| 1 | MODULE lmdz_lscp_main |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 8 | SUBROUTINE lscp(klon, klev, dtime, missing_val, & |
|---|
| 9 | paprs, pplay, omega, temp, qt, ql_seri, qi_seri, & |
|---|
| 10 | ratqs, sigma_qtherm, ptconv, cfcon_old, qvcon_old, & |
|---|
| 11 | qccon_old, cfcon, qvcon, qccon, & |
|---|
| 12 | d_t, d_q, d_ql, d_qi, rneb, rneblsvol, & |
|---|
| 13 | pfraclr, pfracld, & |
|---|
| 14 | cldfraliq, cldfraliqth, & |
|---|
| 15 | sigma2_icefracturb,sigma2_icefracturbth, & |
|---|
| 16 | mean_icefracturb,mean_icefracturbth, & |
|---|
| 17 | radocond, radicefrac, rain, snow, & |
|---|
| 18 | frac_impa, frac_nucl, beta, & |
|---|
| 19 | prfl, psfl, rhcl, qta, fraca, & |
|---|
| 20 | tv, pspsk, tla, thl, wth, iflag_cld_th, & |
|---|
| 21 | iflag_ice_thermo, distcltop, temp_cltop, & |
|---|
| 22 | tke, tke_dissip, & |
|---|
| 23 | entr_therm, detr_therm, & |
|---|
| 24 | cell_area, stratomask, & |
|---|
| 25 | cf_seri, qvc_seri, u_seri, v_seri, & |
|---|
| 26 | qsub, qissr, qcld, subfra, issrfra, gamma_cond, & |
|---|
| 27 | dcf_sub, dcf_con, dcf_mix, & |
|---|
| 28 | dqi_sed, dcf_sed, dqvc_sed, & |
|---|
| 29 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, & |
|---|
| 30 | dqvc_sub, dqvc_con, dqvc_mix, qsatl, qsati, & |
|---|
| 31 | cfl_seri, cfc_seri, qtl_seri, qtc_seri, & |
|---|
| 32 | qice_lincont, qice_circont, flight_dist, & |
|---|
| 33 | flight_h2o, qradice_lincont, qradice_circont, & |
|---|
| 34 | Tcritcont, qcritcont, potcontfraP, potcontfraNP, & |
|---|
| 35 | cloudth_sth, & |
|---|
| 36 | cloudth_senv, cloudth_sigmath, cloudth_sigmaenv, & |
|---|
| 37 | qraindiag, qsnowdiag, dqreva, dqssub, dqrauto, & |
|---|
| 38 | dqrcol, dqrmelt, dqrfreez, dqsauto, dqsagg, dqsrim,& |
|---|
| 39 | dqsmelt, dqsfreez) |
|---|
| 40 | |
|---|
| 41 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 42 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
|---|
| 43 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
|---|
| 44 | !-------------------------------------------------------------------------------- |
|---|
| 45 | ! Date: 01/2021 |
|---|
| 46 | !-------------------------------------------------------------------------------- |
|---|
| 47 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
|---|
| 48 | ! |
|---|
| 49 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
|---|
| 50 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
|---|
| 51 | ! and 'ilp' (il pleut, L. Li) |
|---|
| 52 | ! |
|---|
| 53 | ! Compared to the original fisrtilp code, lscp |
|---|
| 54 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
|---|
| 55 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
|---|
| 56 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
|---|
| 57 | ! -> option "oldbug" by JYG has been removed |
|---|
| 58 | ! -> iflag_t_glace >0 always |
|---|
| 59 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
|---|
| 60 | ! -> rectangular distribution from L. Li no longer available |
|---|
| 61 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
|---|
| 62 | !-------------------------------------------------------------------------------- |
|---|
| 63 | ! References: |
|---|
| 64 | ! |
|---|
| 65 | ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 |
|---|
| 66 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
|---|
| 67 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
|---|
| 68 | ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 |
|---|
| 69 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
|---|
| 70 | ! - Touzze-Peifert Ludo, PhD thesis, p117-124 |
|---|
| 71 | ! ------------------------------------------------------------------------------- |
|---|
| 72 | ! Code structure: |
|---|
| 73 | ! |
|---|
| 74 | ! P0> Thermalization of the precipitation coming from the overlying layer |
|---|
| 75 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
|---|
| 76 | ! P2> Cloud formation (at the k level) |
|---|
| 77 | ! P2.A.1> With the PDFs, calculation of cloud properties using the inital |
|---|
| 78 | ! values of T and Q |
|---|
| 79 | ! P2.A.2> Coupling between condensed water and temperature |
|---|
| 80 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
|---|
| 81 | ! P2.B> Release of Latent heat after cloud formation |
|---|
| 82 | ! P3> Autoconversion to precipitation (k-level) |
|---|
| 83 | ! P4> Wet scavenging |
|---|
| 84 | !------------------------------------------------------------------------------ |
|---|
| 85 | ! Some preliminary comments (JBM) : |
|---|
| 86 | ! |
|---|
| 87 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
|---|
| 88 | ! water used in the physics and the dynamics |
|---|
| 89 | ! |
|---|
| 90 | ! During the autoconversion to precipitation (P3 step), radocond (cloud water used |
|---|
| 91 | ! by the radiation scheme) is calculated as an average of the water that remains |
|---|
| 92 | ! in the cloud during the precipitation and not the water remaining at the end |
|---|
| 93 | ! of the time step. The latter is used in the rest of the physics and advected |
|---|
| 94 | ! by the dynamics. |
|---|
| 95 | ! |
|---|
| 96 | ! In summary: |
|---|
| 97 | ! |
|---|
| 98 | ! Radiation: |
|---|
| 99 | ! xflwc(newmicro)+xfiwc(newmicro) = |
|---|
| 100 | ! radocond=lwcon(nc)+iwcon(nc) |
|---|
| 101 | ! |
|---|
| 102 | ! Notetheless, be aware of: |
|---|
| 103 | ! |
|---|
| 104 | ! radocond .NE. ocond(nc) |
|---|
| 105 | ! i.e.: |
|---|
| 106 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
|---|
| 107 | ! but oliq+(ocond-oliq) .EQ. ocond |
|---|
| 108 | ! (which is not trivial) |
|---|
| 109 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 110 | ! |
|---|
| 111 | |
|---|
| 112 | ! USE de modules contenant des fonctions. |
|---|
| 113 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf, calc_gammasat |
|---|
| 114 | USE lmdz_lscp_tools, ONLY : icefrac_lscp, icefrac_lscp_turb, distance_to_cloud_top |
|---|
| 115 | USE lmdz_lscp_condensation, ONLY : condensation_lognormal, condensation_ice_supersat |
|---|
| 116 | USE lmdz_lscp_condensation, ONLY : cloudth, cloudth_v3, cloudth_v6, condensation_cloudth |
|---|
| 117 | USE lmdz_lscp_precip, ONLY : histprecip_precld, histprecip_postcld |
|---|
| 118 | USE lmdz_lscp_precip, ONLY : poprecip_precld, poprecip_postcld |
|---|
| 119 | |
|---|
| 120 | ! Use du module lmdz_lscp_ini contenant les constantes |
|---|
| 121 | USE lmdz_lscp_ini, ONLY : prt_level, lunout, eps |
|---|
| 122 | USE lmdz_lscp_ini, ONLY : seuil_neb, iflag_evap_prec, DDT0 |
|---|
| 123 | USE lmdz_lscp_ini, ONLY : ok_radocond_snow, a_tr_sca |
|---|
| 124 | USE lmdz_lscp_ini, ONLY : iflag_cloudth_vert, iflag_t_glace, iflag_fisrtilp_qsat |
|---|
| 125 | USE lmdz_lscp_ini, ONLY : min_frac_th_cld, temp_nowater |
|---|
| 126 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RVTMP2, RTT, RD, RG |
|---|
| 127 | USE lmdz_lscp_ini, ONLY : ok_poprecip, ok_bug_phase_lscp |
|---|
| 128 | USE lmdz_lscp_ini, ONLY : ok_ice_supersat, ok_unadjusted_clouds, iflag_icefrac |
|---|
| 129 | USE lmdz_lscp_ini, ONLY : ok_weibull_warm_clouds, ok_no_issr_strato, ok_ice_sedim |
|---|
| 130 | USE lmdz_lscp_ini, ONLY : ok_plane_contrail, ok_precip_lincontrails, ok_precip_circontrails |
|---|
| 131 | USE lmdz_lscp_ini, ONLY : ok_nodeep_lscp, ok_nodeep_lscp_rad |
|---|
| 132 | USE lmdz_lscp_ini, ONLY : ok_lscp_mergecond, gamma_mixth |
|---|
| 133 | |
|---|
| 134 | ! Temporary call for Lamquin et al (2012) diagnostics |
|---|
| 135 | USE phys_local_var_mod, ONLY : issrfra100to150, issrfra150to200, issrfra200to250 |
|---|
| 136 | USE phys_local_var_mod, ONLY : issrfra250to300, issrfra300to400, issrfra400to500 |
|---|
| 137 | USE phys_local_var_mod, ONLY : dcfl_ini, dqil_ini, dqtl_ini, dcfl_sub, dqil_sub, dqtl_sub |
|---|
| 138 | USE phys_local_var_mod, ONLY : dcfl_cir, dqtl_cir, dcfl_mix, dqil_mix, dqtl_mix |
|---|
| 139 | USE phys_local_var_mod, ONLY : dcfc_sub, dqic_sub, dqtc_sub, dcfc_mix, dqic_mix, dqtc_mix |
|---|
| 140 | USE phys_local_var_mod, ONLY : dcfl_sed, dqil_sed, dqtl_sed, dcfc_sed, dqic_sed, dqtc_sed |
|---|
| 141 | USE phys_local_var_mod, ONLY : dcfl_auto, dqil_auto, dqtl_auto, dcfc_auto, dqic_auto, dqtc_auto |
|---|
| 142 | USE phys_local_var_mod, ONLY : dcf_auto, dqi_auto, dqvc_auto |
|---|
| 143 | USE geometry_mod, ONLY: longitude_deg, latitude_deg |
|---|
| 144 | |
|---|
| 145 | IMPLICIT NONE |
|---|
| 146 | |
|---|
| 147 | !=============================================================================== |
|---|
| 148 | ! VARIABLES DECLARATION |
|---|
| 149 | !=============================================================================== |
|---|
| 150 | |
|---|
| 151 | ! INPUT VARIABLES: |
|---|
| 152 | !----------------- |
|---|
| 153 | |
|---|
| 154 | INTEGER, INTENT(IN) :: klon,klev ! number of horizontal grid points and vertical levels |
|---|
| 155 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
|---|
| 156 | |
|---|
| 157 | |
|---|
| 158 | REAL, INTENT(IN) :: dtime ! time step [s] |
|---|
| 159 | REAL, INTENT(IN) :: missing_val ! missing value for output |
|---|
| 160 | |
|---|
| 161 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
|---|
| 162 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
|---|
| 163 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature (K) |
|---|
| 164 | REAL, DIMENSION(klon,klev), INTENT(IN) :: omega ! vertical velocity [Pa/s] |
|---|
| 165 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qt ! total specific humidity (in vapor phase in input) [kg/kg] |
|---|
| 166 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ql_seri ! liquid specific content [kg/kg] |
|---|
| 167 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qi_seri ! ice specific content [kg/kg] |
|---|
| 168 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke ! turbulent kinetic energy [m2/s2] |
|---|
| 169 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke_dissip ! TKE dissipation [m2/s3] |
|---|
| 170 | REAL, DIMENSION(klon,klev), INTENT(IN) :: entr_therm ! thermal plume entrainment rate * dz [kg/s/m2] |
|---|
| 171 | REAL, DIMENSION(klon,klev), INTENT(IN) :: detr_therm ! thermal plume detrainment rate * dz [kg/s/m2] |
|---|
| 172 | |
|---|
| 173 | |
|---|
| 174 | |
|---|
| 175 | LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
|---|
| 176 | REAL, DIMENSION(klon,klev), INTENT(IN) :: cfcon_old ! cloud fraction from deep convection from previous timestep [-] |
|---|
| 177 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qvcon_old ! in-cloud vapor specific humidity from deep convection from previous timestep [kg/kg] |
|---|
