1 | !$gpum horizontal klon ngrid |
---|
2 | MODULE lmdz_lscp_main |
---|
3 | |
---|
4 | IMPLICIT NONE |
---|
5 | |
---|
6 | CONTAINS |
---|
7 | |
---|
8 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
9 | SUBROUTINE lscp(klon, klev, dtime, missing_val, & |
---|
10 | paprs, pplay, omega, temp, qt, ql_seri, qi_seri, & |
---|
11 | ratqs, sigma_qtherm, ptconv, cfcon_old, qvcon_old, & |
---|
12 | qccon_old, cfcon, qvcon, qccon, & |
---|
13 | d_t, d_q, d_ql, d_qi, rneb, rneblsvol, & |
---|
14 | pfraclr, pfracld, & |
---|
15 | cldfraliq, cldfraliqth, & |
---|
16 | sigma2_icefracturb,sigma2_icefracturbth, & |
---|
17 | mean_icefracturb,mean_icefracturbth, & |
---|
18 | radocond, radicefrac, rain, snow, & |
---|
19 | frac_impa, frac_nucl, beta, & |
---|
20 | prfl, psfl, rhcl, qta, fraca, & |
---|
21 | tv, pspsk, tla, thl, wth, iflag_cld_th, & |
---|
22 | iflag_ice_thermo, distcltop, temp_cltop, & |
---|
23 | tke, tke_dissip, & |
---|
24 | entr_therm, detr_therm, & |
---|
25 | cell_area, stratomask, & |
---|
26 | cf_seri, qvc_seri, u_seri, v_seri, & |
---|
27 | qsub, qissr, qcld, subfra, issrfra, gamma_cond, & |
---|
28 | dcf_sub, dcf_con, dcf_mix, & |
---|
29 | dqi_sed, dcf_sed, dqvc_sed, & |
---|
30 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, & |
---|
31 | dqvc_sub, dqvc_con, dqvc_mix, qsatl, qsati, & |
---|
32 | cfc_seri, qtc_seri, qic_seri, nic_seri, & |
---|
33 | qice_cont, flight_dist, flight_fuel, & |
---|
34 | contfrarad, qradice_cont, & |
---|
35 | Tcritcont, qcritcont, potcontfraP, potcontfraNP, & |
---|
36 | cloudth_sth, & |
---|
37 | cloudth_senv, cloudth_sigmath, cloudth_sigmaenv, & |
---|
38 | qraindiag, qsnowdiag, dqreva, dqssub, dqrauto, & |
---|
39 | dqrcol, dqrmelt, dqrfreez, dqsauto, dqsagg, dqsrim,& |
---|
40 | dqsmelt, dqsfreez) |
---|
41 | |
---|
42 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
43 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
---|
44 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
---|
45 | !-------------------------------------------------------------------------------- |
---|
46 | ! Date: 01/2021 |
---|
47 | !-------------------------------------------------------------------------------- |
---|
48 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
---|
49 | ! |
---|
50 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
---|
51 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
---|
52 | ! and 'ilp' (il pleut, L. Li) |
---|
53 | ! |
---|
54 | ! Compared to the original fisrtilp code, lscp |
---|
55 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
---|
56 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
---|
57 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
---|
58 | ! -> option "oldbug" by JYG has been removed |
---|
59 | ! -> iflag_t_glace >0 always |
---|
60 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
---|
61 | ! -> rectangular distribution from L. Li no longer available |
---|
62 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
---|
63 | !-------------------------------------------------------------------------------- |
---|
64 | ! References: |
---|
65 | ! |
---|
66 | ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 |
---|
67 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
---|
68 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
---|
69 | ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 |
---|
70 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
---|
71 | ! - Touzze-Peifert Ludo, PhD thesis, p117-124 |
---|
72 | ! ------------------------------------------------------------------------------- |
---|
73 | ! Code structure: |
---|
74 | ! |
---|
75 | ! P0> Thermalization of the precipitation coming from the overlying layer |
---|
76 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
---|
77 | ! P2> Cloud formation (at the k level) |
---|
78 | ! P2.A.1> With the PDFs, calculation of cloud properties using the inital |
---|
79 | ! values of T and Q |
---|
80 | ! P2.A.2> Coupling between condensed water and temperature |
---|
81 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
---|
82 | ! P2.B> Release of Latent heat after cloud formation |
---|
83 | ! P3> Autoconversion to precipitation (k-level) |
---|
84 | ! P4> Wet scavenging |
---|
85 | !------------------------------------------------------------------------------ |
---|
86 | ! Some preliminary comments (JBM) : |
---|
87 | ! |
---|
88 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
---|
89 | ! water used in the physics and the dynamics |
---|
90 | ! |
---|
91 | ! During the autoconversion to precipitation (P3 step), radocond (cloud water used |
---|
92 | ! by the radiation scheme) is calculated as an average of the water that remains |
---|
93 | ! in the cloud during the precipitation and not the water remaining at the end |
---|
94 | ! of the time step. The latter is used in the rest of the physics and advected |
---|
95 | ! by the dynamics. |
---|
96 | ! |
---|
97 | ! In summary: |
---|
98 | ! |
---|
99 | ! Radiation: |
---|
100 | ! xflwc(newmicro)+xfiwc(newmicro) = |
---|
101 | ! radocond=lwcon(nc)+iwcon(nc) |
---|
102 | ! |
---|
103 | ! Notetheless, be aware of: |
---|
104 | ! |
---|
105 | ! radocond .NE. ocond(nc) |
---|
106 | ! i.e.: |
---|
107 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
---|
108 | ! but oliq+(ocond-oliq) .EQ. ocond |
---|
109 | ! (which is not trivial) |
---|
110 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
111 | ! |
---|
112 | |
---|
113 | ! USE de modules contenant des fonctions. |
---|
114 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf, calc_gammasat |
---|
115 | USE lmdz_lscp_tools, ONLY : icefrac_lscp, icefrac_lscp_turb, distance_to_cloud_top |
---|
116 | USE lmdz_lscp_condensation, ONLY : condensation_lognormal, condensation_ice_supersat |
---|
117 | USE lmdz_lscp_condensation, ONLY : cloudth, cloudth_v3, cloudth_v6, condensation_cloudth |
---|
118 | USE lmdz_lscp_precip, ONLY : histprecip_precld, histprecip_postcld |
---|
119 | USE lmdz_lscp_precip, ONLY : poprecip_precld, poprecip_postcld |
---|
120 | |
---|
121 | ! Use du module lmdz_lscp_ini contenant les constantes |
---|
122 | USE lmdz_lscp_ini, ONLY : prt_level, lunout, eps |
---|
123 | USE lmdz_lscp_ini, ONLY : seuil_neb, iflag_evap_prec, DDT0 |
---|
124 | USE lmdz_lscp_ini, ONLY : ok_radocond_snow, a_tr_sca |
---|
125 | USE lmdz_lscp_ini, ONLY : iflag_cloudth_vert, iflag_t_glace, iflag_fisrtilp_qsat |
---|
126 | USE lmdz_lscp_ini, ONLY : min_frac_th_cld, temp_nowater, rho_ice |
---|
127 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RVTMP2, RTT, RD, RG, RPI |
---|
