|
211 | |
---|
212 | SUBROUTINE CALC_QSAT_ECMWF(temp,qtot,pressure,tref,phase,flagth,qs,dqs) |
---|
213 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
214 | ! Calculate qsat following ECMWF method |
---|
215 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
216 | |
---|
217 | |
---|
218 | IMPLICIT none |
---|
219 | |
---|
220 | include "YOMCST.h" |
---|
221 | include "YOETHF.h" |
---|
222 | include "FCTTRE.h" |
---|
223 | |
---|
224 | REAL, INTENT(IN) :: temp ! temperature in K |
---|
225 | REAL, INTENT(IN) :: qtot ! total specific water in kg/kg |
---|
226 | REAL, INTENT(IN) :: pressure ! pressure in Pa |
---|
227 | REAL, INTENT(IN) :: tref ! reference temperature in K |
---|
228 | LOGICAL, INTENT(IN) :: flagth ! flag for qsat calculation for thermals |
---|
229 | |
---|
230 | INTEGER, INTENT(IN) :: phase |
---|
231 | ! phase: 0=depend on temperature sign (temp>tref -> liquid, temp<tref, solid) |
---|
232 | ! 1=liquid |
---|
233 | ! 2=solid |
---|
234 | |
---|
235 | REAL, INTENT(OUT) :: qs ! saturation specific humidity [kg/kg] |
---|
236 | REAL, INTENT(OUT) :: dqs ! derivation of saturation specific humidity wrt T |
---|
237 | |
---|
238 | |
---|
239 | REAL delta, cor, cvm5 |
---|
240 | |
---|
241 | |
---|
242 | IF (phase .EQ. 1) THEN |
---|
243 | delta=0. |
---|
244 | ELSEIF (phase .EQ. 2) THEN |
---|
245 | delta=1. |
---|
246 | ELSE |
---|
247 | delta=MAX(0.,SIGN(1.,tref-temp)) |
---|
248 | ENDIF |
---|
249 | |
---|
250 | IF (flagth) THEN |
---|
251 | cvm5=R5LES*(1.-delta) + R5IES*delta |
---|
252 | ELSE |
---|
253 | cvm5 = R5LES*RLVTT*(1.-delta) + R5IES*RLSTT*delta |
---|
254 | cvm5 = cvm5 /RCPD/(1.0+RVTMP2*(qtot)) |
---|
255 | ENDIF |
---|
256 | |
---|
257 | qs= R2ES*FOEEW(temp,delta)/pressure |
---|
258 | qs=MIN(0.5,qs) |
---|
259 | cor=1./(1.-RETV*qs) |
---|
260 | qs=qs*cor |
---|
261 | dqs= FOEDE(temp,delta,cvm5,qs,cor) |
---|
262 | |
---|
263 | |
---|
264 | |
---|
265 | END SUBROUTINE CALC_QSAT_ECMWF |
---|
266 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
267 | |
---|
268 | |
---|
269 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
270 | SUBROUTINE CALC_GAMMASAT(temp,qtot,pressure,gammasat,dgammasatdt) |
---|
271 | |
---|
272 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
273 | ! programme that calculates the gammasat parameter that determines the |
---|
274 | ! homogeneous condensation thresholds for cold (<0oC) clouds |
---|
275 | ! condensation at q>gammasat*qsat |
---|
276 | ! Etienne Vignon, March 2021 |
---|
277 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
278 | |
---|
279 | |
---|
280 | IMPLICIT none |
---|
281 | |
---|
282 | include "YOMCST.h" |
---|
283 | include "YOETHF.h" |
---|
284 | include "FCTTRE.h" |
---|
285 | include "nuage.h" |
---|
286 | |
---|
287 | |
---|
288 | REAL, INTENT(IN) :: temp ! temperature in K |
---|
289 | REAL, INTENT(IN) :: qtot ! total specific water in kg/kg |
---|
290 | |
---|
291 | REAL, INTENT(IN) :: pressure ! pressure in Pa |
---|
292 | |
---|
293 | REAL, INTENT(OUT) :: gammasat ! coefficient to multiply qsat with to calculate saturation |
---|
294 | REAL, INTENT(OUT) :: dgammasatdt ! derivative of gammasat wrt temperature |
---|
295 | |
---|
296 | REAL qsi,qsl,fac,dqsl,dqsi,fcirrus |
---|
297 | REAL, PARAMETER :: acirrus=2.349 |
---|
298 | REAL, PARAMETER :: bcirrus=259.0 |
---|
299 | |
---|
300 | |
---|
301 | CALL CALC_QSAT_ECMWF(temp,qtot,pressure,RTT,1,.false.,qsl,dqsl) |
---|
302 | CALL CALC_QSAT_ECMWF(temp,qtot,pressure,RTT,2,.false.,qsi,dqsi) |
---|
303 | |
---|
304 | IF (temp .GE. RTT) THEN |
---|
305 | ! warm clouds: condensation at saturation wrt liquid |
---|
306 | gammasat=1. |
---|
307 | dgammasatdt=0. |
---|
308 | |
---|
309 | ELSEIF ((temp .LT. RTT) .AND. (temp .GT. t_glace_min)) THEN |
---|
310 | |
---|
311 | IF (iflag_gammasat .GE. 2) THEN |
---|
312 | gammasat=qsl/qsi |
---|
313 | dgammasatdt=(dqsl*qsi-dqsi*qsl)/qsi/qsi |
---|
314 | ELSE |
---|
315 | gammasat=1. |
---|
316 | dgammasatdt=0. |
---|
317 | ENDIF |
---|
318 | |
---|
319 | ELSE |
---|
320 | |
---|
321 | IF (iflag_gammasat .GE.1) THEN |
---|
322 | ! homogeneous freezing of aerosols, according to |
---|
323 | ! Koop, 2000 and Karcher 2008, QJRMS |
---|
324 | ! 'Cirrus regime' |
---|
325 | fcirrus=acirrus-temp/bcirrus |
---|
326 | IF (fcirrus .LT. qsl/qsi) THEN |
---|
327 | gammasat=qsl/qsi |
---|
328 | dgammasatdt=(dqsl*qsi-dqsi*qsl)/qsi/qsi |
---|
329 | ELSE |
---|
330 | gammasat=fcirrus |
---|
331 | dgammasatdt=-1.0/bcirrus |
---|
332 | ENDIF |
---|
333 | |
---|
334 | ELSE |
---|
335 | |
---|
336 | gammasat=1. |
---|
337 | dgammasatdt=0. |
---|
338 | |
---|
339 | ENDIF |
---|
340 | |
---|
341 | ENDIF |
---|
342 | |
---|
343 | |
---|
344 | |
---|
345 | |
---|
346 | END SUBROUTINE CALC_GAMMASAT |
---|
347 | |
---|
348 | |
---|
349 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
350 | |
---|
351 | END MODULE LSCP_TOOLS_MOD |
---|
352 | |
---|
353 | |
---|