| 178 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qccon_old ! in-cloud condensed specific humidity from deep convection from previous timestep [kg/kg] |
|---|
| 179 | REAL, DIMENSION(klon,klev), INTENT(IN) :: cfcon ! cloud fraction from deep convection [-] |
|---|
| 180 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qvcon ! in-cloud vapor specific humidity from deep convection [kg/kg] |
|---|
| 181 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qccon ! in-cloud condensed specific humidity from deep convection [kg/kg] |
|---|
| 182 | |
|---|
| 183 | !Inputs associated with thermal plumes |
|---|
| 184 | |
|---|
| 185 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
|---|
| 186 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tv ! virtual potential temperature [K] |
|---|
| 187 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qta ! specific humidity within thermals [kg/kg] |
|---|
| 188 | REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
|---|
| 189 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pspsk ! exner potential (p/100000)**(R/cp) |
|---|
| 190 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tla ! liquid potential temperature within thermals [K] |
|---|
| 191 | REAL, DIMENSION(klon,klev), INTENT(IN) :: wth ! vertical velocity within thermals [m/s] |
|---|
| 192 | REAL, DIMENSION(klon,klev), INTENT(IN) :: sigma_qtherm ! controls the saturation deficit distribution width in thermals [-] |
|---|
| 193 | |
|---|
| 194 | |
|---|
| 195 | |
|---|
| 196 | ! INPUT/OUTPUT variables |
|---|
| 197 | !------------------------ |
|---|
| 198 | |
|---|
| 199 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: thl ! liquid potential temperature [K] |
|---|
| 200 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: ratqs ! function that sets the large-scale water distribution width |
|---|
| 201 | |
|---|
| 202 | |
|---|
| 203 | ! INPUT/OUTPUT condensation and ice supersaturation |
|---|
| 204 | !-------------------------------------------------- |
|---|
| 205 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: cf_seri ! cloud fraction [-] |
|---|
| 206 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qvc_seri ! cloudy water vapor [kg/kg] |
|---|
| 207 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_seri ! eastward wind [m/s] |
|---|
| 208 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_seri ! northward wind [m/s] |
|---|
| 209 | REAL, DIMENSION(klon), INTENT(IN) :: cell_area ! area of each cell [m2] |
|---|
| 210 | REAL, DIMENSION(klon,klev), INTENT(IN) :: stratomask ! fraction of stratosphere (0 or 1) |
|---|
| 211 | |
|---|
| 212 | ! INPUT/OUTPUT aviation |
|---|
| 213 | !-------------------------------------------------- |
|---|
| 214 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: cfl_seri ! linear contrails fraction [-] |
|---|
| 215 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: cfc_seri ! contrail cirrus fraction [-] |
|---|
| 216 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qtl_seri ! linear contrails total specific humidity [kg/kg] |
|---|
| 217 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qtc_seri ! contrail cirrus total specific humidity [kg/kg] |
|---|
| 218 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_dist ! aviation distance flown within the mesh [m/s/mesh] |
|---|
| 219 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_h2o ! aviation H2O emitted within the mesh [kgH2O/s/mesh] |
|---|
| 220 | |
|---|
| 221 | ! OUTPUT variables |
|---|
| 222 | !----------------- |
|---|
| 223 | |
|---|
| 224 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] |
|---|
| 225 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
|---|
| 226 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
|---|
| 227 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
|---|
| 228 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
|---|
| 229 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] |
|---|
| 230 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfraclr ! precip fraction clear-sky part [-] |
|---|
| 231 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfracld ! precip fraction cloudy part [-] |
|---|
| 232 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cldfraliq ! liquid fraction of cloud fraction [-] |
|---|
| 233 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cldfraliqth ! liquid fraction of cloud fraction in thermals [-] |
|---|
| 234 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: sigma2_icefracturb ! Variance of the diagnostic supersaturation distribution (icefrac_turb) [-] |
|---|
| 235 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: mean_icefracturb ! Mean of the diagnostic supersaturation distribution (icefrac_turb) [-] |
|---|
| 236 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: sigma2_icefracturbth ! Variance of the diagnostic supersaturation distribution in thermals (icefrac_turb) [-] |
|---|
| 237 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: mean_icefracturbth ! Mean of the diagnostic supersaturation distribution in thermals (icefrac_turb) [-] |
|---|
| 238 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] |
|---|
| 239 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
|---|
| 240 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
|---|
| 241 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] |
|---|
| 242 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] |
|---|
| 243 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
|---|
| 244 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
|---|
| 245 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: distcltop ! distance to cloud top [m] |
|---|
| 246 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: temp_cltop ! temperature of cloud top [K] |
|---|
| 247 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: beta ! conversion rate of condensed water |
|---|
| 248 | |
|---|
| 249 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
|---|
| 250 | |
|---|
| 251 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
|---|
| 252 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
|---|
| 253 | |
|---|
| 254 | ! for condensation and ice supersaturation |
|---|
| 255 | |
|---|
| 256 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsub !--specific total water content in sub-saturated clear sky region [kg/kg] |
|---|
| 257 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qissr !--specific total water content in supersat region [kg/kg] |
|---|
| 258 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcld !--specific total water content in cloudy region [kg/kg] |
|---|
| 259 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: subfra !--mesh fraction of subsaturated clear sky [-] |
|---|
| 260 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: issrfra !--mesh fraction of ISSR [-] |
|---|
| 261 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: gamma_cond !--coefficient governing the ice nucleation RHi threshold [-] |
|---|
| 262 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_sub !--cloud fraction tendency because of sublimation [s-1] |
|---|
| 263 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_con !--cloud fraction tendency because of condensation [s-1] |
|---|
| 264 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_mix !--cloud fraction tendency because of cloud mixing [s-1] |
|---|
| 265 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_adj !--specific ice content tendency because of temperature adjustment [kg/kg/s] |
|---|
| 266 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_sub !--specific ice content tendency because of sublimation [kg/kg/s] |
|---|
| 267 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_con !--specific ice content tendency because of condensation [kg/kg/s] |
|---|
| 268 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_mix !--specific ice content tendency because of cloud mixing [kg/kg/s] |
|---|
| 269 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_adj !--specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
|---|
| 270 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_sub !--specific cloud water vapor tendency because of sublimation [kg/kg/s] |
|---|
| 271 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_con !--specific cloud water vapor tendency because of condensation [kg/kg/s] |
|---|
| 272 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_mix !--specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
|---|
| 273 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_sed !--ice water content tendency due to sedmentation of ice crystals [kg/kg/s] |
|---|
| 274 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_sed !--cloud fraction tendency due to sedimentation of ice crystals [kg/kg/s] |
|---|
| 275 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_sed !--cloud water vapor tendency due to sedimentation of ice crystals [kg/kg/s] |
|---|
| 276 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsatl !--saturation specific humidity wrt liquid [kg/kg] |
|---|
| 277 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsati !--saturation specific humidity wrt ice [kg/kg] |
|---|
| 278 | |
|---|
| 279 | ! for contrails and aviation |
|---|
| 280 | |
|---|
| 281 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qice_lincont !--condensed water in linear contrails [kg/kg] |
|---|
| 282 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qice_circont !--condensed water in contrail cirrus [kg/kg] |
|---|
| 283 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qradice_lincont!--condensed water in linear contrails used in the radiation scheme [kg/kg] |
|---|
| 284 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qradice_circont!--condensed water in contrail cirrus used in the radiation scheme [kg/kg] |
|---|
| 285 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Tcritcont !--critical temperature for contrail formation [K] |
|---|
| 286 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcritcont !--critical specific humidity for contrail formation [kg/kg] |
|---|
| 287 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: potcontfraP !--potential persistent contrail fraction [-] |
|---|
| 288 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: potcontfraNP !--potential non-persistent contrail fraction [-] |
|---|
| 289 | |
|---|
| 290 | |
|---|
| 291 | ! for POPRECIP |
|---|
| 292 | |
|---|
| 293 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
|---|
| 294 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
|---|
| 295 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqreva !--rain tendendy due to evaporation [kg/kg/s] |
