MODULE LSCP_TOOLS_MOD IMPLICIT NONE CONTAINS !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ SUBROUTINE FALLICE_VELOCITY(klon,iwc,temp,rho,pres,ptconv,velo) ! Ref: ! Stubenrauch, C. J., Bonazzola, M., ! Protopapadaki, S. E., & Musat, I. (2019). ! New cloud system metrics to assess bulk ! ice cloud schemes in a GCM. Journal of ! Advances in Modeling Earth Systems, 11, ! 3212–3234. https://doi.org/10.1029/2019MS001642 IMPLICIT NONE INCLUDE "nuage.h" INCLUDE "fisrtilp.h" INTEGER, INTENT(IN) :: klon REAL, INTENT(IN), DIMENSION(klon) :: iwc ! specific ice water content [kg/m3] REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature [K] REAL, INTENT(IN), DIMENSION(klon) :: rho ! dry air density [kg/m3] REAL, INTENT(IN), DIMENSION(klon) :: pres ! air pressure [Pa] LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv ! convective point [-] REAL, INTENT(OUT), DIMENSION(klon) :: velo ! fallspeed velocity of crystals [m/s] INTEGER i REAL logvm,iwcg,tempc,phpa,cvel,dvel,fallv_tun REAL m2ice, m2snow, vmice, vmsnow REAL aice, bice, asnow, bsnow DO i=1,klon IF (ptconv(i)) THEN fallv_tun=ffallv_con ELSE fallv_tun=ffallv_lsc ENDIF tempc=temp(i)-273.15 ! celcius temp iwcg=iwc(i)*1000. ! iwc in g/m3 phpa=pres(i)/100. ! pressure in hPa IF (iflag_vice .EQ. 1) THEN ! so-called 'empirical parameterization' in Stubenrauch et al. 2019 if (tempc .GE. -60.0) then logvm= -0.0000414122*tempc*tempc*log(iwcg)-0.00538922*tempc*log(iwcg) & -0.0516344*log(iwcg)+0.00216078*tempc + 1.9714 velo(i)=exp(logvm) else velo(i)=65.0*(iwcg**0.2)*(150./phpa)**0.15 endif velo(i)=fallv_tun*velo(i)/100.0 ! from cm/s to m/s dvel=0.2 cvel=fallv_tun*65.0*(rho(i)**0.2)*(150./phpa)**0.15 ELSE IF (iflag_vice .EQ. 2) THEN ! so called PSDM empirical coherent bulk ice scheme in Stubenrauch et al. 2019 aice=0.587 bice=2.45 asnow=0.0444 bsnow=2.1 m2ice=((iwcg*0.001/aice)/(exp(13.6-bice*7.76+0.479*bice**2)* & exp((-0.0361+bice*0.0151+0.00149*bice**2)*tempc))) & **(1./(0.807+bice*0.00581+0.0457*bice**2)) vmice=100.*1042.4*exp(13.6-(bice+1)*7.76+0.479*(bice+1.)**2)*exp((-0.0361+& (bice+1.)*0.0151+0.00149*(bice+1.)**2)*tempc)& *(m2ice**(0.807+(bice+1.)*0.00581+0.0457*(bice+1.)**2))/(iwcg*0.001/aice) vmice=vmice*((1000./phpa)**0.2) m2snow=((iwcg*0.001/asnow)/(exp(13.6-bsnow*7.76+0.479*bsnow**2)* & exp((-0.0361+bsnow*0.0151+0.00149*bsnow**2)*tempc))) & **(1./(0.807+bsnow*0.00581+0.0457*bsnow**2)) vmsnow=100.*14.3*exp(13.6-(bsnow+.416)*7.76+0.479*(bsnow+.416)**2)& *exp((-0.0361+(bsnow+.416)*0.0151+0.00149*(bsnow+.416)**2)*tempc)& *(m2snow**(0.807+(bsnow+.416)*0.00581+0.0457*(bsnow+.416)**2))/(iwcg*0.001/asnow) vmsnow=vmsnow*((1000./phpa)**0.35) velo(i)=fallv_tun*min(vmsnow,vmice)/100. ! to m/s dvel=0.2 cvel=velo(i)/((iwc(i)*rho(i))**dvel) ELSE ! By default, fallspeed velocity of ice crystals according to Heymsfield & Donner 1990 velo(i) = fallv_tun*3.29/2.0 * ((iwc(i))**0.16) dvel=0.16 cvel=fallv_tun*3.29/2.0*(rho(i)**0.16) ENDIF ENDDO END SUBROUTINE FALLICE_VELOCITY !