128 | USE lmdz_lscp_ini, ONLY : ok_poprecip, ok_bug_phase_lscp |
---|
129 | USE lmdz_lscp_ini, ONLY : ok_ice_supersat, ok_unadjusted_clouds, iflag_icefrac |
---|
130 | USE lmdz_lscp_ini, ONLY : ok_weibull_warm_clouds, ok_no_issr_strato, ok_ice_sedim |
---|
131 | USE lmdz_lscp_ini, ONLY : ok_plane_contrail, ok_unadjusted_contrails |
---|
132 | USE lmdz_lscp_ini, ONLY : ok_nodeep_lscp, ok_higher_cirrus_cover |
---|
133 | USE lmdz_lscp_ini, ONLY : ok_lscp_mergecond, gamma_mixth |
---|
134 | USE lmdz_lscp_ini, ONLY : eff2vol_radius_contrails |
---|
135 | |
---|
136 | ! Temporary call for Lamquin et al (2012) diagnostics |
---|
137 | USE phys_local_var_mod, ONLY : issrfra100to150, issrfra150to200, issrfra200to250 |
---|
138 | USE phys_local_var_mod, ONLY : issrfra250to300, issrfra300to400, issrfra400to500 |
---|
139 | USE phys_local_var_mod, ONLY : AEI_contrails, AEI_surv_contrails |
---|
140 | USE phys_local_var_mod, ONLY : fsurv_contrails, section_contrails |
---|
141 | USE phys_local_var_mod, ONLY : dcfc_ini, dqic_ini, dqtc_ini, dnic_ini |
---|
142 | USE phys_local_var_mod, ONLY : dcfc_sub, dqic_sub, dqtc_sub, dnic_sub |
---|
143 | USE phys_local_var_mod, ONLY : dcfc_mix, dqic_mix, dqtc_mix, dnic_mix |
---|
144 | USE phys_local_var_mod, ONLY : dnic_agg, dqic_adj, dqtc_adj |
---|
145 | USE phys_local_var_mod, ONLY : dcfc_sed, dqic_sed, dqtc_sed, dnic_sed |
---|
146 | USE phys_local_var_mod, ONLY : dcfc_auto, dqic_auto, dqtc_auto, dnic_auto |
---|
147 | USE phys_local_var_mod, ONLY : dcf_auto, dqi_auto, dqvc_auto |
---|
148 | USE phys_local_var_mod, ONLY : nice_ygcont, iwc_ygcont, rvol_ygcont, tau_ygcont |
---|
149 | USE phys_local_var_mod, ONLY : nice_vscont, iwc_vscont, rvol_vscont, tau_vscont |
---|
150 | USE phys_local_var_mod, ONLY : nice_cont, iwc_cont, rvol_cont, tau_cont |
---|
151 | |
---|
152 | IMPLICIT NONE |
---|
153 | |
---|
154 | !=============================================================================== |
---|
155 | ! VARIABLES DECLARATION |
---|
156 | !=============================================================================== |
---|
157 | |
---|
158 | ! INPUT VARIABLES: |
---|
159 | !----------------- |
---|
160 | |
---|
161 | INTEGER, INTENT(IN) :: klon,klev ! number of horizontal grid points and vertical levels |
---|
162 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
---|
163 | |
---|
164 | |
---|
165 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
166 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
167 | |
---|
168 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
---|
169 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
---|
170 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature (K) |
---|
171 | REAL, DIMENSION(klon,klev), INTENT(IN) :: omega ! vertical velocity [Pa/s] |
---|
172 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qt ! total specific humidity (in vapor phase in input) [kg/kg] |
---|
173 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ql_seri ! liquid specific content [kg/kg] |
---|
174 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qi_seri ! ice specific content [kg/kg] |
---|
175 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke ! turbulent kinetic energy [m2/s2] |
---|
176 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke_dissip ! TKE dissipation [m2/s3] |
---|
177 | REAL, DIMENSION(klon,klev), INTENT(IN) :: entr_therm ! thermal plume entrainment rate * dz [kg/s/m2] |
---|
178 | REAL, DIMENSION(klon,klev), INTENT(IN) :: detr_therm ! thermal plume detrainment rate * dz [kg/s/m2] |
---|
179 | |
---|
180 | |
---|
181 | |
---|
182 | LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
---|
183 | REAL, DIMENSION(klon,klev), INTENT(IN) :: cfcon_old ! cloud fraction from deep convection from previous timestep [-] |
---|
184 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qvcon_old ! in-cloud vapor specific humidity from deep convection from previous timestep [kg/kg] |
---|
185 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qccon_old ! in-cloud condensed specific humidity from deep convection from previous timestep [kg/kg] |
---|
186 | REAL, DIMENSION(klon,klev), INTENT(IN) :: cfcon ! cloud fraction from deep convection [-] |
---|
187 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qvcon ! in-cloud vapor specific humidity from deep convection [kg/kg] |
---|
188 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qccon ! in-cloud condensed specific humidity from deep convection [kg/kg] |
---|
189 | |
---|
190 | !Inputs associated with thermal plumes |
---|
191 | |
---|
192 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
---|
193 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tv ! virtual potential temperature [K] |
---|
194 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qta ! specific humidity within thermals [kg/kg] |
---|
195 | REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
---|
196 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pspsk ! exner potential (p/100000)**(R/cp) |
---|
197 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tla ! liquid potential temperature within thermals [K] |
---|
198 | REAL, DIMENSION(klon,klev), INTENT(IN) :: wth ! vertical velocity within thermals [m/s] |
---|
199 | REAL, DIMENSION(klon,klev), INTENT(IN) :: sigma_qtherm ! controls the saturation deficit distribution width in thermals [-] |
---|
200 | |
---|
201 | |
---|
202 | |
---|
203 | ! INPUT/OUTPUT variables |
---|
204 | !------------------------ |
---|
205 | |
---|
206 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: thl ! liquid potential temperature [K] |
---|
207 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: ratqs ! function that sets the large-scale water distribution width |
---|
208 | |
---|
209 | |
---|
210 | ! INPUT/OUTPUT condensation and ice supersaturation |
---|
211 | !-------------------------------------------------- |
---|
212 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: cf_seri ! cloud fraction [-] |
---|
213 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qvc_seri ! cloudy water vapor [kg/kg] |
---|
214 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_seri ! eastward wind [m/s] |
---|
215 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_seri ! northward wind [m/s] |
---|
216 | REAL, DIMENSION(klon), INTENT(IN) :: cell_area ! area of each cell [m2] |
---|
217 | REAL, DIMENSION(klon,klev), INTENT(IN) :: stratomask ! fraction of stratosphere (0 or 1) |
---|
218 | |
---|
219 | ! INPUT/OUTPUT aviation |
---|
220 | !-------------------------------------------------- |
---|
221 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: cfc_seri ! contrail fraction [-] |