|---|
| 296 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
|---|
| 297 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
|---|
| 298 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
|---|
| 299 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
|---|
| 300 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
|---|
| 301 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
|---|
| 302 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
|---|
| 303 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
|---|
| 304 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
|---|
| 305 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
|---|
| 306 | |
|---|
| 307 | ! for thermals |
|---|
| 308 | |
|---|
| 309 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sth !--mean saturation deficit in thermals |
|---|
| 310 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_senv !--mean saturation deficit in environment |
|---|
| 311 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmath !--std of saturation deficit in thermals |
|---|
| 312 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmaenv !--std of saturation deficit in environment |
|---|
| 313 | |
|---|
| 314 | |
|---|
| 315 | ! LOCAL VARIABLES: |
|---|
| 316 | !---------------- |
|---|
| 317 | REAL, DIMENSION(klon) :: qliq_in, qice_in, qvc_in, cldfra_in |
|---|
| 318 | REAL, DIMENSION(klon,klev) :: ctot, rnebth, ctot_vol |
|---|
| 319 | REAL, DIMENSION(klon,klev) :: wls !-- large scalce vertical velocity [m/s] |
|---|
| 320 | REAL, DIMENSION(klon) :: zqs, zdqs, zqsl, zdqsl, zqsi, zdqsi |
|---|
| 321 | REAL, DIMENSION(klon) :: zqsth, zqslth, zqsith, zdqsth, zdqslth, zdqsith |
|---|
| 322 | REAL :: zdelta |
|---|
| 323 | REAL, DIMENSION(klon) :: zdqsdT_raw |
|---|
| 324 | REAL, DIMENSION(klon) :: gammasat,dgammasatdt ! coefficient to make cold condensation at the correct RH and derivative wrt T |
|---|
| 325 | REAL, DIMENSION(klon) :: Tbef,Tbefth,Tbefthm1,qlibef,DT ! temperature, humidity and temp. variation during condensation iteration |
|---|
| 326 | REAL :: num,denom |
|---|
| 327 | REAL :: cste |
|---|
| 328 | REAL, DIMENSION(klon) :: qincloud |
|---|
| 329 | REAL, DIMENSION(klon) :: zrfl, zifl |
|---|
| 330 | REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqth, zqn, zqnl |
|---|
| 331 | REAL, DIMENSION(klon) :: zoliql, zoliqi |
|---|
| 332 | REAL, DIMENSION(klon) :: zt, zp |
|---|
| 333 | REAL, DIMENSION(klon) :: zfice, zficeth, zficeenv, zneb, zcf, zsnow |
|---|
| 334 | REAL, DIMENSION(klon) :: dzfice, dzficeth, dzficeenv |
|---|
| 335 | REAL, DIMENSION(klon) :: qtot, zeroklon |
|---|
| 336 | ! Variables precipitation energy conservation |
|---|
| 337 | REAL, DIMENSION(klon) :: zmqc |
|---|
| 338 | REAL :: zalpha_tr |
|---|
| 339 | REAL :: zfrac_lessi |
|---|
| 340 | REAL, DIMENSION(klon) :: zprec_cond |
|---|
| 341 | REAL, DIMENSION(klon) :: zlh_solid |
|---|
| 342 | REAL, DIMENSION(klon) :: ztupnew |
|---|
| 343 | REAL, DIMENSION(klon) :: zqvapclr, zqupnew ! for poprecip evap / subl |
|---|
| 344 | REAL, DIMENSION(klon) :: zrflclr, zrflcld |
|---|
| 345 | REAL, DIMENSION(klon) :: ziflclr, ziflcld |
|---|
| 346 | REAL, DIMENSION(klon) :: znebprecip, znebprecipclr, znebprecipcld |
|---|
| 347 | REAL, DIMENSION(klon) :: tot_zneb |
|---|
| 348 | REAL, DIMENSION(klon) :: zdistcltop, ztemp_cltop, zdeltaz |
|---|
| 349 | REAL, DIMENSION(klon) :: zqliq, zqice, zqvapcl, zqliqth, zqiceth, zqvapclth, sursat_e, invtau_e ! for icefrac_lscp_turb |
|---|
| 350 | ! for ice sedimentation |
|---|
| 351 | REAL, DIMENSION(klon) :: dzsed, flsed, cfsed |
|---|
| 352 | REAL, DIMENSION(klon) :: dzsed_abv, flsed_abv, cfsed_abv |
|---|
| 353 | REAL, DIMENSION(klon) :: flauto |
|---|
| 354 | REAL :: qice_sedim |
|---|
| 355 | |
|---|
| 356 | ! for quantity of condensates seen by radiation |
|---|
| 357 | REAL, DIMENSION(klon) :: zradocond, zradoice |
|---|
| 358 | REAL, DIMENSION(klon) :: zrho_up, zvelo_up |
|---|
| 359 | |
|---|
| 360 | ! for condensation and ice supersaturation |
|---|
| 361 | REAL, DIMENSION(klon) :: qvc, qvcl, shear |
|---|
| 362 | REAL :: delta_z, deepconv_coef |
|---|
| 363 | ! for contrails |
|---|
| 364 | REAL, DIMENSION(klon) :: lincontfra, circontfra, qlincont, qcircont |
|---|
| 365 | REAL, DIMENSION(klon) :: totfra_in, qtot_in |
|---|
| 366 | LOGICAL, DIMENSION(klon) :: pt_pron_clds |
|---|
| 367 | REAL, DIMENSION(klon) :: dzsed_lincont, flsed_lincont, cfsed_lincont |
|---|
| 368 | REAL, DIMENSION(klon) :: dzsed_circont, flsed_circont, cfsed_circont |
|---|
| 369 | REAL, DIMENSION(klon) :: dzsed_lincont_abv, flsed_lincont_abv, cfsed_lincont_abv |
|---|
| 370 | REAL, DIMENSION(klon) :: dzsed_circont_abv, flsed_circont_abv, cfsed_circont_abv |
|---|
| 371 | !--for Lamquin et al 2012 diagnostics |
|---|
| 372 | REAL, DIMENSION(klon) :: issrfra100to150UP, issrfra150to200UP, issrfra200to250UP |
|---|
| 373 | REAL, DIMENSION(klon) :: issrfra250to300UP, issrfra300to400UP, issrfra400to500UP |
|---|
| 374 | |
|---|
| 375 | INTEGER i, k, kk, iter |
|---|
| 376 | INTEGER, DIMENSION(klon) :: n_i |
|---|
| 377 | INTEGER ncoreczq |
|---|
| 378 | LOGICAL iftop |
|---|
| 379 | |
|---|
| 380 | LOGICAL, DIMENSION(klon) :: stratiform_or_all_distrib,pticefracturb |
|---|
| 381 | LOGICAL, DIMENSION(klon) :: keepgoing |
|---|
| 382 | |
|---|
| 383 | CHARACTER (len = 20) :: modname = 'lscp' |
|---|
| 384 | CHARACTER (len = 80) :: abort_message |
|---|
| 385 | |
|---|
| 386 | |
|---|
| 387 | !=============================================================================== |
|---|
| 388 | ! INITIALISATION |
|---|
| 389 | !=============================================================================== |
|---|
| 390 | |
|---|
| 391 | ! Few initial checks |
|---|
| 392 | |
|---|
| 393 | |
|---|
| 394 | IF (iflag_fisrtilp_qsat .LT. 0) THEN |
|---|
| 395 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
|---|
| 396 | CALL abort_physic(modname,abort_message,1) |
|---|
| 397 | ENDIF |
|---|
| 398 | |
|---|
| 399 | ! AA for 'safety' reasons |
|---|
| 400 | zalpha_tr = 0. |
|---|
| 401 | zfrac_lessi = 0. |
|---|
| 402 | beta(:,:)= 0. |
|---|
| 403 | |
|---|
| 404 | ! Initialisation of variables: |
|---|
| 405 | |
|---|
| 406 | prfl(:,:) = 0.0 |
|---|
| 407 | psfl(:,:) = 0.0 |
|---|
| 408 | d_t(:,:) = 0.0 |
|---|
| 409 | d_q(:,:) = 0.0 |
|---|
| 410 | d_ql(:,:) = 0.0 |
|---|
| 411 | d_qi(:,:) = 0.0 |
|---|
| 412 | rneb(:,:) = 0.0 |
|---|
| 413 | rnebth(:,:)=0.0 |
|---|
| 414 | pfraclr(:,:)=0.0 |
|---|
| 415 | pfracld(:,:)=0.0 |
|---|
| 416 | cldfraliq(:,:)=0. |
|---|
| 417 | sigma2_icefracturb(:,:)=0. |
|---|
| 418 | mean_icefracturb(:,:)=0. |
|---|
| 419 | cldfraliqth(:,:)=0. |
|---|
| 420 | sigma2_icefracturbth(:,:)=0. |
|---|
| 421 | mean_icefracturbth(:,:)=0. |
|---|
| 422 | radocond(:,:) = 0.0 |
|---|
| 423 | radicefrac(:,:) = 0.0 |
|---|
| 424 | frac_nucl(:,:) = 1.0 |
|---|
| 425 | frac_impa(:,:) = 1.0 |
|---|
| 426 | rain(:) = 0.0 |
|---|
| 427 | snow(:) = 0.0 |
|---|
| 428 | zrfl(:) = 0.0 |
|---|
| 429 | zifl(:) = 0.0 |
|---|
| 430 | zneb(:) = seuil_neb |
|---|
| 431 | zrflclr(:) = 0.0 |
|---|
| 432 | ziflclr(:) = 0.0 |
|---|
| 433 | zrflcld(:) = 0.0 |
|---|
| 434 | ziflcld(:) = 0.0 |
|---|
| 435 | tot_zneb(:) = 0.0 |
|---|
| 436 | zeroklon(:) = 0.0 |
|---|
| 437 | zdistcltop(:)=0.0 |
|---|
| 438 | ztemp_cltop(:) = 0.0 |
|---|
| 439 | ztupnew(:)=0.0 |
|---|
| 440 | ctot_vol(:,:)=0.0 |
|---|
| 441 | rneblsvol(:,:)=0.0 |
|---|
| 442 | znebprecip(:)=0.0 |
|---|
| 443 | znebprecipclr(:)=0.0 |
|---|
| 444 | znebprecipcld(:)=0.0 |
|---|
| 445 | distcltop(:,:)=0. |
|---|
| 446 | temp_cltop(:,:)=0. |
|---|
| 447 | |
|---|
| 448 | |
|---|
| 449 | !--Ice supersaturation |
|---|
| 450 | gamma_cond(:,:) = 1. |
|---|
| 451 | qissr(:,:) = 0. |
|---|
| 452 | issrfra(:,:) = 0. |
|---|
| 453 | dcf_sub(:,:) = 0. |
|---|
| 454 | dcf_con(:,:) = 0. |
|---|
| 455 | dcf_mix(:,:) = 0. |
|---|
| 456 | dcf_sed(:,:) = 0. |
|---|
| 457 | dcf_auto(:,:) = 0. |
|---|
| 458 | dqi_adj(:,:) = 0. |
|---|
| 459 | dqi_sub(:,:) = 0. |
|---|
| 460 | dqi_con(:,:) = 0. |
|---|
| 461 | dqi_mix(:,:) = 0. |
|---|
| 462 | dqi_sed(:,:) = 0. |
|---|
| 463 | dqi_auto(:,:) = 0. |
|---|
| 464 | dqvc_adj(:,:) = 0. |
|---|
| 465 | dqvc_sub(:,:) = 0. |
|---|
| 466 | dqvc_con(:,:) = 0. |
|---|
| 467 | dqvc_mix(:,:) = 0. |
|---|
| 468 | dqvc_sed(:,:) = 0. |
|---|
| 469 | dqvc_auto(:,:) = 0. |
|---|
| 470 | qvc(:) = 0. |
|---|
| 471 | shear(:) = 0. |
|---|
| 472 | flsed(:) = 0. |
|---|
| 473 | flauto(:) = 0. |
|---|
| 474 | flsed_lincont(:)= 0. |
|---|
| 475 | flsed_circont(:)= 0. |
|---|
| 476 | pt_pron_clds(:) = .FALSE. |
|---|
| 477 | |
|---|
| 478 | !--for Lamquin et al (2012) diagnostics |
|---|
| 479 | issrfra100to150(:) = 0. |
|---|
| 480 | issrfra100to150UP(:) = 0. |
|---|
| 481 | issrfra150to200(:) = 0. |
|---|
| 482 | issrfra150to200UP(:) = 0. |
|---|
| 483 | issrfra200to250(:) = 0. |
|---|
| 484 | issrfra200to250UP(:) = 0. |
|---|
| 485 | issrfra250to300(:) = 0. |
|---|
| 486 | issrfra250to300UP(:) = 0. |
|---|
| 487 | issrfra300to400(:) = 0. |
|---|
| 488 | issrfra300to400UP(:) = 0. |
|---|
| 489 | issrfra400to500(:) = 0. |
|---|
| 490 | issrfra400to500UP(:) = 0. |
|---|
| 491 | |
|---|
| 492 | !-- poprecip |
|---|
| 493 | qraindiag(:,:)= 0. |
|---|
| 494 | qsnowdiag(:,:)= 0. |
|---|
| 495 | dqreva(:,:) = 0. |
|---|
| 496 | dqrauto(:,:) = 0. |
|---|
| 497 | dqrmelt(:,:) = 0. |
|---|
| 498 | dqrfreez(:,:) = 0. |
|---|
| 499 | dqrcol(:,:) = 0. |
|---|
| 500 | dqssub(:,:) = 0. |
|---|
| 501 | dqsauto(:,:) = 0. |
|---|
| 502 | dqsrim(:,:) = 0. |
|---|
| 503 | dqsagg(:,:) = 0. |
|---|
| 504 | dqsfreez(:,:) = 0. |
|---|
| 505 | dqsmelt(:,:) = 0. |
|---|
| 506 | zqupnew(:) = 0. |
|---|
| 507 | zqvapclr(:) = 0. |
|---|
| 508 | |
|---|
| 509 | !-- cloud phase useful variables |
|---|
| 510 | wls(:,:)=-omega(:,:) / RG / (pplay(:,:)/RD/temp(:,:)) |
|---|
| 511 | zqliq(:)=0. |
|---|
| 512 | zqice(:)=0. |
|---|
| 513 | zqvapcl(:)=0. |
|---|
| 514 | zqliqth(:)=0. |
|---|
| 515 | zqiceth(:)=0. |
|---|
| 516 | zqvapclth(:)=0. |
|---|
| 517 | sursat_e(:)=0. |
|---|
| 518 | invtau_e(:)=0. |
|---|
| 519 | pticefracturb(:)=.FALSE. |
|---|
| 520 | |
|---|
| 521 | |
|---|
| 522 | !=============================================================================== |
|---|
| 523 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
|---|
| 524 | !=============================================================================== |
|---|
| 525 | |
|---|
| 526 | ncoreczq=0 |
|---|
| 527 | |
|---|
| 528 | DO k = klev, 1, -1 |
|---|
| 529 | |
|---|
| 530 | IF (k.LE.klev-1) THEN |
|---|
| 531 | iftop=.false. |