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ SUBROUTINE ICEFRAC_LSCP(klon, temp, sig, icefrac, dicefracdT) !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Compute the ice fraction 1-xliq (see e.g. ! Doutriaux-Boucher & Quaas 2004, section 2.2.) ! as a function of temperature ! see also Fig 3 of Madeleine et al. 2020, JAMES !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ USE print_control_mod, ONLY: lunout, prt_level IMPLICIT none INCLUDE "YOMCST.h" INCLUDE "nuage.h" INCLUDE "clesphys.h" ! nuage.h contains: ! t_glace_min: if T < Tmin, the cloud is only made of water ice ! t_glace_max: if T > Tmax, the cloud is only made of liquid water ! exposant_glace: controls the sharpness of the transition INTEGER, INTENT(IN) :: klon ! number of horizontal grid points REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature REAL, INTENT(IN), DIMENSION(klon) :: sig REAL, INTENT(OUT), DIMENSION(klon) :: icefrac REAL, INTENT(OUT), DIMENSION(klon) :: dicefracdT INTEGER i REAL sig0,www,tmin_tmp,liqfrac_tmp REAL Dv, denomdep,beta,qsi,dqsidt INTEGER exposant_glace_old REAL t_glace_min_old LOGICAL ice_thermo sig0=0.8 t_glace_min_old = RTT - 15.0 ice_thermo = (iflag_ice_thermo .EQ. 1).OR.(iflag_ice_thermo .GE. 3) IF (ice_thermo) THEN exposant_glace_old = 2 ELSE exposant_glace_old = 6 ENDIF ! calculation of icefrac and dicefrac/dT DO i=1,klon IF (iflag_t_glace.EQ.1) THEN ! Transition to ice close to surface for Ttref -> liquid, tempgammasat*qsat ! Etienne Vignon, March 2021 !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ IMPLICIT none include "YOMCST.h" include "YOETHF.h" include "FCTTRE.h" include "nuage.h" REAL, INTENT(IN) :: temp ! temperature in K REAL, INTENT(IN) :: qtot ! total specific water in kg/kg REAL, INTENT(IN) :: pressure ! pressure in Pa REAL, INTENT(OUT) :: gammasat ! coefficient to multiply qsat with to calculate saturation REAL, INTENT(OUT) :: dgammasatdt ! derivative of gammasat wrt temperature REAL qsi,qsl,fac,dqsl,dqsi,fcirrus REAL, PARAMETER :: acirrus=2.349 REAL, PARAMETER :: bcirrus=259.0 CALL CALC_QSAT_ECMWF(temp,qtot,pressure,RTT,1,.false.,qsl,dqsl) CALL CALC_QSAT_ECMWF(temp,qtot,pressure,RTT,2,.false.,qsi,dqsi) IF (temp .GE. RTT) THEN ! warm clouds: condensation at saturation wrt liquid gammasat=1. dgammasatdt=0. ELSEIF ((temp .LT. RTT) .AND. (temp .GT. t_glace_min)) THEN IF (iflag_gammasat .GE. 2) THEN gammasat=qsl/qsi dgammasatdt=(dqsl*qsi-dqsi*qsl)/qsi/qsi ELSE gammasat=1. dgammasatdt=0. ENDIF ELSE IF (iflag_gammasat .GE.1) THEN ! homogeneous freezing of aerosols, according to ! Koop, 2000 and Karcher 2008, QJRMS ! 'Cirrus regime' fcirrus=acirrus-temp/bcirrus IF (fcirrus .LT. qsl/qsi) THEN gammasat=qsl/qsi dgammasatdt=(dqsl*qsi-dqsi*qsl)/qsi/qsi ELSE gammasat=fcirrus dgammasatdt=-1.0/bcirrus ENDIF ELSE gammasat=1. dgammasatdt=0. ENDIF ENDIF END SUBROUTINE CALC_GAMMASAT !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ END MODULE LSCP_TOOLS_MOD