---|
222 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qtc_seri ! contrail total specific humidity [kg/kg] |
---|
223 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qic_seri ! contrail ice specific humidity [kg/kg] |
---|
224 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: nic_seri ! contrail ice crystals concentration [#/kg] |
---|
225 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_dist ! aviation distance flown concentration [m/s/m3] |
---|
226 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_fuel ! aviation fuel consumption concentration [kg/s/m3] |
---|
227 | |
---|
228 | ! OUTPUT variables |
---|
229 | !----------------- |
---|
230 | |
---|
231 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] |
---|
232 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
---|
233 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
---|
234 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
---|
235 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
---|
236 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] |
---|
237 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfraclr ! precip fraction clear-sky part [-] |
---|
238 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfracld ! precip fraction cloudy part [-] |
---|
239 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cldfraliq ! liquid fraction of cloud fraction [-] |
---|
240 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cldfraliqth ! liquid fraction of cloud fraction in thermals [-] |
---|
241 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: sigma2_icefracturb ! Variance of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
242 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: mean_icefracturb ! Mean of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
243 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: sigma2_icefracturbth ! Variance of the diagnostic supersaturation distribution in thermals (icefrac_turb) [-] |
---|
244 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: mean_icefracturbth ! Mean of the diagnostic supersaturation distribution in thermals (icefrac_turb) [-] |
---|
245 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] |
---|
246 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
---|
247 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
---|
248 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] |
---|
249 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] |
---|
250 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
---|
251 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
---|
252 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: distcltop ! distance to cloud top [m] |
---|
253 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: temp_cltop ! temperature of cloud top [K] |
---|
254 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: beta ! conversion rate of condensed water |
---|
255 | |
---|
256 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
---|
257 | |
---|
258 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
---|
259 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
---|
260 | |
---|
261 | ! for condensation and ice supersaturation |
---|
262 | |
---|
263 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsub !--specific total water content in sub-saturated clear sky region [kg/kg] |
---|
264 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qissr !--specific total water content in supersat region [kg/kg] |
---|
265 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcld !--specific total water content in cloudy region [kg/kg] |
---|
266 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: subfra !--mesh fraction of subsaturated clear sky [-] |
---|
267 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: issrfra !--mesh fraction of ISSR [-] |
---|
268 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: gamma_cond !--coefficient governing the ice nucleation RHi threshold [-] |
---|
269 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_sub !--cloud fraction tendency because of sublimation [s-1] |
---|
270 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_con !--cloud fraction tendency because of condensation [s-1] |
---|
271 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_mix !--cloud fraction tendency because of cloud mixing [s-1] |
---|
272 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_adj !--specific ice content tendency because of temperature adjustment [kg/kg/s] |
---|
273 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_sub !--specific ice content tendency because of sublimation [kg/kg/s] |
---|
274 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_con !--specific ice content tendency because of condensation [kg/kg/s] |
---|
275 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_mix !--specific ice content tendency because of cloud mixing [kg/kg/s] |
---|
276 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_adj !--specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
---|
277 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_sub !--specific cloud water vapor tendency because of sublimation [kg/kg/s] |
---|
278 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_con !--specific cloud water vapor tendency because of condensation [kg/kg/s] |
---|
279 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_mix !--specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
---|
280 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_sed !--ice water content tendency due to sedmentation of ice crystals [kg/kg/s] |
---|
281 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_sed !--cloud fraction tendency due to sedimentation of ice crystals [kg/kg/s] |
---|
282 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_sed !--cloud water vapor tendency due to sedimentation of ice crystals [kg/kg/s] |
---|
283 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsatl !--saturation specific humidity wrt liquid [kg/kg] |
---|
284 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsati !--saturation specific humidity wrt ice [kg/kg] |
---|
285 | |
---|
286 | ! for contrails and aviation |
---|
287 | |
---|
288 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qice_cont !--condensed water in contrails [kg/kg] |
---|
289 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: contfrarad !--contrail fraction for radiation [-] |
---|
290 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qradice_cont !--condensed water in contrails used in the radiation scheme [kg/kg] |
---|