|---|
| 532 | ELSE |
|---|
| 533 | iftop=.true. |
|---|
| 534 | ENDIF |
|---|
| 535 | |
|---|
| 536 | ! Initialisation temperature and specific humidity |
|---|
| 537 | ! temp(klon,klev) is not modified by the routine, instead all changes in temperature are made on zt |
|---|
| 538 | ! at the end of the klon loop, a temperature incremtent d_t due to all processes |
|---|
| 539 | ! (thermalization, evap/sub incoming precip, cloud formation, precipitation processes) is calculated |
|---|
| 540 | ! d_t = temperature tendency due to lscp |
|---|
| 541 | ! The temperature of the overlying layer is updated here because needed for thermalization |
|---|
| 542 | DO i = 1, klon |
|---|
| 543 | zt(i)=temp(i,k) |
|---|
| 544 | zq(i)=qt(i,k) |
|---|
| 545 | zp(i)=pplay(i,k) |
|---|
| 546 | qliq_in(i) = ql_seri(i,k) |
|---|
| 547 | qice_in(i) = qi_seri(i,k) |
|---|
| 548 | zcf(i) = 0. |
|---|
| 549 | zfice(i) = 1.0 ! initialized at 1 as by default we assume mpc to be at ice saturation |
|---|
| 550 | dzfice(i) = 0.0 |
|---|
| 551 | zficeth(i) = 1.0 ! initialized at 1 as by default we assume mpc to be at ice saturation |
|---|
| 552 | dzficeth(i) = 0.0 |
|---|
| 553 | zficeenv(i) = 1.0 ! initialized at 1 as by default we assume mpc to be at ice saturation |
|---|
| 554 | dzficeenv(i) = 0.0 |
|---|
| 555 | |
|---|
| 556 | |
|---|
| 557 | IF (.not. iftop) THEN |
|---|
| 558 | ztupnew(i) = temp(i,k+1) + d_t(i,k+1) |
|---|
| 559 | zqupnew(i) = qt(i,k+1) + d_q(i,k+1) + d_ql(i,k+1) + d_qi(i,k+1) |
|---|
| 560 | !--zqs(i) is the saturation specific humidity in the layer above |
|---|
| 561 | zqvapclr(i) = MAX(0., qt(i,k+1) + d_q(i,k+1) - rneb(i,k+1) * zqs(i)) |
|---|
| 562 | ENDIF |
|---|
| 563 | !c_iso init of iso |
|---|
| 564 | ENDDO |
|---|
| 565 | IF ( ok_ice_supersat ) THEN |
|---|
| 566 | cldfra_in(:) = cf_seri(:,k) |
|---|
| 567 | qvc_in(:) = qvc_seri(:,k) |
|---|
| 568 | ENDIF |
|---|
| 569 | |
|---|
| 570 | ! -------------------------------------------------------------------- |
|---|
| 571 | ! P1> Precipitation processes, before cloud formation: |
|---|
| 572 | ! Thermalization of precipitation falling from the overlying layer AND |
|---|
| 573 | ! Precipitation evaporation/sublimation/melting |
|---|
| 574 | !--------------------------------------------------------------------- |
|---|
| 575 | |
|---|
| 576 | !================================================================ |
|---|
| 577 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
|---|
| 578 | IF ( ok_poprecip ) THEN |
|---|
| 579 | |
|---|
| 580 | CALL poprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), zp, & |
|---|
| 581 | zt, ztupnew, zq, zmqc, znebprecipclr, znebprecipcld, & |
|---|
| 582 | zqvapclr, zqupnew, flsed, flsed_lincont, flsed_circont, & |
|---|
| 583 | cldfra_in, qvc_in, qliq_in, qice_in, & |
|---|
| 584 | zrfl, zrflclr, zrflcld, & |
|---|
| 585 | zifl, ziflclr, ziflcld, & |
|---|
| 586 | dqreva(:,k), dqssub(:,k) & |
|---|
| 587 | ) |
|---|
| 588 | |
|---|
| 589 | !================================================================ |
|---|
| 590 | ELSE |
|---|
| 591 | |
|---|
| 592 | CALL histprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), zp, & |
|---|
| 593 | zt, ztupnew, zq, zmqc, zneb, znebprecip, znebprecipclr, & |
|---|
| 594 | flsed, flsed_lincont, flsed_circont, & |
|---|
| 595 | zrfl, zrflclr, zrflcld, & |
|---|
| 596 | zifl, ziflclr, ziflcld, & |
|---|
| 597 | dqreva(:,k), dqssub(:,k) & |
|---|
| 598 | ) |
|---|
| 599 | |
|---|
| 600 | ENDIF ! (ok_poprecip) |
|---|
| 601 | |
|---|
| 602 | ! Calculation of qsat,L/cp*dqsat/dT and ncoreczq counter |
|---|
| 603 | !------------------------------------------------------- |
|---|
| 604 | |
|---|
| 605 | qtot(:)=zq(:)+zmqc(:) |
|---|
| 606 | CALL calc_qsat_ecmwf(klon,zt,qtot,zp,RTT,0,.false.,zqs,zdqs) |
|---|
| 607 | DO i = 1, klon |
|---|
| 608 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
|---|
| 609 | zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) |
|---|
| 610 | IF (zq(i) .LT. 1.e-15) THEN |
|---|
| 611 | ncoreczq=ncoreczq+1 |
|---|
| 612 | zq(i)=1.e-15 |
|---|
| 613 | ENDIF |
|---|
| 614 | ! c_iso: do something similar for isotopes |
|---|
| 615 | |
|---|
| 616 | ENDDO |
|---|
| 617 | |
|---|
| 618 | ! ------------------------------------------------------------------------- |
|---|
| 619 | ! P2> Cloud formation including condensation and cloud phase determination |
|---|
| 620 | !-------------------------------------------------------------------------- |
|---|
| 621 | ! |
|---|
| 622 | ! We always assume a 'fractional cloud' approach |
|---|
| 623 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
|---|
| 624 | ! is prescribed and depends on large scale variables and boundary layer |
|---|
| 625 | ! properties) |
|---|
| 626 | ! The decrease in condensed part due tu latent heating is taken into |
|---|
| 627 | ! account |
|---|
| 628 | ! ------------------------------------------------------------------- |
|---|
| 629 | |
|---|
| 630 | ! P2.1> With the PDFs (log-normal, bigaussian) |
|---|
| 631 | ! cloud properties calculation with the initial values of t and q |
|---|
| 632 | ! ---------------------------------------------------------------- |
|---|
| 633 | |
|---|
| 634 | ! initialise gammasat and stratiform_or_all_distrib |
|---|
| 635 | stratiform_or_all_distrib(:)=.TRUE. |
|---|
| 636 | gammasat(:)=1. |
|---|
| 637 | |
|---|
| 638 | ! part of the code that is supposed to become obsolete soon |
|---|
| 639 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 640 | IF (.NOT. ok_lscp_mergecond) THEN |
|---|
| 641 | IF (iflag_cld_th.GE.5) THEN |
|---|
| 642 | ! Cloud cover and content in meshes affected by shallow convection, |
|---|
| 643 | ! are retrieved from a bi-gaussian distribution of the saturation deficit |
|---|
| 644 | ! following Jam et al. 2013 |
|---|
| 645 | |
|---|
| 646 | IF (iflag_cloudth_vert.LE.2) THEN |
|---|
| 647 | ! Old version of Arnaud Jam |
|---|
| 648 | |
|---|
| 649 | CALL cloudth(klon,klev,k,tv, & |
|---|
| 650 | zq,qta,fraca, & |
|---|
| 651 | qincloud,ctot,pspsk,paprs,pplay,tla,thl, & |
|---|
| 652 | ratqs,zqs,temp, & |
|---|
| 653 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 654 | |
|---|
| 655 | |
|---|
| 656 | ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN |
|---|
| 657 | ! Default version of Arnaud Jam |
|---|
| 658 | |
|---|
| 659 | CALL cloudth_v3(klon,klev,k,tv, & |
|---|
| 660 | zq,qta,fraca, & |
|---|
| 661 | qincloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
|---|
| 662 | ratqs,sigma_qtherm,zqs,temp, & |
|---|
| 663 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 664 | |
|---|
| 665 | |
|---|
| 666 | ELSEIF (iflag_cloudth_vert.EQ.6) THEN |
|---|
| 667 | ! Jean Jouhaud's version, with specific separation between surface and volume |
|---|
| 668 | ! cloud fraction Decembre 2018 |
|---|
| 669 | |
|---|
| 670 | CALL cloudth_v6(klon,klev,k,tv, & |
|---|
| 671 | zq,qta,fraca, & |
|---|
| 672 | qincloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
|---|
| 673 | ratqs,zqs,temp, & |
|---|
| 674 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 675 | |
|---|
| 676 | ENDIF |
|---|
| 677 | |
|---|
| 678 | |
|---|
| 679 | DO i=1,klon |
|---|
| 680 | rneb(i,k)=ctot(i,k) |
|---|
| 681 | ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) |
|---|
| 682 | rneblsvol(i,k)=ctot_vol(i,k) |
|---|
| 683 | zqn(i)=qincloud(i) |
|---|
| 684 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
|---|
| 685 | qvc(i) = rneb(i,k) * zqs(i) |
|---|
| 686 | ENDDO |
|---|
| 687 | |
|---|
| 688 | ! Cloud phase final determination for clouds after "old" cloudth calls |
|---|
| 689 | ! for those clouds, only temperature dependent phase partitioning (eventually modulated by |
|---|
| 690 | ! distance to cloud top) is available |
|---|
| 691 | ! compute distance to cloud top when cloud phase is computed depending on temperature |
|---|
| 692 | ! and distance to cloud top |
|---|
| 693 | IF (iflag_t_glace .GE. 4) THEN |
|---|
| 694 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
|---|
| 695 | ENDIF |
|---|
| 696 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) |
|---|
| 697 | |
|---|
| 698 | ENDIF |
|---|
| 699 | |
|---|
| 700 | IF (iflag_cld_th .EQ. 5) THEN |
|---|
| 701 | ! When iflag_cld_th=5, we always assume |
|---|
| 702 | ! bi-gaussian distribution |
|---|
| 703 | stratiform_or_all_distrib(:) = .FALSE. |
|---|
| 704 | |
|---|
| 705 | ELSEIF (iflag_cld_th .GE. 6) THEN |
|---|
| 706 | ! stratiform distribution only when no thermals |
|---|
| 707 | stratiform_or_all_distrib(:) = fraca(:,k) < min_frac_th_cld |
|---|
| 708 | |
|---|
| 709 | ENDIF |
|---|
| 710 | |
|---|
| 711 | ENDIF ! .not. ok_lscp_mergecond |
|---|
| 712 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 713 | |
|---|
| 714 | |
|---|
| 715 | IF ( ok_ice_supersat ) THEN |
|---|
| 716 | |
|---|
| 717 | !--Initialisation |
|---|
| 718 | IF ( ok_plane_contrail ) THEN |
|---|
| 719 | IF ( iftop ) THEN |
|---|
| 720 | dzsed_lincont_abv(:) = 0. |
|---|
| 721 | flsed_lincont_abv(:) = 0. |
|---|
| 722 | cfsed_lincont_abv(:) = 0. |
|---|
| 723 | dzsed_circont_abv(:) = 0. |
|---|
| 724 | flsed_circont_abv(:) = 0. |
|---|
| 725 | cfsed_circont_abv(:) = 0. |
|---|
| 726 | ELSE |
|---|
| 727 | dzsed_lincont_abv(:) = dzsed_lincont(:) |
|---|
| 728 | flsed_lincont_abv(:) = flsed_lincont(:) |
|---|
| 729 | cfsed_lincont_abv(:) = cfsed_lincont(:) |
|---|
| 730 | dzsed_circont_abv(:) = dzsed_circont(:) |
|---|
| 731 | flsed_circont_abv(:) = flsed_circont(:) |
|---|
| 732 | cfsed_circont_abv(:) = cfsed_circont(:) |
|---|
| 733 | ENDIF |
|---|
| 734 | lincontfra(:) = 0. |
|---|
| 735 | circontfra(:) = 0. |
|---|
| 736 | qlincont(:) = 0. |
|---|
| 737 | qcircont(:) = 0. |
|---|
| 738 | ENDIF |
|---|
| 739 | |
|---|
| 740 | IF ( iftop ) THEN |
|---|
| 741 | dzsed_abv(:) = 0. |
|---|
| 742 | flsed_abv(:) = 0. |
|---|
| 743 | cfsed_abv(:) = 0. |
|---|
| 744 | ELSE |
|---|
| 745 | dzsed_abv(:) = dzsed(:) |
|---|
| 746 | flsed_abv(:) = flsed(:) |
|---|
| 747 | cfsed_abv(:) = cfsed(:) |
|---|
| 748 | ENDIF |
|---|
| 749 | |
|---|
| 750 | DO i = 1, klon |
|---|
| 751 | pt_pron_clds(i) = ( cfcon(i,k) .LT. ( 1. - eps ) ) |
|---|
| 752 | ENDDO |
|---|
| 753 | IF ( .NOT. ok_weibull_warm_clouds ) THEN |
|---|
| 754 | DO i = 1, klon |
|---|
| 755 | pt_pron_clds(i) = pt_pron_clds(i) .AND. ( zt(i) .LE. temp_nowater ) |
|---|
| 756 | ENDDO |
|---|
| 757 | ENDIF |
|---|
| 758 | IF ( ok_no_issr_strato ) THEN |
|---|
| 759 | DO i = 1, klon |
|---|
| 760 | pt_pron_clds(i) = pt_pron_clds(i) .AND. ( stratomask(i,k) .EQ. 0. ) |
|---|
| 761 | ENDDO |
|---|
| 762 | ENDIF |
|---|
| 763 | |
|---|
| 764 | totfra_in(:) = 1. |
|---|
| 765 | qtot_in(:) = zq(:) |
|---|
| 766 | |
|---|
| 767 | IF ( ok_nodeep_lscp ) THEN |
|---|
| 768 | DO i = 1, klon |
|---|
| 769 | !--If deep convection is activated, the condensation scheme activates |
|---|
| 770 | !--only in the environment. NB. the clear sky fraction will the be |
|---|
| 771 | !--maximised by 1. - cfcon(i,k) |
|---|
| 772 | IF ( pt_pron_clds(i) .AND. ptconv(i,k) ) THEN |
|---|
| 773 | totfra_in(i) = 1. - cfcon(i,k) |
|---|
| 774 | qtot_in(i) = zq(i) - ( qvcon(i,k) + qccon(i,k) ) * cfcon(i,k) |
|---|
| 775 | ENDIF |
|---|
| 776 | ENDDO |
|---|
| 777 | ENDIF |
|---|
| 778 | |
|---|
| 779 | DO i = 1, klon |
|---|
| 780 | IF ( pt_pron_clds(i) ) THEN |
|---|
| 781 | IF ( cfcon(i,k) .LT. cfcon_old(i,k) ) THEN |
|---|
| 782 | !--If deep convection is weakening, we add the clouds that are not anymore |
|---|
| 783 | !--'in' deep convection to the advected clouds |
|---|
| 784 | cldfra_in(i) = cldfra_in(i) + ( cfcon_old(i,k) - cfcon(i,k) ) |
|---|
| 785 | qvc_in(i) = qvc_in(i) + qvcon_old(i,k) * ( cfcon_old(i,k) - cfcon(i,k) ) |
|---|
| 786 | qice_in(i) = qice_in(i) + qccon_old(i,k) * ( cfcon_old(i,k) - cfcon(i,k) ) |
|---|
| 787 | ELSEIF ( cldfra_in(i) .GT. eps ) THEN |
|---|
| 788 | !--Else if deep convection is strengthening, it consumes the existing cloud |
|---|
| 789 | !--fraction (which does not at this moment represent deep convection) |
|---|
| 790 | !deepconv_coef = 1. - ( cfcon(i,k) - cfcon_old(i,k) ) / ( 1. - cfcon_old(i,k) ) |
|---|
| 791 | deepconv_coef = MAX(0., 1. - ( cfcon(i,k) - cfcon_old(i,k) ) / cldfra_in(i) ) |
|---|
| 792 | cldfra_in(i) = cldfra_in(i) * deepconv_coef |
|---|
| 793 | qvc_in(i) = qvc_in(i) * deepconv_coef |
|---|
| 794 | qice_in(i) = qice_in(i) * deepconv_coef |
|---|
| 795 | IF ( ok_plane_contrail ) THEN |
|---|
| 796 | !--If contrails are activated, their fraction is also reduced when deep |
|---|
| 797 | !--convection is active |
|---|
| 798 | cfl_seri(i,k) = cfl_seri(i,k) * deepconv_coef |
|---|
| 799 | qtl_seri(i,k) = qtl_seri(i,k) * deepconv_coef |
|---|
| 800 | cfc_seri(i,k) = cfc_seri(i,k) * deepconv_coef |
|---|
| 801 | qtc_seri(i,k) = qtc_seri(i,k) * deepconv_coef |
|---|
| 802 | ENDIF |
|---|
| 803 | ENDIF |
|---|
| 804 | |
|---|
| 805 | !--Calculate the shear value (input for condensation and ice supersat) |
|---|
| 806 | !--Cell thickness [m] |
|---|
| 807 | delta_z = ( paprs(i,k) - paprs(i,k+1) ) / RG / pplay(i,k) * zt(i) * RD |
|---|
| 808 | IF ( iftop ) THEN |
|---|
| 809 | ! top |
|---|
| 810 | shear(i) = SQRT( ( (u_seri(i,k) - u_seri(i,k-1)) / delta_z )**2. & |
|---|
| 811 | + ( (v_seri(i,k) - v_seri(i,k-1)) / delta_z )**2. ) |
|---|
| 812 | ELSEIF ( k .EQ. 1 ) THEN |
|---|
| 813 | ! surface |
|---|
| 814 | shear(i) = SQRT( ( (u_seri(i,k+1) - u_seri(i,k)) / delta_z )**2. & |
|---|
| 815 | + ( (v_seri(i,k+1) - v_seri(i,k)) / delta_z )**2. ) |
|---|
| 816 | ELSE |
|---|
| 817 | ! other layers |
|---|
| 818 | shear(i) = SQRT( ( ( (u_seri(i,k+1) + u_seri(i,k)) / 2. & |
|---|
| 819 | - (u_seri(i,k) + u_seri(i,k-1)) / 2. ) / delta_z )**2. & |
|---|
| 820 | + ( ( (v_seri(i,k+1) + v_seri(i,k)) / 2. & |
|---|
| 821 | - (v_seri(i,k) + v_seri(i,k-1)) / 2. ) / delta_z )**2. ) |
|---|
| 822 | ENDIF |
|---|
| 823 | ENDIF |
|---|
| 824 | ENDDO |
|---|
| 825 | ENDIF |
|---|
| 826 | |
|---|
| 827 | |
|---|
| 828 | DT(:) = 0. |
|---|
| 829 | n_i(:)=0 |
|---|
| 830 | Tbef(:)=zt(:) |
|---|
| 831 | qlibef(:)=0. |
|---|
| 832 | Tbefth(:)=tla(:,k)*pspsk(:,k) |
|---|
| 833 | IF (k .GT. 1) THEN |
|---|
| 834 | Tbefthm1(:)=tla(:,k-1)*pspsk(:,k-1) |
|---|
| 835 | ELSE |
|---|
| 836 | Tbefthm1(:)=Tbefth(:) |
|---|
| 837 | ENDIF |
|---|
| 838 | zqth(:)=qta(:,k) |
|---|
| 839 | zdeltaz(:)=(paprs(:,k)-paprs(:,k+1))/RG/zp(:)*RD*zt(:) |
|---|
| 840 | |
|---|
| 841 | ! Treatment of stratiform clouds (lognormale or ice-sursat) or all clouds (including cloudth |
|---|
| 842 | ! in case of ok_lscp_mergecond) |
|---|
| 843 | ! We iterate here to take into account the change in qsat(T) and ice fraction |
|---|
| 844 | ! during the condensation process |
|---|
| 845 | ! the increment in temperature is calculated using the first principle of |
|---|
| 846 | ! thermodynamics (enthalpy conservation equation in a mesh composed of a cloud fraction |
|---|
| 847 | ! and a clear sky fraction) |
|---|
| 848 | ! note that we assume that the vapor in the cloud is at saturation for this calculation |
|---|
| 849 | |
|---|
| 850 | DO iter=1,iflag_fisrtilp_qsat+1 |
|---|
| 851 | |
|---|
| 852 | keepgoing(:) = .FALSE. |
|---|
| 853 | |
|---|
| 854 | DO i=1,klon |
|---|
| 855 | |
|---|
| 856 | ! keepgoing = .true. while convergence is not satisfied |
|---|
| 857 | |
|---|
| 858 | IF (((ABS(DT(i)).GT.DDT0) .OR. (n_i(i) .EQ. 0)) .AND. stratiform_or_all_distrib(i)) THEN |
|---|
| 859 | |
|---|
| 860 | ! if not convergence: |
|---|
| 861 | ! we calculate a new iteration |
|---|
| 862 | keepgoing(i) = .TRUE. |
|---|
| 863 | |
|---|
| 864 | ! P2.2.1> cloud fraction and condensed water mass calculation |
|---|
| 865 | ! Calculated variables: |
|---|
| 866 | ! rneb : cloud fraction |
|---|
| 867 | ! zqn : total water within the cloud |
|---|
| 868 | ! zcond: mean condensed water within the mesh |
|---|
| 869 | ! rhcl: clear-sky relative humidity |
|---|
| 870 | !--------------------------------------------------------------- |
|---|
| 871 | |
|---|
| 872 | ! new temperature that only serves in the iteration process: |
|---|
| 873 | Tbef(i)=Tbef(i)+DT(i) |
|---|
| 874 | |
|---|
| 875 | ! total water including mass of precip |
|---|
| 876 | qtot(i)=zq(i)+zmqc(i) |
|---|
| 877 | |
|---|
| 878 | ENDIF |
|---|
| 879 | |
|---|
| 880 | ENDDO |
|---|
| 881 | |
|---|
| 882 | ! Calculation of saturation specific humidity |
|---|
| 883 | CALL calc_qsat_ecmwf(klon,Tbef,qtot,zp,RTT,0,.false.,zqs,zdqs) |
|---|
| 884 | ! also in thermals |
|---|
| 885 | CALL calc_qsat_ecmwf(klon,Tbefth,zqth,zp,RTT,0,.false.,zqsth,zdqsth) |
|---|
| 886 | |
|---|
| 887 | IF (iflag_icefrac .GE. 1) THEN |
|---|
| 888 | ! consider a ice weighted qs to ensure that liquid clouds at T<0 have a consistent cloud fraction |
|---|
| 889 | ! and cloud condensed water content. Principle from Dietlitcher et al. 2018, GMD |
|---|
| 890 | ! we make this option works only for the physically-based and tke-dependent param from Raillard et al. |
|---|
| 891 | ! (iflag_icefrac>=1) |
|---|
| 892 | CALL calc_qsat_ecmwf(klon,Tbef,qtot,zp,RTT,1,.false.,zqsl,zdqsl) |
|---|
| 893 | CALL calc_qsat_ecmwf(klon,Tbef,qtot,zp,RTT,2,.false.,zqsi,zdqsi) |
|---|
| 894 | DO i=1,klon |
|---|
| 895 | zqs(i)=zfice(i)*zqsi(i)+(1.-zfice(i))*zqsl(i) |
|---|
| 896 | zdqs(i)=zfice(i)*zdqsi(i)+zqsi(i)*dzfice(i)+(1.-zfice(i))*zdqsl(i)-zqsl(i)*dzfice(i) |
|---|
| 897 | ENDDO |
|---|
| 898 | ENDIF |
|---|
| 899 | IF (iflag_icefrac .GE. 2) THEN |
|---|
| 900 | ! same adjustment for thermals |
|---|
| 901 | CALL calc_qsat_ecmwf(klon,Tbefth,qtot,zp,RTT,1,.false.,zqslth,zdqslth) |
|---|
| 902 | CALL calc_qsat_ecmwf(klon,Tbefth,qtot,zp,RTT,2,.false.,zqsith,zdqsith) |
|---|
| 903 | DO i=1,klon |
|---|
| 904 | zqsth(i)=zficeth(i)*zqsith(i)+(1.-zficeth(i))*zqslth(i) |
|---|
| 905 | zdqsth(i)=zficeth(i)*zdqsith(i)+zqsith(i)*dzficeth(i)+(1.-zficeth(i))*zdqslth(i)-zqslth(i)*dzficeth(i) |
|---|
| 906 | ENDDO |
|---|
| 907 | ENDIF |
|---|
| 908 | |
|---|
| 909 | CALL calc_gammasat(klon,Tbef,qtot,zp,gammasat,dgammasatdt) |
|---|
| 910 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
|---|
| 911 | zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:) |
|---|
| 912 | |
|---|
| 913 | ! Cloud condensation based on subgrid pdf |
|---|
| 914 | !--AB Activates a condensation scheme that allows for |
|---|
| 915 | !--ice supersaturation and contrails evolution from aviation |
|---|
| 916 | IF (ok_ice_supersat) THEN |
|---|
| 917 | |
|---|
| 918 | !--------------------------------------------- |
|---|
| 919 | !-- CONDENSATION AND ICE SUPERSATURATION -- |
|---|
| 920 | !--------------------------------------------- |
|---|
| 921 | |
|---|
| 922 | CALL condensation_ice_supersat( & |
|---|
| 923 | klon, dtime, pplay(:,k), paprs(:,k), paprs(:,k+1), & |
|---|
| 924 | totfra_in, cldfra_in, qvc_in, qliq_in, qice_in, & |
|---|
| 925 | shear, tke_dissip(:,k), cell_area, Tbef, qtot_in, zqs, & |
|---|
| 926 | gammasat, ratqs(:,k), keepgoing, pt_pron_clds, & |
|---|
| 927 | dzsed_abv, flsed_abv, cfsed_abv, & |
|---|
| 928 | dzsed_lincont_abv, flsed_lincont_abv, cfsed_lincont_abv, & |
|---|
| 929 | dzsed_circont_abv, flsed_circont_abv, cfsed_circont_abv, & |
|---|
| 930 | dzsed, flsed, cfsed, dzsed_lincont, flsed_lincont, cfsed_lincont, & |
|---|
| 931 | dzsed_circont, flsed_circont, cfsed_circont, flauto, & |
|---|
| 932 | rneb(:,k), zqn, qvc, issrfra(:,k), qissr(:,k), & |
|---|
| 933 | dcf_sub(:,k), dcf_con(:,k), dcf_mix(:,k), & |
|---|
| 934 | dcf_sed(:,k), dcf_auto(:,k), & |
|---|
| 935 | dqi_adj(:,k), dqi_sub(:,k), dqi_con(:,k), dqi_mix(:,k), & |
|---|
| 936 | dqi_sed(:,k), dqi_auto(:,k), & |
|---|
| 937 | dqvc_adj(:,k), dqvc_sub(:,k), dqvc_con(:,k), dqvc_mix(:,k), & |
|---|
| 938 | dqvc_sed(:,k), dqvc_auto(:,k), & |
|---|
| 939 | cfl_seri(:,k), cfc_seri(:,k), qtl_seri(:,k), qtc_seri(:,k), & |
|---|
| 940 | flight_dist(:,k), flight_h2o(:,k), & |
|---|
| 941 | lincontfra, circontfra, qlincont, qcircont, & |
|---|
| 942 | Tcritcont(:,k), qcritcont(:,k), potcontfraP(:,k), potcontfraNP(:,k), & |
|---|
| 943 | dcfl_ini(:,k), dqil_ini(:,k), dqtl_ini(:,k), & |
|---|
| 944 | dcfl_sub(:,k), dqil_sub(:,k), dqtl_sub(:,k), & |
|---|
| 945 | dcfl_cir(:,k), dqtl_cir(:,k), & |
|---|
| 946 | dcfl_mix(:,k), dqil_mix(:,k), dqtl_mix(:,k), & |
|---|
| 947 | dcfl_sed(:,k), dqil_sed(:,k), dqtl_sed(:,k), & |
|---|
| 948 | dcfl_auto(:,k), dqil_auto(:,k), dqtl_auto(:,k), & |
|---|
| 949 | dcfc_sub(:,k), dqic_sub(:,k), dqtc_sub(:,k), & |
|---|
| 950 | dcfc_mix(:,k), dqic_mix(:,k), dqtc_mix(:,k), & |
|---|
| 951 | dcfc_sed(:,k), dqic_sed(:,k), dqtc_sed(:,k), & |
|---|
| 952 | dcfc_auto(:,k), dqic_auto(:,k), dqtc_auto(:,k)) |
|---|
| 953 | |
|---|
| 954 | IF ( ok_nodeep_lscp ) THEN |
|---|
| 955 | DO i = 1, klon |
|---|
| 956 | !--If prognostic clouds are activated, deep convection vapor is |
|---|
| 957 | !--re-added to the total water vapor |
|---|
| 958 | IF ( keepgoing(i) .AND. ptconv(i,k) .AND. pt_pron_clds(i) ) THEN |
|---|
| 959 | IF ( ( rneb(i,k) + cfcon(i,k) ) .GT. eps ) THEN |
|---|
| 960 | zqn(i) = ( zqn(i) * rneb(i,k) & |
|---|
| 961 | + ( qccon(i,k) + qvcon(i,k) ) * cfcon(i,k) ) & |
|---|
| 962 | / ( rneb(i,k) + cfcon(i,k) ) |
|---|
| 963 | ELSE |
|---|