291 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Tcritcont !--critical temperature for contrail formation [K] |
---|
292 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcritcont !--critical specific humidity for contrail formation [kg/kg] |
---|
293 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: potcontfraP !--potential persistent contrail fraction [-] |
---|
294 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: potcontfraNP !--potential non-persistent contrail fraction [-] |
---|
295 | |
---|
296 | |
---|
297 | ! for POPRECIP |
---|
298 | |
---|
299 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
---|
300 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
---|
301 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqreva !--rain tendendy due to evaporation [kg/kg/s] |
---|
302 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
303 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
---|
304 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
---|
305 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
306 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
307 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
---|
308 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
---|
309 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
---|
310 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
---|
311 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
---|
312 | |
---|
313 | ! for thermals |
---|
314 | |
---|
315 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sth !--mean saturation deficit in thermals |
---|
316 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_senv !--mean saturation deficit in environment |
---|
317 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmath !--std of saturation deficit in thermals |
---|
318 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmaenv !--std of saturation deficit in environment |
---|
319 | |
---|
320 | |
---|
321 | ! LOCAL VARIABLES: |
---|
322 | !---------------- |
---|
323 | REAL, DIMENSION(klon) :: qliq_in, qice_in, qvc_in, cldfra_in |
---|
324 | REAL, DIMENSION(klon,klev) :: ctot, rnebth, ctot_vol |
---|
325 | REAL, DIMENSION(klon,klev) :: wls !-- large scalce vertical velocity [m/s] |
---|
326 | REAL, DIMENSION(klon) :: zqs, zdqs, zqsl, zdqsl, zqsi, zdqsi |
---|
327 | REAL, DIMENSION(klon) :: zqsth, zqslth, zqsith, zdqsth, zdqslth, zdqsith |
---|
328 | REAL :: zdelta |
---|
329 | REAL, DIMENSION(klon) :: zdqsdT_raw |
---|
330 | REAL, DIMENSION(klon) :: gammasat,dgammasatdt ! coefficient to make cold condensation at the correct RH and derivative wrt T |
---|
331 | REAL, DIMENSION(klon) :: Tbef,Tbefth,Tbefthm1,qlibef,DT ! temperature, humidity and temp. variation during condensation iteration |
---|
332 | REAL :: num,denom |
---|
333 | REAL :: cste |
---|
334 | REAL, DIMENSION(klon) :: qincloud |
---|
335 | REAL, DIMENSION(klon) :: zrfl, zifl |
---|
336 | REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqth, zqn, zqnl |
---|
337 | REAL, DIMENSION(klon) :: zoliql, zoliqi |
---|
338 | REAL, DIMENSION(klon) :: zt, zp |
---|
339 | REAL, DIMENSION(klon) :: zfice, zficeth, zficeenv, zneb, zcf, zsnow |
---|
340 | REAL, DIMENSION(klon) :: dzfice, dzficeth, dzficeenv |
---|
341 | REAL, DIMENSION(klon) :: qtot, zeroklon |
---|
342 | ! Variables precipitation energy conservation |
---|
343 | REAL, DIMENSION(klon) :: zmqc |
---|
344 | REAL :: zalpha_tr |
---|
345 | REAL :: zfrac_lessi |
---|
346 | REAL, DIMENSION(klon) :: zprec_cond |
---|
347 | REAL, DIMENSION(klon) :: zlh_solid |
---|
348 | REAL, DIMENSION(klon) :: ztupnew |
---|
349 | REAL, DIMENSION(klon) :: zqvapclr, zqupnew ! for poprecip evap / subl |
---|
350 | REAL, DIMENSION(klon) :: zrflclr, zrflcld |
---|
351 | REAL, DIMENSION(klon) :: ziflclr, ziflcld |
---|
352 | REAL, DIMENSION(klon) :: znebprecip, znebprecipclr, znebprecipcld |
---|
353 | REAL, DIMENSION(klon) :: tot_zneb |
---|
354 | REAL, DIMENSION(klon) :: zdistcltop, ztemp_cltop, zdeltaz |
---|
355 | REAL, DIMENSION(klon) :: zqliq, zqice, zqvapcl, zqliqth, zqiceth, zqvapclth, sursat_e, invtau_e ! for icefrac_lscp_turb |
---|
356 | ! for ice sedimentation |
---|
357 | REAL, DIMENSION(klon) :: dzsed, flsed, cfsed |
---|
358 | REAL, DIMENSION(klon) :: dzsed_abv, flsed_abv, cfsed_abv |
---|
359 | REAL, DIMENSION(klon) :: flauto |
---|
360 | REAL :: qice_sedim |
---|
361 | |
---|
362 | ! for quantity of condensates seen by radiation |
---|
363 | REAL, DIMENSION(klon) :: zradocond, zradoice |
---|
364 | REAL, DIMENSION(klon) :: zrho_up, zvelo_up |
---|
365 | REAL :: dz, coef_cover |
---|
366 | |
---|
367 | ! for condensation and ice supersaturation |
---|
368 | REAL, DIMENSION(klon) :: qvc, qvcl, shear |
---|
369 | REAL, DIMENSION(klon) :: zrneb_deep, zcond_deep |
---|
370 | REAL :: delta_z, deepconv_coef |
---|
371 | ! for contrails |
---|
372 | REAL, DIMENSION(klon) :: contfra, qcont, qvcont, Ncont |
---|
373 | REAL, DIMENSION(klon) :: totfra_in, qtot_in |
---|
374 | LOGICAL, DIMENSION(klon) :: pt_pron_clds |
---|
375 | REAL, DIMENSION(klon) :: dzsed_cont, flsed_cont, Nflsed_cont, cfsed_cont |
---|
376 | REAL, DIMENSION(klon) :: dzsed_cont_abv, flsed_cont_abv, Nflsed_cont_abv, cfsed_cont_abv |
---|
377 | REAL :: rho, rhodz, iwp_cont, rei_cont |
---|
378 | !--for Lamquin et al 2012 diagnostics |
---|
379 | REAL, DIMENSION(klon) :: issrfra100to150UP, issrfra150to200UP, issrfra200to250UP |
---|
380 | REAL, DIMENSION(klon) :: issrfra250to300UP, issrfra300to400UP, issrfra400to500UP |
---|
381 | |
---|
382 | INTEGER i, k, kk, iter |
---|
383 | INTEGER, DIMENSION(klon) :: n_i |
---|
384 | INTEGER ncoreczq |
---|
385 | LOGICAL iftop |
---|
386 | |
---|
387 | LOGICAL, DIMENSION(klon) :: stratiform_or_all_distrib,pticefracturb |
---|
388 | LOGICAL, DIMENSION(klon) :: keepgoing |
---|
389 | |
---|
390 | CHARACTER (len = 20) :: modname = 'lscp' |
---|
391 | CHARACTER (len = 80) :: abort_message |
---|
392 | |
---|
393 | |
---|
394 | !=============================================================================== |
---|
395 | ! INITIALISATION |
---|
396 | !=============================================================================== |
---|
397 | |
---|
398 | ! Few initial checks |
---|
399 | |
---|
400 | |
---|
401 | IF (iflag_fisrtilp_qsat .LT. 0) THEN |
---|
402 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
---|
403 | CALL abort_physic(modname,abort_message,1) |
---|
404 | ENDIF |
---|
405 | |
---|
406 | ! AA for 'safety' reasons |
---|
407 | zalpha_tr = 0. |
---|
408 | zfrac_lessi = 0. |
---|
409 | beta(:,:)= 0. |
---|
410 | |
---|
411 | ! Initialisation of variables: |
---|
412 | |
---|
413 | prfl(:,:) = 0.0 |
---|
414 | psfl(:,:) = 0.0 |
---|
415 | d_t(:,:) = 0.0 |
---|
416 | d_q(:,:) = 0.0 |
---|
417 | d_ql(:,:) = 0.0 |
---|
418 | d_qi(:,:) = 0.0 |
---|
419 | rneb(:,:) = 0.0 |
---|
420 | rnebth(:,:)=0.0 |
---|
421 | pfraclr(:,:)=0.0 |
---|
422 | pfracld(:,:)=0.0 |
---|
423 | cldfraliq(:,:)=0. |
---|
424 | sigma2_icefracturb(:,:)=0. |
---|
425 | mean_icefracturb(:,:)=0. |
---|
426 | cldfraliqth(:,:)=0. |
---|
427 | sigma2_icefracturbth(:,:)=0. |
---|
428 | mean_icefracturbth(:,:)=0. |
---|
429 | radocond(:,:) = 0.0 |
---|
430 | radicefrac(:,:) = 0.0 |
---|
431 | frac_nucl(:,:) = 1.0 |
---|
432 | frac_impa(:,:) = 1.0 |
---|
433 | rain(:) = 0.0 |
---|
434 | snow(:) = 0.0 |
---|
435 | zrfl(:) = 0.0 |
---|
436 | zifl(:) = 0.0 |
---|
437 | zneb(:) = seuil_neb |
---|
438 | zrflclr(:) = 0.0 |
---|
439 | ziflclr(:) = 0.0 |
---|
440 | zrflcld(:) = 0.0 |
---|
441 | ziflcld(:) = 0.0 |
---|
442 | tot_zneb(:) = 0.0 |
---|
443 | zeroklon(:) = 0.0 |
---|
444 | zdistcltop(:)=0.0 |
---|
445 | ztemp_cltop(:) = 0.0 |
---|
446 | ztupnew(:)=0.0 |
---|
447 | ctot_vol(:,:)=0.0 |
---|
448 | rneblsvol(:,:)=0.0 |
---|
449 | znebprecip(:)=0.0 |
---|
450 | znebprecipclr(:)=0.0 |
---|
451 | znebprecipcld(:)=0.0 |
---|
452 | distcltop(:,:)=0. |
---|
453 | temp_cltop(:,:)=0. |
---|
454 | |
---|
455 | |
---|
456 | !--Ice supersaturation |
---|
457 | gamma_cond(:,:) = 1. |
---|
458 | qissr(:,:) = 0. |
---|
459 | issrfra(:,:) = 0. |
---|
460 | dcf_sub(:,:) = 0. |
---|
461 | dcf_con(:,:) = 0. |
---|
462 | dcf_mix(:,:) = 0. |
---|
463 | dcf_sed(:,:) = 0. |
---|
464 | dcf_auto(:,:) = 0. |
---|
465 | dqi_adj(:,:) = 0. |
---|
466 | dqi_sub(:,:) = 0. |
---|
467 | dqi_con(:,:) = 0. |
---|
468 | dqi_mix(:,:) = 0. |
---|
469 | dqi_sed(:,:) = 0. |
---|
470 | dqi_auto(:,:) = 0. |
---|
471 | dqvc_adj(:,:) = 0. |
---|
472 | dqvc_sub(:,:) = 0. |
---|
473 | dqvc_con(:,:) = 0. |
---|
474 | dqvc_mix(:,:) = 0. |
---|
475 | dqvc_sed(:,:) = 0. |
---|
476 | dqvc_auto(:,:) = 0. |
---|
477 | qvc(:) = 0. |
---|
478 | shear(:) = 0. |
---|
479 | flsed(:) = 0. |
---|
480 | flauto(:) = 0. |
---|
481 | flsed_cont(:) = 0. |
---|
482 | Nflsed_cont(:) = 0. |
---|
483 | pt_pron_clds(:) = .FALSE. |
---|
484 | |
---|
485 | !--Contrails |
---|
486 | dcfc_ini(:,:) = 0. |
---|
487 | dqic_ini(:,:) = 0. |
---|
488 | dqtc_ini(:,:) = 0. |
---|
489 | dnic_ini(:,:) = 0. |
---|
490 | dcfc_sub(:,:) = 0. |
---|
491 | dqic_sub(:,:) = 0. |
---|
492 | dqtc_sub(:,:) = 0. |
---|
493 | dnic_sub(:,:) = 0. |
---|
494 | dqic_adj(:,:) = 0. |
---|
495 | dqtc_adj(:,:) = 0. |
---|
496 | dcfc_mix(:,:) = 0. |
---|
497 | dqic_mix(:,:) = 0. |
---|
498 | dqtc_mix(:,:) = 0. |
---|
499 | dnic_mix(:,:) = 0. |
---|
500 | dnic_agg(:,:) = 0. |
---|
501 | dcfc_sed(:,:) = 0. |
---|
502 | dqic_sed(:,:) = 0. |
---|
503 | dqtc_sed(:,:) = 0. |
---|
504 | dnic_sed(:,:) = 0. |
---|
505 | dcfc_auto(:,:) = 0. |
---|
506 | dqic_auto(:,:) = 0. |
---|
507 | dqtc_auto(:,:) = 0. |
---|
508 | dnic_auto(:,:) = 0. |
---|
509 | Tcritcont(:,:) = missing_val |
---|
510 | qcritcont(:,:) = missing_val |
---|
511 | potcontfraP(:,:) = missing_val |
---|
512 | potcontfraNP(:,:) = missing_val |
---|
513 | AEI_contrails(:,:) = missing_val |
---|
514 | AEI_surv_contrails(:,:) = missing_val |
---|
515 | fsurv_contrails(:,:) = missing_val |
---|
516 | section_contrails(:,:) = missing_val |
---|
517 | |
---|
518 | |
---|
519 | !--for Lamquin et al (2012) diagnostics |
---|
520 | issrfra100to150(:) = 0. |
---|
521 | issrfra100to150UP(:) = 0. |
---|
522 | issrfra150to200(:) = 0. |
---|
523 | issrfra150to200UP(:) = 0. |
---|
524 | issrfra200to250(:) = 0. |
---|
525 | issrfra200to250UP(:) = 0. |
---|
526 | issrfra250to300(:) = 0. |
---|
527 | issrfra250to300UP(:) = 0. |
---|
528 | issrfra300to400(:) = 0. |
---|
529 | issrfra300to400UP(:) = 0. |
---|
530 | issrfra400to500(:) = 0. |
---|
531 | issrfra400to500UP(:) = 0. |
---|
532 | |
---|
533 | !-- poprecip |
---|
534 | qraindiag(:,:)= 0. |
---|
535 | qsnowdiag(:,:)= 0. |
---|
536 | dqreva(:,:) = 0. |
---|
537 | dqrauto(:,:) = 0. |
---|
538 | dqrmelt(:,:) = 0. |
---|
539 | dqrfreez(:,:) = 0. |
---|
540 | dqrcol(:,:) = 0. |
---|
541 | dqssub(:,:) = 0. |
---|
542 | dqsauto(:,:) = 0. |
---|
543 | dqsrim(:,:) = 0. |
---|
544 | dqsagg(:,:) = 0. |
---|
545 | dqsfreez(:,:) = 0. |
---|
546 | dqsmelt(:,:) = 0. |
---|
547 | zqupnew(:) = 0. |
---|
548 | zqvapclr(:) = 0. |
---|
549 | |
---|
550 | !-- cloud phase useful variables |
---|
551 | wls(:,:)=-omega(:,:) / RG / (pplay(:,:)/RD/temp(:,:)) |
---|
552 | zqliq(:)=0. |
---|
553 | zqice(:)=0. |
---|
554 | zqvapcl(:)=0. |
---|
555 | zqliqth(:)=0. |
---|
556 | zqiceth(:)=0. |
---|
557 | zqvapclth(:)=0. |
---|
558 | sursat_e(:)=0. |
---|
559 | invtau_e(:)=0. |
---|
560 | pticefracturb(:)=.FALSE. |
---|
561 | |
---|
562 | |
---|
563 | !=============================================================================== |
---|
564 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
---|
565 | !=============================================================================== |
---|
566 | |
---|
567 | ncoreczq=0 |
---|
568 | |
---|
569 | DO k = klev, 1, -1 |
---|
570 | |
---|
571 | IF (k.LE.klev-1) THEN |
---|
572 | iftop=.false. |
---|
573 | ELSE |
---|
574 | iftop=.true. |
---|
575 | ENDIF |
---|
576 | |
---|
577 | ! Initialisation temperature and specific humidity |
---|
578 | ! temp(klon,klev) is not modified by the routine, instead all changes in temperature are made on zt |
---|
579 | ! at the end of the klon loop, a temperature incremtent d_t due to all processes |
---|
580 | ! (thermalization, evap/sub incoming precip, cloud formation, precipitation processes) is calculated |
---|
581 | ! d_t = temperature tendency due to lscp |
---|
582 | ! The temperature of the overlying layer is updated here because needed for thermalization |
---|
583 | DO i = 1, klon |
---|
584 | zt(i)=temp(i,k) |
---|
585 | zq(i)=qt(i,k) |
---|
586 | zp(i)=pplay(i,k) |
---|
587 | qliq_in(i) = ql_seri(i,k) |
---|
588 | qice_in(i) = qi_seri(i,k) |
---|
589 | zcf(i) = 0. |
---|
590 | zfice(i) = 1.0 ! initialized at 1 as by default we assume mpc to be at ice saturation |
---|
591 | dzfice(i) = 0.0 |
---|
592 | zficeth(i) = 1.0 ! initialized at 1 as by default we assume mpc to be at ice saturation |
---|
593 | dzficeth(i) = 0.0 |
---|
594 | zficeenv(i) = 1.0 ! initialized at 1 as by default we assume mpc to be at ice saturation |
---|
595 | dzficeenv(i) = 0.0 |
---|
596 | |
---|
597 | |
---|
598 | IF (.not. iftop) THEN |
---|
599 | ztupnew(i) = temp(i,k+1) + d_t(i,k+1) |
---|
600 | zqupnew(i) = qt(i,k+1) + d_q(i,k+1) + d_ql(i,k+1) + d_qi(i,k+1) |
---|
601 | !--zqs(i) is the saturation specific humidity in the layer above |
---|