| 964 | zqn(i) = 0. |
|---|
| 965 | ENDIF |
|---|
| 966 | rneb(i,k) = rneb(i,k) + cfcon(i,k) |
|---|
| 967 | qvc(i) = qvc(i) + qvcon(i,k) * cfcon(i,k) |
|---|
| 968 | ENDIF |
|---|
| 969 | ENDDO |
|---|
| 970 | ENDIF |
|---|
| 971 | |
|---|
| 972 | ELSE |
|---|
| 973 | !--generalised lognormal condensation scheme (Bony and Emanuel 2001) |
|---|
| 974 | |
|---|
| 975 | CALL condensation_lognormal( & |
|---|
| 976 | klon, Tbef, zq, zqs, gammasat, ratqs(:,k), & |
|---|
| 977 | keepgoing, rneb(:,k), zqn, qvc) |
|---|
| 978 | |
|---|
| 979 | |
|---|
| 980 | ENDIF ! .NOT. ok_ice_supersat |
|---|
| 981 | |
|---|
| 982 | ! Volume cloud fraction |
|---|
| 983 | rneblsvol(:,k)=rneb(:,k) |
|---|
| 984 | |
|---|
| 985 | |
|---|
| 986 | IF (ok_lscp_mergecond) THEN |
|---|
| 987 | ! in that case we overwrite rneb, rneblsvol and zqn for shallow convective clouds only |
|---|
| 988 | CALL condensation_cloudth(klon,Tbef,zq,zqth,fraca(:,k), & |
|---|
| 989 | pspsk(:,k),zp,tla(:,k), & |
|---|
| 990 | ratqs(:,k),sigma_qtherm(:,k),zqsth,zqs,zqn,rneb(:,k),rnebth(:,k),rneblsvol(:,k), & |
|---|
| 991 | cloudth_sth(:,k),cloudth_senv(:,k),cloudth_sigmath(:,k),cloudth_sigmaenv(:,k)) |
|---|
| 992 | ENDIF |
|---|
| 993 | |
|---|
| 994 | |
|---|
| 995 | |
|---|
| 996 | ! Cloud phase determination |
|---|
| 997 | |
|---|
| 998 | |
|---|
| 999 | IF (iflag_icefrac .LE. 1) THEN |
|---|
| 1000 | ! "old" phase partitioning depending on temperature and eventually distance to cloud top everywhere |
|---|
| 1001 | IF (iflag_t_glace .GE. 4) THEN |
|---|
| 1002 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
|---|
| 1003 | ENDIF |
|---|
| 1004 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) |
|---|
| 1005 | ENDIF |
|---|
| 1006 | |
|---|
| 1007 | IF (iflag_icefrac .EQ. 1) THEN |
|---|
| 1008 | ! phase partitioning depending on turbulence, vertical velocity and ice crystal microphysics |
|---|
| 1009 | ! only in stratiform clouds in the mixed phase regime (Raillard et al. 2025) |
|---|
| 1010 | ! it overwrites temperature-dependent phase partitioning except for convective boundary layer clouds |
|---|
| 1011 | pticefracturb(:) = (fraca(:,k) < min_frac_th_cld) .AND. (Tbef(:) .GT. temp_nowater) .AND. (Tbef(:) .LT. RTT) |
|---|
| 1012 | DO i=1,klon |
|---|
| 1013 | qincloud(i)=zqn(i) |
|---|
| 1014 | zcf(i)=MIN(MAX(rneb(i,k), 0.),1.) |
|---|
| 1015 | sursat_e(i) = 0. |
|---|
| 1016 | invtau_e(i) = 0. |
|---|
| 1017 | ENDDO |
|---|
| 1018 | CALL icefrac_lscp_turb(klon, dtime, pticefracturb, Tbef, zp, paprs(:,k), paprs(:,k+1), wls(:,k), qice_in, & |
|---|
| 1019 | ziflcld, znebprecipcld, qincloud, zcf, tke(:,k), tke_dissip(:,k), sursat_e, invtau_e, zqliq, zqvapcl, zqice, & |
|---|
| 1020 | zficeenv, dzficeenv, cldfraliq(:,k),sigma2_icefracturb(:,k),mean_icefracturb(:,k)) |
|---|
| 1021 | DO i=1,klon |
|---|
| 1022 | IF (pticefracturb(i)) THEN |
|---|
| 1023 | zfice(i)=zficeenv(i) |
|---|
| 1024 | dzfice(i)=dzficeenv(i) |
|---|
| 1025 | ENDIF |
|---|
| 1026 | ENDDO |
|---|
| 1027 | |
|---|
| 1028 | |
|---|
| 1029 | ELSEIF (iflag_icefrac .GE. 2) THEN |
|---|
| 1030 | ! compute also phase partitioning also in thermal clouds (neglecting tke in thermals as first assumption) |
|---|
| 1031 | ! moreover, given the upward velocity of thermals, we assume that precipitation falls in the environment |
|---|
| 1032 | ! hence we assume that no snow falls in thermals. |
|---|
| 1033 | ! we activate only in the mixed phase regime not to distrub the cirrus param at very cold T |
|---|
| 1034 | pticefracturb(:) = (Tbef(:) .GT. temp_nowater) .AND. (Tbef(:) .LT. RTT) |
|---|
| 1035 | !Thermals |
|---|
| 1036 | DO i=1,klon |
|---|
| 1037 | IF (fraca(i,k) .GT. min_frac_th_cld) THEN |
|---|
| 1038 | zcf(i)=MIN(MAX(rnebth(i,k),0.), 1.)/fraca(i,k) |
|---|
| 1039 | qincloud(i)=zqn(i)*fraca(i,k) |
|---|
| 1040 | ELSE |
|---|
| 1041 | zcf(i) = 0. |
|---|
| 1042 | qincloud(i) = 0. |
|---|
| 1043 | ENDIF |
|---|
| 1044 | sursat_e(i)=cloudth_senv(i,k)/zqsi(i) |
|---|
| 1045 | invtau_e(i)=gamma_mixth*MAX(entr_therm(i,k)-detr_therm(i,k),0.)*RD*Tbef(i)/zp(i)/zdeltaz(i) |
|---|
| 1046 | ENDDO |
|---|
| 1047 | CALL icefrac_lscp_turb(klon, dtime, pticefracturb, Tbefth, zp, paprs(:,k), paprs(:,k+1), wth(:,k), qice_in, & |
|---|
| 1048 | zeroklon, znebprecipcld, qincloud, zcf, zeroklon, zeroklon, sursat_e, invtau_e, zqliqth, zqvapclth, zqiceth, & |
|---|
| 1049 | zficeth, dzficeth,cldfraliqth(:,k), sigma2_icefracturbth(:,k), mean_icefracturbth(:,k)) |
|---|
| 1050 | !Environment |
|---|
| 1051 | DO i=1,klon |
|---|
| 1052 | qincloud(i)=zqn(i)*(1.-fraca(i,k)) |
|---|
| 1053 | zcf(i)=MIN(MAX(rneb(i,k)-rnebth(i,k), 0.),1.)/(1.-fraca(i,k)) |
|---|
| 1054 | IF (k .GT. 1) THEN |
|---|
| 1055 | ! evaluate the mixing sursaturation using saturation deficit at level below |
|---|
| 1056 | ! as air pacels detraining into clouds have not (less) seen yet entrainement from above |
|---|
| 1057 | sursat_e(i)=cloudth_sth(i,k-1)/(zqsith(i)+zdqsith(i)*RCPD/RLSTT*(Tbefthm1(i)-Tbefth(i))) |
|---|
| 1058 | ! mixing is assumed to scales with intensity of net detrainment/entrainment rate (D/dz-E/dz) / rho |
|---|
| 1059 | invtau_e(i)=gamma_mixth*MAX(detr_therm(i,k)-entr_therm(i,k),0.)*RD*Tbef(i)/zp(i)/zdeltaz(i) |
|---|
| 1060 | ELSE |
|---|
| 1061 | sursat_e(i)=0. |
|---|
| 1062 | invtau_e(i)=0. |
|---|
| 1063 | ENDIF |
|---|
| 1064 | ENDDO |
|---|
| 1065 | CALL icefrac_lscp_turb(klon, dtime, pticefracturb, Tbef, zp, paprs(:,k), paprs(:,k+1), wls(:,k), qice_in, & |
|---|
| 1066 | ziflcld, znebprecipcld, qincloud, zcf, tke(:,k), tke_dissip(:,k), sursat_e, invtau_e, zqliq, zqvapcl, zqice, & |
|---|
| 1067 | zfice, dzfice, cldfraliq(:,k),sigma2_icefracturb(:,k), mean_icefracturb(:,k)) |
|---|
| 1068 | |
|---|
| 1069 | ! adjust zfice to account for condensates in thermals'fraction |
|---|
| 1070 | DO i=1,klon |
|---|
| 1071 | IF ( zqliqth(i)+zqliq(i)+zqiceth(i)+zqice(i) .GT. 0.) THEN |
|---|
| 1072 | zfice(i)=MIN(1., (zqiceth(i)+zqice(i))/(zqliqth(i)+zqliq(i)+zqiceth(i)+zqice(i))) |
|---|
| 1073 | dzfice(i)=0. ! dxice/dT=0. always when using icefrac_lscp_turb |
|---|
| 1074 | ENDIF |
|---|
| 1075 | ENDDO |
|---|
| 1076 | |
|---|
| 1077 | ENDIF ! iflag_icefrac |
|---|
| 1078 | |
|---|
| 1079 | |
|---|
| 1080 | |
|---|
| 1081 | |
|---|
| 1082 | DO i=1,klon |
|---|
| 1083 | IF (keepgoing(i)) THEN |
|---|
| 1084 | |
|---|
| 1085 | ! P2.2.2> Approximative calculation of temperature variation DT |
|---|
| 1086 | ! due to condensation. |
|---|
| 1087 | ! Calculated variables: |
|---|
| 1088 | ! dT : temperature change due to condensation |
|---|
| 1089 | !--------------------------------------------------------------- |
|---|
| 1090 | |
|---|
| 1091 | |
|---|
| 1092 | IF (zfice(i).LT.1) THEN |
|---|
| 1093 | cste=RLVTT |
|---|
| 1094 | ELSE |
|---|
| 1095 | cste=RLSTT |
|---|
| 1096 | ENDIF |
|---|
| 1097 | |
|---|
| 1098 | IF ( ok_unadjusted_clouds ) THEN |
|---|
| 1099 | !--AB We relax the saturation adjustment assumption |
|---|
| 1100 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
|---|
| 1101 | IF ( rneb(i,k) .GT. eps ) THEN |
|---|
| 1102 | qlibef(i) = MAX(0., zqn(i) - qvc(i) / rneb(i,k)) |
|---|
| 1103 | ELSE |
|---|
| 1104 | qlibef(i) = 0. |
|---|
| 1105 | ENDIF |
|---|
| 1106 | ELSE |
|---|
| 1107 | qlibef(i)=max(0.,zqn(i)-zqs(i)) |
|---|
| 1108 | ENDIF |
|---|
| 1109 | |
|---|
| 1110 | IF ( ok_ice_sedim ) THEN |
|---|
| 1111 | qice_sedim = (flauto(i) + flsed(i) + flsed_lincont(i) & |
|---|
| 1112 | + flsed_circont(i)) / ( paprs(i,k) - paprs(i,k+1) ) * RG * dtime |
|---|
| 1113 | ! Add the ice that was sedimented, as it is not included in zqn |
|---|
| 1114 | qlibef(i) = qlibef(i) + qice_sedim |
|---|
| 1115 | ENDIF |
|---|
| 1116 | |
|---|
| 1117 | num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & |
|---|
| 1118 | +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlibef(i) |
|---|
| 1119 | denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
|---|
| 1120 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & |
|---|
| 1121 | *qlibef(i)*dzfice(i) |
|---|
| 1122 | ! here we update a provisory temperature variable that only serves in the iteration |
|---|
| 1123 | ! process |
|---|
| 1124 | DT(i)=num/denom |
|---|
| 1125 | n_i(i)=n_i(i)+1 |
|---|
| 1126 | |
|---|
| 1127 | ENDIF ! end keepgoing |
|---|
| 1128 | |
|---|
| 1129 | ENDDO ! end loop on i |
|---|
| 1130 | |
|---|
| 1131 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
|---|
| 1132 | |
|---|
| 1133 | ! P2.2> Final quantities calculation |
|---|
| 1134 | ! Calculated variables: |
|---|
| 1135 | ! rneb : cloud fraction |
|---|
| 1136 | ! zcond: mean condensed water in the mesh |
|---|
| 1137 | ! zqn : mean water vapor in the mesh |
|---|
| 1138 | ! zfice: ice fraction in clouds |
|---|
| 1139 | ! zt : temperature |
|---|
| 1140 | ! rhcl : clear-sky relative humidity |
|---|
| 1141 | ! ---------------------------------------------------------------- |
|---|
| 1142 | |
|---|
| 1143 | |
|---|
| 1144 | ! Water vapor and condensed water update, subsequent latent heat exchange for each cloud type |
|---|
| 1145 | !--------------------------------------------------------------------------------------------- |
|---|
| 1146 | DO i=1, klon |
|---|
| 1147 | ! Checks on rneb, rhcl and zqn |
|---|
| 1148 | IF (rneb(i,k) .LE. 0.0) THEN |
|---|
| 1149 | zqn(i) = 0.0 |
|---|
| 1150 | rneb(i,k) = 0.0 |
|---|
| 1151 | zcond(i) = 0.0 |
|---|
| 1152 | rhcl(i,k)=zq(i)/zqs(i) |
|---|
| 1153 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
|---|
| 1154 | zqn(i) = zq(i) |
|---|
| 1155 | rneb(i,k) = 1.0 |
|---|
| 1156 | IF ( ok_unadjusted_clouds ) THEN |
|---|
| 1157 | !--AB We relax the saturation adjustment assumption |
|---|
| 1158 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
|---|
| 1159 | zcond(i) = MAX(0., zqn(i) - qvc(i)) |
|---|
| 1160 | ELSE |
|---|
| 1161 | zcond(i) = MAX(0.0,zqn(i)-zqs(i)) |
|---|
| 1162 | ENDIF |
|---|
| 1163 | rhcl(i,k)=1.0 |
|---|
| 1164 | ELSE |
|---|
| 1165 | IF ( ok_unadjusted_clouds ) THEN |
|---|
| 1166 | !--AB We relax the saturation adjustment assumption |
|---|
| 1167 | |
|---|
| 1168 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
|---|
| 1169 | zcond(i) = MAX(0., zqn(i) * rneb(i,k) - qvc(i)) |
|---|
| 1170 | ELSE |
|---|
| 1171 | zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k) |
|---|
| 1172 | ENDIF |
|---|
| 1173 | |
|---|
| 1174 | ! following line is very strange and probably wrong |
|---|
| 1175 | rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) |
|---|
| 1176 | ! Correct calculation of clear-sky relative humidity. To activate once |
|---|
| 1177 | ! issues related to zqn>zq in bi-gaussian clouds are corrected |