602 | zqvapclr(i) = MAX(0., qt(i,k+1) + d_q(i,k+1) - rneb(i,k+1) * zqs(i)) |
---|
603 | ENDIF |
---|
604 | !c_iso init of iso |
---|
605 | ENDDO |
---|
606 | IF ( ok_ice_supersat ) THEN |
---|
607 | cldfra_in(:) = cf_seri(:,k) |
---|
608 | qvc_in(:) = qvc_seri(:,k) |
---|
609 | ENDIF |
---|
610 | |
---|
611 | ! -------------------------------------------------------------------- |
---|
612 | ! P1> Precipitation processes, before cloud formation: |
---|
613 | ! Thermalization of precipitation falling from the overlying layer AND |
---|
614 | ! Precipitation evaporation/sublimation/melting |
---|
615 | !--------------------------------------------------------------------- |
---|
616 | |
---|
617 | !================================================================ |
---|
618 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
---|
619 | IF ( ok_poprecip ) THEN |
---|
620 | |
---|
621 | CALL poprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), zp, & |
---|
622 | zt, ztupnew, zq, zmqc, znebprecipclr, znebprecipcld, & |
---|
623 | zqvapclr, zqupnew, flsed, flsed_cont, & |
---|
624 | cldfra_in, qvc_in, qliq_in, qice_in, & |
---|
625 | zrfl, zrflclr, zrflcld, & |
---|
626 | zifl, ziflclr, ziflcld, & |
---|
627 | dqreva(:,k), dqssub(:,k) & |
---|
628 | ) |
---|
629 | |
---|
630 | !================================================================ |
---|
631 | ELSE |
---|
632 | |
---|
633 | CALL histprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), zp, & |
---|
634 | zt, ztupnew, zq, zmqc, zneb, znebprecip, znebprecipclr, & |
---|
635 | flsed, flsed_cont, & |
---|
636 | zrfl, zrflclr, zrflcld, & |
---|
637 | zifl, ziflclr, ziflcld, & |
---|
638 | dqreva(:,k), dqssub(:,k) & |
---|
639 | ) |
---|
640 | |
---|
641 | ENDIF ! (ok_poprecip) |
---|
642 | |
---|
643 | ! Calculation of qsat,L/cp*dqsat/dT and ncoreczq counter |
---|
644 | !------------------------------------------------------- |
---|
645 | |
---|
646 | qtot(:)=zq(:)+zmqc(:) |
---|
647 | CALL calc_qsat_ecmwf(klon,zt,qtot,zp,RTT,0,.false.,zqs,zdqs) |
---|
648 | DO i = 1, klon |
---|
649 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
---|
650 | zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) |
---|
651 | IF (zq(i) .LT. 1.e-15) THEN |
---|
652 | ncoreczq=ncoreczq+1 |
---|
653 | zq(i)=1.e-15 |
---|
654 | ENDIF |
---|
655 | ! c_iso: do something similar for isotopes |
---|
656 | |
---|
657 | ENDDO |
---|
658 | |
---|
659 | ! ------------------------------------------------------------------------- |
---|
660 | ! P2> Cloud formation including condensation and cloud phase determination |
---|
661 | !-------------------------------------------------------------------------- |
---|
662 | ! |
---|
663 | ! We always assume a 'fractional cloud' approach |
---|
664 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
---|
665 | ! is prescribed and depends on large scale variables and boundary layer |
---|
666 | ! properties) |
---|
667 | ! The decrease in condensed part due tu latent heating is taken into |
---|
668 | ! account |
---|
669 | ! ------------------------------------------------------------------- |
---|
670 | |
---|
671 | ! P2.1> With the PDFs (log-normal, bigaussian) |
---|
672 | ! cloud properties calculation with the initial values of t and q |
---|
673 | ! ---------------------------------------------------------------- |
---|
674 | |
---|
675 | ! initialise gammasat and stratiform_or_all_distrib |
---|
676 | stratiform_or_all_distrib(:)=.TRUE. |
---|
677 | gammasat(:)=1. |
---|
678 | |
---|
679 | ! part of the code that is supposed to become obsolete soon |
---|
680 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
681 | IF (.NOT. ok_lscp_mergecond) THEN |
---|
682 | IF (iflag_cld_th.GE.5) THEN |
---|
683 | ! Cloud cover and content in meshes affected by shallow convection, |
---|
684 | ! are retrieved from a bi-gaussian distribution of the saturation deficit |
---|
685 | ! following Jam et al. 2013 |
---|
686 | |
---|
687 | IF (iflag_cloudth_vert.LE.2) THEN |
---|
688 | ! Old version of Arnaud Jam |
---|
689 | |
---|
690 | CALL cloudth(klon,klev,k,tv, & |
---|
691 | zq,qta,fraca, & |
---|
692 | qincloud,ctot,pspsk,paprs,pplay,tla,thl, & |
---|
693 | ratqs,zqs,temp, & |
---|
694 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
695 | |
---|
696 | |
---|
697 | ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN |
---|
698 | ! Default version of Arnaud Jam |
---|
699 | |
---|
700 | CALL cloudth_v3(klon,klev,k,tv, & |
---|
701 | zq,qta,fraca, & |
---|
702 | qincloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
---|
703 | ratqs,sigma_qtherm,zqs,temp, & |
---|
704 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
705 | |
---|
706 | |
---|
707 | ELSEIF (iflag_cloudth_vert.EQ.6) THEN |
---|
708 | ! Jean Jouhaud's version, with specific separation between surface and volume |
---|
709 | ! cloud fraction Decembre 2018 |
---|
710 | |
---|
711 | CALL cloudth_v6(klon,klev,k,tv, & |
---|
712 | zq,qta,fraca, & |
---|
713 | qincloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
---|
714 | ratqs,zqs,temp, & |
---|
715 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
716 | |
---|
717 | ENDIF |
---|
718 | |
---|
719 | |
---|
720 | DO i=1,klon |
---|
721 | rneb(i,k)=ctot(i,k) |
---|
722 | ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) |
---|
723 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
724 | zqn(i)=qincloud(i) |
---|
725 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
726 | qvc(i) = rneb(i,k) * zqs(i) |
---|
727 | ENDDO |
---|
728 | |
---|
729 | ! Cloud phase final determination for clouds after "old" cloudth calls |
---|
730 | ! for those clouds, only temperature dependent phase partitioning (eventually modulated by |
---|
731 | ! distance to cloud top) is available |
---|
732 | ! compute distance to cloud top when cloud phase is computed depending on temperature |
---|
733 | ! and distance to cloud top |
---|
734 | IF (iflag_t_glace .GE. 4) THEN |
---|
735 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
---|
736 | ENDIF |
---|
737 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) |
---|
738 | |
---|
739 | ENDIF |
---|
740 | |
---|
741 | IF (iflag_cld_th .EQ. 5) THEN |
---|
742 | ! When iflag_cld_th=5, we always assume |
---|
743 | ! bi-gaussian distribution |
---|
744 | stratiform_or_all_distrib(:) = .FALSE. |
---|
745 | |
---|
746 | ELSEIF (iflag_cld_th .GE. 6) THEN |
---|
747 | ! stratiform distribution only when no thermals |
---|
748 | stratiform_or_all_distrib(:) = fraca(:,k) < min_frac_th_cld |
---|
749 | |
---|
750 | ENDIF |
---|
751 | |
---|
752 | ENDIF ! .not. ok_lscp_mergecond |
---|
753 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
754 | |
---|
755 | |
---|
756 | DO i = 1, klon |
---|
757 | !--Calculate the shear value (input for condensation and ice supersat) |
---|
758 | !--Cell thickness [m] |
---|
759 | delta_z = ( paprs(i,k) - paprs(i,k+1) ) / RG / pplay(i,k) * zt(i) * RD |
---|
760 | IF ( iftop ) THEN |
---|
761 | ! top |
---|
762 | shear(i) = SQRT( ( (u_seri(i,k) - u_seri(i,k-1)) / delta_z )**2. & |
---|
763 | + ( (v_seri(i,k) - v_seri(i,k-1)) / delta_z )**2. ) |
---|
764 | ELSEIF ( k .EQ. 1 ) THEN |
---|
765 | ! surface |
---|
766 | shear(i) = SQRT( ( (u_seri(i,k+1) - u_seri(i,k)) / delta_z )**2. & |
---|
767 | + ( (v_seri(i,k+1) - v_seri(i,k)) / delta_z )**2. ) |
---|
768 | ELSE |
---|
769 | ! other layers |
---|
770 | shear(i) = SQRT( ( ( (u_seri(i,k+1) + u_seri(i,k)) / 2. & |
---|
771 | - (u_seri(i,k) + u_seri(i,k-1)) / 2. ) / delta_z )**2. & |
---|
772 | + ( ( (v_seri(i,k+1) + v_seri(i,k)) / 2. & |
---|
773 | - (v_seri(i,k) + v_seri(i,k-1)) / 2. ) / delta_z )**2. ) |
---|
774 | ENDIF |
---|
775 | ENDDO |
---|
776 | |
---|
777 | IF ( ok_ice_supersat ) THEN |
---|
778 | |
---|
779 | !--Initialisation |
---|
780 | IF ( ok_plane_contrail ) THEN |
---|
781 | IF ( iftop ) THEN |
---|
782 | dzsed_cont_abv(:) = 0. |
---|
783 | flsed_cont_abv(:) = 0. |
---|
784 | Nflsed_cont_abv(:)= 0. |
---|
785 | cfsed_cont_abv(:) = 0. |
---|
786 | ELSE |
---|
787 | dzsed_cont_abv(:) = dzsed_cont(:) |
---|
788 | flsed_cont_abv(:) = flsed_cont(:) |
---|
789 | Nflsed_cont_abv(:)= Nflsed_cont(:) |
---|
790 | cfsed_cont_abv(:) = cfsed_cont(:) |
---|
791 | ENDIF |
---|
792 | contfra(:) = 0. |
---|
793 | qcont(:) = 0. |
---|
794 | qvcont(:) = 0. |
---|
795 | Ncont(:) = 0. |
---|
796 | dzsed_cont(:) = 0. |
---|
797 | flsed_cont(:) = 0. |
---|
798 | Nflsed_cont(:)= 0. |
---|
799 | cfsed_cont(:) = 0. |
---|
800 | ENDIF |
---|
801 | |
---|
802 | IF ( iftop ) THEN |
---|
803 | dzsed_abv(:) = 0. |
---|
804 | flsed_abv(:) = 0. |
---|
805 | cfsed_abv(:) = 0. |
---|
806 | ELSE |
---|
807 | dzsed_abv(:) = dzsed(:) |
---|
808 | flsed_abv(:) = flsed(:) |
---|
809 | cfsed_abv(:) = cfsed(:) |
---|
810 | ENDIF |
---|
811 | dzsed(:) = 0. |
---|
812 | flsed(:) = 0. |
---|
813 | cfsed(:) = 0. |
---|
814 | flauto(:) = 0. |
---|
815 | |
---|
816 | DO i = 1, klon |
---|
817 | pt_pron_clds(i) = .TRUE. |
---|
818 | ENDDO |
---|
819 | IF ( .NOT. ok_weibull_warm_clouds ) THEN |
---|
820 | DO i = 1, klon |
---|
821 | pt_pron_clds(i) = pt_pron_clds(i) .AND. ( zt(i) .LE. temp_nowater ) |
---|
822 | ENDDO |
---|
823 | ENDIF |
---|
824 | IF ( ok_no_issr_strato ) THEN |
---|
825 | DO i = 1, klon |
---|
826 | pt_pron_clds(i) = pt_pron_clds(i) .AND. ( stratomask(i,k) .EQ. 0. ) |
---|
827 | ENDDO |
---|
828 | ENDIF |
---|
829 | |
---|
830 | totfra_in(:) = 1. |
---|
831 | qtot_in(:) = zq(:) |
---|
832 | |
---|
833 | IF ( ok_nodeep_lscp ) THEN |
---|
834 | DO i = 1, klon |
---|
835 | !--If deep convection is activated, the condensation scheme activates |
---|
836 | !--only in the environment. NB. the clear sky fraction will the be |
---|
837 | !--maximised by 1. - cfcon(i,k) |
---|
838 | IF ( pt_pron_clds(i) .AND. ptconv(i,k) ) THEN |
---|
839 | totfra_in(i) = 1. - cfcon(i,k) |
---|
840 | qtot_in(i) = zq(i) - ( qvcon(i,k) + qccon(i,k) ) * cfcon(i,k) |
---|
841 | ENDIF |
---|
842 | ENDDO |
---|
843 | ENDIF |
---|
844 | |
---|
845 | DO i = 1, klon |
---|
846 | IF ( pt_pron_clds(i) ) THEN |
---|
847 | IF ( cfcon(i,k) .LT. cfcon_old(i,k) ) THEN |
---|
848 | !--If deep convection is weakening, we add the clouds that are not anymore |
---|
849 | !--'in' deep convection to the advected clouds |
---|
850 | cldfra_in(i) = cldfra_in(i) + ( cfcon_old(i,k) - cfcon(i,k) ) |
---|
851 | qvc_in(i) = qvc_in(i) + qvcon_old(i,k) * ( cfcon_old(i,k) - cfcon(i,k) ) |
---|
852 | qice_in(i) = qice_in(i) + qccon_old(i,k) * ( cfcon_old(i,k) - cfcon(i,k) ) |
---|
853 | ELSEIF ( cldfra_in(i) .GT. eps ) THEN |
---|
854 | !--Else if deep convection is strengthening, it consumes the existing cloud |
---|
855 | !--fraction (which does not at this moment represent deep convection) |
---|
856 | !deepconv_coef = 1. - ( cfcon(i,k) - cfcon_old(i,k) ) / ( 1. - cfcon_old(i,k) ) |
---|
857 | deepconv_coef = MAX(0., 1. - ( cfcon(i,k) - cfcon_old(i,k) ) / cldfra_in(i) ) |
---|
858 | cldfra_in(i) = cldfra_in(i) * deepconv_coef |
---|
859 | qvc_in(i) = qvc_in(i) * deepconv_coef |
---|
860 | qice_in(i) = qice_in(i) * deepconv_coef |
---|
861 | IF ( ok_plane_contrail ) THEN |
---|
862 | !--If contrails are activated, their fraction is also reduced when deep |
---|
863 | !--convection is active |
---|
864 | cfc_seri(i,k) = cfc_seri(i,k) * deepconv_coef |
---|
865 | qtc_seri(i,k) = qtc_seri(i,k) * deepconv_coef |
---|
866 | qic_seri(i,k) = qic_seri(i,k) * deepconv_coef |
---|
867 | nic_seri(i,k) = nic_seri(i,k) * deepconv_coef |
---|
868 | ENDIF |
---|
869 | ENDIF |
---|
870 | ENDIF |
---|
871 | ENDDO |
---|
872 | ENDIF |
---|
873 | |
---|
874 | |
---|
875 | DT(:) = 0. |
---|
876 | n_i(:)=0 |
---|
877 | Tbef(:)=zt(:) |
---|
878 | qlibef(:)=0. |
---|
879 | Tbefth(:)=tla(:,k)*pspsk(:,k) |
---|
880 | IF (k .GT. 1) THEN |
---|
881 | Tbefthm1(:)=tla(:,k-1)*pspsk(:,k-1) |
---|
882 | ELSE |
---|
883 | Tbefthm1(:)=Tbefth(:) |
---|
884 | ENDIF |
---|
885 | zqth(:)=qta(:,k) |
---|
886 | zdeltaz(:)=(paprs(:,k)-paprs(:,k+1))/RG/zp(:)*RD*zt(:) |
---|
887 | |
---|
888 | ! Treatment of stratiform clouds (lognormale or ice-sursat) or all clouds (including cloudth |
---|
889 | ! in case of ok_lscp_mergecond) |
---|
890 | ! We iterate here to take into account the change in qsat(T) and ice fraction |
---|
891 | ! during the condensation process |
---|
892 | ! the increment in temperature is calculated using the first principle of |
---|
893 | ! thermodynamics (enthalpy conservation equation in a mesh composed of a cloud fraction |
---|
894 | ! and a clear sky fraction) |
---|
895 | ! note that we assume that the vapor in the cloud is at saturation for this calculation |
---|
896 | |
---|
897 | DO iter=1,iflag_fisrtilp_qsat+1 |
---|
898 | |
---|
899 | keepgoing(:) = .FALSE. |
---|
900 | |
---|
901 | DO i=1,klon |
---|
902 | |
---|
903 | ! keepgoing = .true. while convergence is not satisfied |
---|
904 | |
---|
905 | IF (((ABS(DT(i)).GT.DDT0) .OR. (n_i(i) .EQ. 0)) .AND. stratiform_or_all_distrib(i)) THEN |
---|
906 | |
---|
907 | ! if not convergence: |
---|
908 | ! we calculate a new iteration |
---|
909 | keepgoing(i) = .TRUE. |
---|
910 | |
---|
911 | ! P2.2.1> cloud fraction and condensed water mass calculation |
---|
912 | ! Calculated variables: |
---|
913 | ! rneb : cloud fraction |
---|