|---|
| 1178 | !--Relative humidity (no unit) in clear sky, calculated as rh = q / qsat |
|---|
| 1179 | !--This is slighly approximated, the actual formula is |
|---|
| 1180 | !-- rh = q / qsat * (eps + (1-eps)*qsat) / (eps + (1-eps)*q) |
|---|
| 1181 | !--Here, rh = (qtot - qincld * cldfra) / clrfra / qsat |
|---|
| 1182 | !--where (qtot - qincld * cldfra) is the grid-mean clear sky water content |
|---|
| 1183 | ! rhcl(i,k) = ( zq(i) - zqn(i) * rneb(i,k) ) / ( 1. - rneb(i,k) ) / zqs(i) |
|---|
| 1184 | ! Overwrite partitioning for non shallow-convective clouds if iflag_icefrac>1 (icefrac turb param) |
|---|
| 1185 | |
|---|
| 1186 | ENDIF |
|---|
| 1187 | |
|---|
| 1188 | ! water vapor update |
|---|
| 1189 | zq(i) = zq(i) - zcond(i) |
|---|
| 1190 | |
|---|
| 1191 | IF ( ok_ice_sedim ) THEN |
|---|
| 1192 | qice_sedim = (flauto(i) + flsed(i) + flsed_lincont(i) + flsed_circont(i)) & |
|---|
| 1193 | / ( paprs(i,k) - paprs(i,k+1) ) * RG * dtime |
|---|
| 1194 | ! Remove the ice that was sedimented. As it is not included in zqn, |
|---|
| 1195 | ! we only remove it from the total water |
|---|
| 1196 | zq(i) = zq(i) - qice_sedim |
|---|
| 1197 | ! Temperature update due to phase change (sedimented ice was condensed) |
|---|
| 1198 | zt(i) = zt(i) + qice_sedim & |
|---|
| 1199 | * RLSTT / RCPD / ( 1. + RVTMP2 * ( zq(i) + zmqc(i) + zcond(i) ) ) |
|---|
| 1200 | ENDIF |
|---|
| 1201 | |
|---|
| 1202 | ! temperature update due to phase change |
|---|
| 1203 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & |
|---|
| 1204 | & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & |
|---|
| 1205 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
|---|
| 1206 | ENDDO |
|---|
| 1207 | |
|---|
| 1208 | ! ---------------------------------------------------------------- |
|---|
| 1209 | ! P3> Precipitation processes, after cloud formation |
|---|
| 1210 | ! - precipitation formation, melting/freezing |
|---|
| 1211 | ! ---------------------------------------------------------------- |
|---|
| 1212 | |
|---|
| 1213 | ! Initiate the quantity of liquid and solid condensates |
|---|
| 1214 | ! Note that in the following, zcond is the total amount of condensates |
|---|
| 1215 | ! including newly formed precipitations (i.e., condensates formed by the |
|---|
| 1216 | ! condensation process), while zoliq is the total amount of condensates in |
|---|
| 1217 | ! the cloud (i.e., on which precipitation processes have applied) |
|---|
| 1218 | DO i = 1, klon |
|---|
| 1219 | zoliq(i) = zcond(i) |
|---|
| 1220 | zoliql(i) = zcond(i) * ( 1. - zfice(i) ) |
|---|
| 1221 | zoliqi(i) = zcond(i) * zfice(i) |
|---|
| 1222 | ENDDO |
|---|
| 1223 | |
|---|
| 1224 | IF (ok_plane_contrail) THEN |
|---|
| 1225 | |
|---|
| 1226 | !--Ice water content of contrails |
|---|
| 1227 | qice_lincont(:,k) = qlincont(:) - zqs(:) * lincontfra(:) |
|---|
| 1228 | qice_circont(:,k) = qcircont(:) - zqs(:) * circontfra(:) |
|---|
| 1229 | |
|---|
| 1230 | !--Contrails precipitate as natural clouds. We save the partition of ice |
|---|
| 1231 | !--between natural clouds and contrails |
|---|
| 1232 | !--NB. we use qlincont / qcircont as a temporary variable to save this partition |
|---|
| 1233 | IF ( ok_precip_lincontrails ) THEN |
|---|
| 1234 | DO i = 1, klon |
|---|
| 1235 | IF ( zoliqi(i) .GT. 0. ) THEN |
|---|
| 1236 | qlincont(i) = qice_lincont(i,k) / zoliqi(i) |
|---|
| 1237 | ELSE |
|---|
| 1238 | qlincont(i) = 0. |
|---|
| 1239 | ENDIF |
|---|
| 1240 | ENDDO |
|---|
| 1241 | ELSE |
|---|
| 1242 | !--If linear contrails do not precipitate, they are removed temporarily from |
|---|
| 1243 | !--the cloud variables |
|---|
| 1244 | DO i = 1, klon |
|---|
| 1245 | rneb(i,k) = rneb(i,k) - lincontfra(i) |
|---|
| 1246 | zoliq(i) = zoliq(i) - qice_lincont(i,k) |
|---|
| 1247 | zoliqi(i) = zoliqi(i) - qice_lincont(i,k) |
|---|
| 1248 | ENDDO |
|---|
| 1249 | ENDIF |
|---|
| 1250 | IF ( ok_precip_circontrails ) THEN |
|---|
| 1251 | DO i = 1, klon |
|---|
| 1252 | IF ( zoliqi(i) .GT. 0. ) THEN |
|---|
| 1253 | qcircont(i) = qice_circont(i,k) / zoliqi(i) |
|---|
| 1254 | ELSE |
|---|
| 1255 | qcircont(i) = 0. |
|---|
| 1256 | ENDIF |
|---|
| 1257 | ENDDO |
|---|
| 1258 | ELSE |
|---|
| 1259 | !--If contrails cirrus do not precipitate, they are removed temporarily from |
|---|
| 1260 | !--the cloud variables |
|---|
| 1261 | DO i = 1, klon |
|---|
| 1262 | rneb(i,k) = rneb(i,k) - circontfra(i) |
|---|
| 1263 | zoliq(i) = zoliq(i) - qice_circont(i,k) |
|---|
| 1264 | zoliqi(i) = zoliqi(i) - qice_circont(i,k) |
|---|
| 1265 | ENDDO |
|---|
| 1266 | ENDIF |
|---|
| 1267 | ENDIF |
|---|
| 1268 | |
|---|
| 1269 | !================================================================ |
|---|
| 1270 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
|---|
| 1271 | IF (ok_poprecip) THEN |
|---|
| 1272 | |
|---|
| 1273 | CALL poprecip_postcld(klon, dtime, paprs(:,k), paprs(:,k+1), zp, & |
|---|
| 1274 | ctot_vol(:,k), ptconv(:,k), & |
|---|
| 1275 | zt, zq, zoliql, zoliqi, zfice, & |
|---|
| 1276 | rneb(:,k), znebprecipclr, znebprecipcld, & |
|---|
| 1277 | zrfl, zrflclr, zrflcld, & |
|---|
| 1278 | zifl, ziflclr, ziflcld, & |
|---|
| 1279 | qraindiag(:,k), qsnowdiag(:,k), dqrauto(:,k), & |
|---|
| 1280 | dqrcol(:,k), dqrmelt(:,k), dqrfreez(:,k), & |
|---|
| 1281 | dqsauto(:,k), dqsagg(:,k), dqsrim(:,k), & |
|---|
| 1282 | dqsmelt(:,k), dqsfreez(:,k) & |
|---|
| 1283 | ) |
|---|
| 1284 | DO i = 1, klon |
|---|
| 1285 | zoliq(i) = zoliql(i) + zoliqi(i) |
|---|
| 1286 | ENDDO |
|---|
| 1287 | |
|---|
| 1288 | !================================================================ |
|---|
| 1289 | ELSE |
|---|
| 1290 | |
|---|
| 1291 | CALL histprecip_postcld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), zp, & |
|---|
| 1292 | ctot_vol(:,k), ptconv(:,k), pt_pron_clds, zdqsdT_raw, & |
|---|
| 1293 | zt, zq, zoliq, zoliql, zoliqi, zcond, zfice, zmqc, & |
|---|
| 1294 | rneb(:,k), znebprecipclr, znebprecipcld, & |
|---|
| 1295 | zneb, tot_zneb, zrho_up, zvelo_up, & |
|---|
| 1296 | zrfl, zrflclr, zrflcld, zifl, ziflclr, ziflcld, & |
|---|
| 1297 | zradocond, zradoice, dqrauto(:,k), dqsauto(:,k) & |
|---|
| 1298 | ) |
|---|
| 1299 | |
|---|
| 1300 | ENDIF ! ok_poprecip |
|---|
| 1301 | |
|---|
| 1302 | IF ( ok_ice_sedim ) THEN |
|---|
| 1303 | zifl(:) = zifl(:) + flauto(:) |
|---|
| 1304 | ziflcld(:) = ziflcld(:) + flauto(:) |
|---|
| 1305 | ENDIF |
|---|
| 1306 | |
|---|
| 1307 | IF ( ok_plane_contrail ) THEN |
|---|
| 1308 | !--Contrails fraction is left unchanged, but contrails water has changed |
|---|
| 1309 | !--We alse compute the ice content that will be seen by radiation |
|---|
| 1310 | !--(qradice_lincont/circont) |
|---|
| 1311 | IF ( ok_precip_circontrails ) THEN |
|---|
| 1312 | DO i = 1, klon |
|---|
| 1313 | IF ( zoliqi(i) .GT. 0. ) THEN |
|---|
| 1314 | qradice_circont(i,k) = zradocond(i) * qcircont(i) |
|---|
| 1315 | qcircont(i) = zqs(i) * circontfra(i) + zoliqi(i) * qcircont(i) |
|---|
| 1316 | ELSE |
|---|
| 1317 | qradice_circont(i,k) = 0. |
|---|
| 1318 | circontfra(i) = 0. |
|---|
| 1319 | qcircont(i) = 0. |
|---|
| 1320 | ENDIF |
|---|
| 1321 | ENDDO |
|---|
| 1322 | ELSE |
|---|
| 1323 | !--If contrails do not precipitate, they are put back into |
|---|
| 1324 | !--the cloud variables |
|---|
| 1325 | DO i = 1, klon |
|---|
| 1326 | rneb(i,k) = rneb(i,k) + circontfra(i) |
|---|
| 1327 | zoliq(i) = zoliq(i) + qice_circont(i,k) |
|---|
| 1328 | zoliqi(i) = zoliqi(i) + qice_circont(i,k) |
|---|
| 1329 | zradocond(i) = zradocond(i) + qice_circont(i,k) |
|---|
| 1330 | zradoice(i) = zradoice(i) + qice_circont(i,k) |
|---|
| 1331 | qradice_circont(i,k) = qice_circont(i,k) |
|---|
| 1332 | ENDDO |
|---|
| 1333 | ENDIF |
|---|
| 1334 | IF ( ok_precip_lincontrails ) THEN |
|---|
| 1335 | DO i = 1, klon |
|---|
| 1336 | IF ( zoliqi(i) .GT. 0. ) THEN |
|---|
| 1337 | qradice_lincont(i,k) = zradocond(i) * qlincont(i) |
|---|
| 1338 | qlincont(i) = zqs(i) * lincontfra(i) + zoliqi(i) * qlincont(i) |
|---|
| 1339 | ELSE |
|---|
| 1340 | qradice_lincont(i,k) = 0. |
|---|
| 1341 | lincontfra(i) = 0. |
|---|
| 1342 | qlincont(i) = 0. |
|---|
| 1343 | ENDIF |
|---|
| 1344 | ENDDO |
|---|
| 1345 | ELSE |
|---|
| 1346 | !--If contrails do not precipitate, they are put back into |
|---|
| 1347 | !--the cloud variables |
|---|
| 1348 | DO i = 1, klon |
|---|
| 1349 | rneb(i,k) = rneb(i,k) + lincontfra(i) |
|---|
| 1350 | zoliq(i) = zoliq(i) + qice_lincont(i,k) |
|---|
| 1351 | zoliqi(i) = zoliqi(i) + qice_lincont(i,k) |
|---|
| 1352 | zradocond(i) = zradocond(i) + qice_lincont(i,k) |
|---|
| 1353 | zradoice(i) = zradoice(i) + qice_lincont(i,k) |
|---|
| 1354 | qradice_lincont(i,k) = qice_lincont(i,k) |
|---|
| 1355 | ENDDO |
|---|
| 1356 | ENDIF |
|---|
| 1357 | ENDIF |
|---|
| 1358 | |
|---|
| 1359 | ! End of precipitation processes after cloud formation |
|---|
| 1360 | ! ---------------------------------------------------- |
|---|
| 1361 | |
|---|
| 1362 | !---------------------------------------------------------------------- |
|---|
| 1363 | ! P4> Calculation of cloud condensates amount seen by radiative scheme |
|---|
| 1364 | !---------------------------------------------------------------------- |
|---|
| 1365 | |
|---|
| 1366 | DO i=1,klon |
|---|
| 1367 | |
|---|
| 1368 | IF (ok_poprecip) THEN |
|---|
| 1369 | IF (ok_radocond_snow) THEN |
|---|
| 1370 | radocond(i,k) = zoliq(i) |
|---|
| 1371 | zradoice(i) = zoliqi(i) + qsnowdiag(i,k) |
|---|
| 1372 | ELSE |
|---|
| 1373 | radocond(i,k) = zoliq(i) |
|---|
| 1374 | zradoice(i) = zoliqi(i) |
|---|
| 1375 | ENDIF |
|---|
| 1376 | ELSE |
|---|
| 1377 | radocond(i,k) = zradocond(i) |
|---|
| 1378 | ENDIF |
|---|
| 1379 | |
|---|
| 1380 | ! calculate the percentage of ice in "radocond" so cloud+precip seen |
|---|
| 1381 | ! by the radiation scheme |
|---|
| 1382 | IF (radocond(i,k) .GT. 0.) THEN |
|---|
| 1383 | radicefrac(i,k)=MIN(MAX(zradoice(i)/radocond(i,k),0.),1.) |
|---|
| 1384 | ENDIF |
|---|
| 1385 | ENDDO |
|---|
| 1386 | |
|---|
| 1387 | ! ---------------------------------------------------------------- |
|---|
| 1388 | ! P5> Wet scavenging |
|---|
| 1389 | ! ---------------------------------------------------------------- |
|---|
| 1390 | |
|---|
| 1391 | !Scavenging through nucleation in the layer |
|---|
| 1392 | |
|---|
| 1393 | DO i = 1,klon |
|---|
| 1394 | |
|---|
| 1395 | IF(zcond(i).GT.zoliq(i)+1.e-10) THEN |
|---|
| 1396 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
|---|
| 1397 | ELSE |
|---|
| 1398 | beta(i,k) = 0. |
|---|
| 1399 | ENDIF |
|---|
| 1400 | |
|---|
| 1401 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG |
|---|
| 1402 | |
|---|
| 1403 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
|---|
| 1404 | |
|---|
| 1405 | IF (temp(i,k) .GE. temp_nowater) THEN |
|---|
| 1406 | zalpha_tr = a_tr_sca(3) |
|---|
| 1407 | ELSE |
|---|
| 1408 | zalpha_tr = a_tr_sca(4) |
|---|
| 1409 | ENDIF |
|---|
| 1410 | |
|---|
| 1411 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/MAX(rneb(i,k),seuil_neb)) |
|---|
| 1412 | frac_nucl(i,k)= 1.-MAX(rneb(i,k),seuil_neb)*zfrac_lessi |
|---|
| 1413 | |
|---|
| 1414 | ! Nucleation with a factor of -1 instead of -0.5 |
|---|
| 1415 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/MAX(rneb(i,k),seuil_neb)) |
|---|
| 1416 | |
|---|
| 1417 | ENDIF |
|---|
| 1418 | |
|---|
| 1419 | ENDDO |
|---|
| 1420 | |
|---|
| 1421 | ! Scavenging through impaction in the underlying layer |
|---|
| 1422 | |
|---|
| 1423 | DO kk = k-1, 1, -1 |
|---|
| 1424 | |
|---|
| 1425 | DO i = 1, klon |
|---|
| 1426 | |
|---|
| 1427 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
|---|
| 1428 | |
|---|
| 1429 | IF (temp(i,kk) .GE. temp_nowater) THEN |
|---|
| 1430 | zalpha_tr = a_tr_sca(1) |
|---|
| 1431 | ELSE |
|---|
| 1432 | zalpha_tr = a_tr_sca(2) |
|---|
| 1433 | ENDIF |
|---|
| 1434 | |
|---|
| 1435 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/MAX(rneb(i,k),seuil_neb)) |
|---|
| 1436 | frac_impa(i,kk)= 1.-MAX(rneb(i,k),seuil_neb)*zfrac_lessi |
|---|
| 1437 | |
|---|
| 1438 | ENDIF |
|---|
| 1439 | |
|---|
| 1440 | ENDDO |
|---|
| 1441 | |
|---|
| 1442 | ENDDO |
|---|
| 1443 | |
|---|
| 1444 | !------------------------------------------------------------ |
|---|
| 1445 | ! P6 > write diagnostics and outputs |
|---|
| 1446 | !------------------------------------------------------------ |
|---|
| 1447 | |
|---|
| 1448 | CALL calc_qsat_ecmwf(klon,zt,zeroklon,zp,RTT,1,.false.,qsatl(:,k),zdqs) |
|---|
| 1449 | CALL calc_qsat_ecmwf(klon,zt,zeroklon,zp,RTT,2,.false.,qsati(:,k),zdqs) |
|---|
| 1450 | |
|---|
| 1451 | !--AB Write diagnostics and tracers for ice supersaturation |
|---|
| 1452 | IF ( ok_plane_contrail ) THEN |
|---|
| 1453 | DO i = 1, klon |
|---|
| 1454 | IF ( zoliq(i) .LE. 0. ) THEN |
|---|
| 1455 | lincontfra(i) = 0. |
|---|
| 1456 | circontfra(i) = 0. |
|---|
| 1457 | qlincont(i) = 0. |
|---|
| 1458 | qcircont(i) = 0. |
|---|
| 1459 | ENDIF |
|---|
| 1460 | ENDDO |
|---|
| 1461 | cfl_seri(:,k) = lincontfra(:) |
|---|
| 1462 | cfc_seri(:,k) = circontfra(:) |
|---|
| 1463 | qtl_seri(:,k) = qlincont(:) |
|---|
| 1464 | qtc_seri(:,k) = qcircont(:) |
|---|
| 1465 | ENDIF |
|---|
| 1466 | |
|---|
| 1467 | IF ( ok_ice_supersat ) THEN |
|---|
| 1468 | |
|---|
| 1469 | DO i = 1, klon |
|---|
| 1470 | |
|---|
| 1471 | !--We save the cloud properties that will be advected |
|---|
| 1472 | cf_seri(i,k) = rneb(i,k) |
|---|
| 1473 | qvc_seri(i,k) = qvc(i) |
|---|
| 1474 | |
|---|
| 1475 | !--We keep convective clouds properties in memory, and account for |
|---|
| 1476 | !--the sink of condensed water from precipitation |
|---|
| 1477 | IF ( ptconv(i,k) ) THEN |
|---|
| 1478 | IF ( zcond(i) .GT. 0. ) THEN |
|---|
| 1479 | qvcon_old(i,k) = qvcon(i,k) |
|---|
| 1480 | qccon_old(i,k) = qccon(i,k) * zoliq(i) / zcond(i) |
|---|
| 1481 | ELSE |
|---|
| 1482 | qvcon_old(i,k) = 0. |
|---|
| 1483 | qccon_old(i,k) = 0. |
|---|
| 1484 | ENDIF |
|---|
| 1485 | ELSE |
|---|
| 1486 | qvcon_old(i,k) = 0. |
|---|
| 1487 | qccon_old(i,k) = 0. |
|---|
| 1488 | ENDIF |
|---|
| 1489 | |
|---|
| 1490 | !--Deep convection clouds properties are not advected |
|---|
| 1491 | IF ( ptconv(i,k) .AND. pt_pron_clds(i) .AND. ok_nodeep_lscp ) THEN |
|---|
| 1492 | cf_seri(i,k) = MAX(0., cf_seri(i,k) - cfcon(i,k)) |
|---|
| 1493 | qvc_seri(i,k) = MAX(0., qvc_seri(i,k) - qvcon_old(i,k) * cfcon(i,k)) |
|---|
| 1494 | zoliq(i) = MAX(0., zoliq(i) - qccon_old(i,k) * cfcon(i,k)) |
|---|
| 1495 | zoliqi(i) = MAX(0., zoliqi(i) - qccon_old(i,k) * cfcon(i,k)) |
|---|
| 1496 | ENDIF |
|---|
| 1497 | !--Deep convection clouds properties are removed from radiative properties |
|---|
| 1498 | !--outputed from lscp (NB. rneb and radocond are only used for the radiative |
|---|
| 1499 | !--properties and are NOT prognostics) |
|---|
| 1500 | !--We must have iflag_coupl == 5 for this coupling to work |
|---|
| 1501 | IF ( ptconv(i,k) .AND. pt_pron_clds(i) .AND. ok_nodeep_lscp_rad ) THEN |
|---|
| 1502 | rneb(i,k) = MAX(0., rneb(i,k) - cfcon(i,k)) |
|---|
| 1503 | radocond(i,k) = MAX(0., radocond(i,k) - qccon_old(i,k) * cfcon(i,k)) |
|---|
| 1504 | ENDIF |
|---|
| 1505 | |
|---|
| 1506 | !--If everything was precipitated, the remaining empty cloud is dissipated |
|---|
| 1507 | !--and everything is transfered to the subsaturated clear sky region |
|---|
| 1508 | !--NB. we do not change rneb, as it is a diagnostic only |
|---|
| 1509 | IF ( zoliq(i) .LE. 0. ) THEN |
|---|
| 1510 | cf_seri(i,k) = 0. |
|---|
| 1511 | qvc_seri(i,k) = 0. |
|---|
| 1512 | qvc(i) = 0. |
|---|
| 1513 | ENDIF |
|---|
| 1514 | |
|---|
| 1515 | !--Diagnostics |
|---|
| 1516 | gamma_cond(i,k) = gammasat(i) |
|---|
| 1517 | subfra(i,k) = 1. - cf_seri(i,k) - issrfra(i,k) |
|---|
| 1518 | qsub(i,k) = zq(i) - qvc(i) - qissr(i,k) |
|---|
| 1519 | qcld(i,k) = qvc(i) + zoliq(i) |
|---|
| 1520 | |
|---|
| 1521 | !--Calculation of the ice supersaturated fraction following Lamquin et al (2012) |
|---|
| 1522 | !--methodology: in each layer, we make a maximum random overlap assumption for |
|---|
| 1523 | !--ice supersaturation |
|---|
| 1524 | IF ( ( paprs(i,k) .GT. 10000. ) .AND. ( paprs(i,k) .LE. 15000. ) ) THEN |
|---|
| 1525 | IF ( issrfra100to150UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1526 | issrfra100to150(i) = 1. |
|---|
| 1527 | ELSE |
|---|
| 1528 | issrfra100to150(i) = 1. - ( 1. - issrfra100to150(i) ) * & |
|---|
| 1529 | ( 1. - MAX( issrfra(i,k), issrfra100to150UP(i) ) ) & |
|---|
| 1530 | / ( 1. - issrfra100to150UP(i) ) |
|---|
| 1531 | issrfra100to150UP(i) = issrfra(i,k) |
|---|
| 1532 | ENDIF |
|---|
| 1533 | ELSEIF ( ( paprs(i,k) .GT. 15000. ) .AND. ( paprs(i,k) .LE. 20000. ) ) THEN |
|---|
| 1534 | IF ( issrfra150to200UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1535 | issrfra150to200(i) = 1. |
|---|
| 1536 | ELSE |
|---|
| 1537 | issrfra150to200(i) = 1. - ( 1. - issrfra150to200(i) ) * & |
|---|
| 1538 | ( 1. - MAX( issrfra(i,k), issrfra150to200UP(i) ) ) & |
|---|
| 1539 | / ( 1. - issrfra150to200UP(i) ) |
|---|
| 1540 | issrfra150to200UP(i) = issrfra(i,k) |
|---|
| 1541 | ENDIF |
|---|
| 1542 | ELSEIF ( ( paprs(i,k) .GT. 20000. ) .AND. ( paprs(i,k) .LE. 25000. ) ) THEN |
|---|
| 1543 | IF ( issrfra200to250UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1544 | issrfra200to250(i) = 1. |
|---|
| 1545 | ELSE |
|---|
| 1546 | issrfra200to250(i) = 1. - ( 1. - issrfra200to250(i) ) * & |
|---|
| 1547 | ( 1. - MAX( issrfra(i,k), issrfra200to250UP(i) ) ) & |
|---|
| 1548 | / ( 1. - issrfra200to250UP(i) ) |
|---|
| 1549 | issrfra200to250UP(i) = issrfra(i,k) |
|---|
| 1550 | ENDIF |
|---|
| 1551 | ELSEIF ( ( paprs(i,k) .GT. 25000. ) .AND. ( paprs(i,k) .LE. 30000. ) ) THEN |
|---|
| 1552 | IF ( issrfra250to300UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1553 | issrfra250to300(i) = 1. |
|---|
| 1554 | ELSE |
|---|
| 1555 | issrfra250to300(i) = 1. - ( 1. - issrfra250to300(i) ) * & |
|---|
| 1556 | ( 1. - MAX( issrfra(i,k), issrfra250to300UP(i) ) ) & |
|---|
| 1557 | / ( 1. - issrfra250to300UP(i) ) |
|---|
| 1558 | issrfra250to300UP(i) = issrfra(i,k) |
|---|
| 1559 | ENDIF |
|---|
| 1560 | ELSEIF ( ( paprs(i,k) .GT. 30000. ) .AND. ( paprs(i,k) .LE. 40000. ) ) THEN |
|---|
| 1561 | IF ( issrfra300to400UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1562 | issrfra300to400(i) = 1. |
|---|
| 1563 | ELSE |
|---|
| 1564 | issrfra300to400(i) = 1. - ( 1. - issrfra300to400(i) ) * & |
|---|
| 1565 | ( 1. - MAX( issrfra(i,k), issrfra300to400UP(i) ) ) & |
|---|
| 1566 | / ( 1. - issrfra300to400UP(i) ) |
|---|
| 1567 | issrfra300to400UP(i) = issrfra(i,k) |
|---|
| 1568 | ENDIF |
|---|
| 1569 | ELSEIF ( ( paprs(i,k) .GT. 40000. ) .AND. ( paprs(i,k) .LE. 50000. ) ) THEN |
|---|
| 1570 | IF ( issrfra400to500UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1571 | issrfra400to500(i) = 1. |
|---|
| 1572 | ELSE |
|---|
| 1573 | issrfra400to500(i) = 1. - ( 1. - issrfra400to500(i) ) * & |
|---|
| 1574 | ( 1. - MAX( issrfra(i,k), issrfra400to500UP(i) ) ) & |
|---|
| 1575 | / ( 1. - issrfra400to500UP(i) ) |
|---|
| 1576 | issrfra400to500UP(i) = issrfra(i,k) |
|---|
| 1577 | ENDIF |
|---|
| 1578 | ENDIF |
|---|
| 1579 | |
|---|
| 1580 | ENDDO |
|---|
| 1581 | ENDIF |
|---|
| 1582 | |
|---|
| 1583 | ! Outputs: |
|---|
| 1584 | !------------------------------- |
|---|
| 1585 | ! Precipitation fluxes at layer interfaces |
|---|
| 1586 | ! + precipitation fractions + |
|---|
| 1587 | ! temperature and water species tendencies |
|---|
| 1588 | DO i = 1, klon |
|---|
| 1589 | psfl(i,k)=zifl(i) |
|---|
| 1590 | prfl(i,k)=zrfl(i) |
|---|
| 1591 | pfraclr(i,k)=znebprecipclr(i) |
|---|
| 1592 | pfracld(i,k)=znebprecipcld(i) |
|---|
| 1593 | distcltop(i,k)=zdistcltop(i) |
|---|
| 1594 | temp_cltop(i,k)=ztemp_cltop(i) |
|---|
| 1595 | d_q(i,k) = zq(i) - qt(i,k) |
|---|
| 1596 | d_t(i,k) = zt(i) - temp(i,k) |
|---|
| 1597 | |
|---|
| 1598 | IF (ok_bug_phase_lscp) THEN |
|---|
| 1599 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
|---|
| 1600 | d_qi(i,k) = zfice(i)*zoliq(i) |
|---|
| 1601 | ELSE |
|---|
| 1602 | d_ql(i,k) = zoliql(i) |
|---|
| 1603 | d_qi(i,k) = zoliqi(i) |
|---|
| 1604 | ENDIF |
|---|
| 1605 | |
|---|
| 1606 | ENDDO |
|---|
| 1607 | |
|---|
| 1608 | |
|---|
| 1609 | ENDDO ! loop on k from top to bottom |
|---|
| 1610 | |
|---|
| 1611 | |
|---|
| 1612 | ! Rain or snow at the surface (depending on the first layer temperature) |
|---|
| 1613 | DO i = 1, klon |
|---|
| 1614 | snow(i) = zifl(i) |
|---|
| 1615 | rain(i) = zrfl(i) |
|---|
| 1616 | ! c_iso final output |
|---|
| 1617 | ENDDO |
|---|
| 1618 | |
|---|
| 1619 | IF ( ok_ice_sedim ) THEN |
|---|
| 1620 | DO i = 1, klon |
|---|
| 1621 | snow(i) = snow(i) + flsed(i) + flsed_lincont(i) + flsed_circont(i) |
|---|
| 1622 | ENDDO |
|---|
| 1623 | ENDIF |
|---|
| 1624 | |
|---|
| 1625 | IF (ncoreczq>0) THEN |
|---|
| 1626 | WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' |
|---|
| 1627 | ENDIF |
|---|
| 1628 | |
|---|
| 1629 | |
|---|
| 1630 | RETURN |
|---|
| 1631 | |
|---|
| 1632 | END SUBROUTINE lscp |
|---|
| 1633 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 1634 | |
|---|
| 1635 | END MODULE lmdz_lscp_main |
|---|