914 | ! zqn : total water within the cloud |
---|
915 | ! zcond: mean condensed water within the mesh |
---|
916 | ! rhcl: clear-sky relative humidity |
---|
917 | !--------------------------------------------------------------- |
---|
918 | |
---|
919 | ! new temperature that only serves in the iteration process: |
---|
920 | Tbef(i)=Tbef(i)+DT(i) |
---|
921 | |
---|
922 | ! total water including mass of precip |
---|
923 | qtot(i)=zq(i)+zmqc(i) |
---|
924 | |
---|
925 | ENDIF |
---|
926 | |
---|
927 | ENDDO |
---|
928 | |
---|
929 | ! Calculation of saturation specific humidity |
---|
930 | CALL calc_qsat_ecmwf(klon,Tbef,qtot,zp,RTT,0,.false.,zqs,zdqs) |
---|
931 | ! also in thermals |
---|
932 | CALL calc_qsat_ecmwf(klon,Tbefth,zqth,zp,RTT,0,.false.,zqsth,zdqsth) |
---|
933 | |
---|
934 | IF (iflag_icefrac .GE. 1) THEN |
---|
935 | ! consider a ice weighted qs to ensure that liquid clouds at T<0 have a consistent cloud fraction |
---|
936 | ! and cloud condensed water content. Principle from Dietlitcher et al. 2018, GMD |
---|
937 | ! we make this option works only for the physically-based and tke-dependent param from Raillard et al. |
---|
938 | ! (iflag_icefrac>=1) |
---|
939 | CALL calc_qsat_ecmwf(klon,Tbef,qtot,zp,RTT,1,.false.,zqsl,zdqsl) |
---|
940 | CALL calc_qsat_ecmwf(klon,Tbef,qtot,zp,RTT,2,.false.,zqsi,zdqsi) |
---|
941 | DO i=1,klon |
---|
942 | zqs(i)=zfice(i)*zqsi(i)+(1.-zfice(i))*zqsl(i) |
---|
943 | zdqs(i)=zfice(i)*zdqsi(i)+zqsi(i)*dzfice(i)+(1.-zfice(i))*zdqsl(i)-zqsl(i)*dzfice(i) |
---|
944 | ENDDO |
---|
945 | ENDIF |
---|
946 | IF (iflag_icefrac .GE. 2) THEN |
---|
947 | ! same adjustment for thermals |
---|
948 | CALL calc_qsat_ecmwf(klon,Tbefth,qtot,zp,RTT,1,.false.,zqslth,zdqslth) |
---|
949 | CALL calc_qsat_ecmwf(klon,Tbefth,qtot,zp,RTT,2,.false.,zqsith,zdqsith) |
---|
950 | DO i=1,klon |
---|
951 | zqsth(i)=zficeth(i)*zqsith(i)+(1.-zficeth(i))*zqslth(i) |
---|
952 | zdqsth(i)=zficeth(i)*zdqsith(i)+zqsith(i)*dzficeth(i)+(1.-zficeth(i))*zdqslth(i)-zqslth(i)*dzficeth(i) |
---|
953 | ENDDO |
---|
954 | ENDIF |
---|
955 | |
---|
956 | CALL calc_gammasat(klon,Tbef,qtot,zp,gammasat,dgammasatdt) |
---|
957 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
---|
958 | zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:) |
---|
959 | |
---|
960 | ! Cloud condensation based on subgrid pdf |
---|
961 | !--AB Activates a condensation scheme that allows for |
---|
962 | !--ice supersaturation and contrails evolution from aviation |
---|
963 | IF (ok_ice_supersat) THEN |
---|
964 | |
---|
965 | !--------------------------------------------- |
---|
966 | !-- CONDENSATION AND ICE SUPERSATURATION -- |
---|
967 | !--------------------------------------------- |
---|
968 | |
---|
969 | CALL condensation_ice_supersat( & |
---|
970 | klon, dtime, pplay(:,k), paprs(:,k), paprs(:,k+1), & |
---|
971 | totfra_in, cldfra_in, qvc_in, qliq_in, qice_in, & |
---|
972 | shear, tke_dissip(:,k), cell_area, Tbef, qtot_in, zqs, & |
---|
973 | gammasat, ratqs(:,k), keepgoing, pt_pron_clds, & |
---|
974 | dzsed_abv, flsed_abv, cfsed_abv, dzsed, flsed, cfsed, flauto, & |
---|
975 | rneb(:,k), zqn, qvc, issrfra(:,k), qissr(:,k), & |
---|
976 | dcf_sub(:,k), dcf_con(:,k), dcf_mix(:,k), & |
---|
977 | dcf_sed(:,k), dcf_auto(:,k), & |
---|
978 | dqi_adj(:,k), dqi_sub(:,k), dqi_con(:,k), dqi_mix(:,k), & |
---|
979 | dqi_sed(:,k), dqi_auto(:,k), & |
---|
980 | dqvc_adj(:,k), dqvc_sub(:,k), dqvc_con(:,k), dqvc_mix(:,k), & |
---|
981 | dqvc_sed(:,k), dqvc_auto(:,k), & |
---|
982 | cfc_seri(:,k), qtc_seri(:,k), qic_seri(:,k), nic_seri(:,k), & |
---|
983 | flight_dist(:,k), flight_fuel(:,k), & |
---|
984 | contfra, qcont, qvcont, Ncont, & |
---|
985 | Tcritcont(:,k), qcritcont(:,k), potcontfraP(:,k), potcontfraNP(:,k), & |
---|
986 | AEI_contrails(:,k), AEI_surv_contrails(:,k), & |
---|
987 | fsurv_contrails(:,k), section_contrails(:,k), & |
---|
988 | dzsed_cont_abv, flsed_cont_abv, Nflsed_cont_abv, cfsed_cont_abv, & |
---|
989 | dzsed_cont, flsed_cont, Nflsed_cont, cfsed_cont, & |
---|
990 | dcfc_ini(:,k), dqic_ini(:,k), dqtc_ini(:,k), dnic_ini(:,k), & |
---|
991 | dcfc_sub(:,k), dqic_sub(:,k), dqtc_sub(:,k), dnic_sub(:,k), & |
---|
992 | dcfc_mix(:,k), dqic_mix(:,k), dqtc_mix(:,k), dnic_mix(:,k), & |
---|
993 | dnic_agg(:,k), dqic_adj(:,k), dqtc_adj(:,k), & |
---|
994 | dcfc_sed(:,k), dqic_sed(:,k), dqtc_sed(:,k), dnic_sed(:,k), & |
---|
995 | dcfc_auto(:,k), dqic_auto(:,k), dqtc_auto(:,k), dnic_auto(:,k)) |
---|
996 | |
---|
997 | ELSE |
---|
998 | !--generalised lognormal condensation scheme (Bony and Emanuel 2001) |
---|
999 | |
---|
1000 | CALL condensation_lognormal( & |
---|
1001 | klon, Tbef, zq, zqs, gammasat, ratqs(:,k), & |
---|
1002 | keepgoing, rneb(:,k), zqn, qvc) |
---|
1003 | |
---|
1004 | |
---|
1005 | ENDIF ! .NOT. ok_ice_supersat |
---|
1006 | |
---|
1007 | ! Volume cloud fraction |
---|
1008 | rneblsvol(:,k)=rneb(:,k) |
---|
1009 | |
---|
1010 | |
---|
1011 | IF (ok_lscp_mergecond) THEN |
---|
1012 | ! in that case we overwrite rneb, rneblsvol and zqn for shallow convective clouds only |
---|
1013 | CALL condensation_cloudth(klon,Tbef,zq,zqth,fraca(:,k), & |
---|
1014 | pspsk(:,k),zp,tla(:,k), & |
---|
1015 | ratqs(:,k),sigma_qtherm(:,k),zqsth,zqs,zqn,rneb(:,k),rnebth(:,k),rneblsvol(:,k), & |
---|
1016 | cloudth_sth(:,k),cloudth_senv(:,k),cloudth_sigmath(:,k),cloudth_sigmaenv(:,k)) |
---|
1017 | ENDIF |
---|
1018 | |
---|
1019 | |
---|
1020 | |
---|
1021 | ! Cloud phase determination |
---|
1022 | |
---|
1023 | |
---|
1024 | IF (iflag_icefrac .LE. 1) THEN |
---|
1025 | ! "old" phase partitioning depending on temperature and eventually distance to cloud top everywhere |
---|
1026 | IF (iflag_t_glace .GE. 4) THEN |
---|
1027 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
---|
1028 | ENDIF |
---|
1029 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) |
---|
1030 | ENDIF |
---|
1031 | |
---|
1032 | IF (iflag_icefrac .EQ. 1) THEN |
---|
1033 | ! phase partitioning depending on turbulence, vertical velocity and ice crystal microphysics |
---|
1034 | ! only in stratiform clouds in the mixed phase regime (Raillard et al. 2025) |
---|
1035 | ! it overwrites temperature-dependent phase partitioning except for convective boundary layer clouds |
---|
1036 | pticefracturb(:) = (fraca(:,k) < min_frac_th_cld) .AND. (Tbef(:) .GT. temp_nowater) .AND. (Tbef(:) .LT. RTT) |
---|
1037 | DO i=1,klon |
---|
1038 | qincloud(i)=zqn(i) |
---|
1039 | zcf(i)=MIN(MAX(rneb(i,k), 0.),1.) |
---|
1040 | sursat_e(i) = 0. |
---|
1041 | invtau_e(i) = 0. |
---|
1042 | ENDDO |
---|
1043 | CALL icefrac_lscp_turb(klon, dtime, pticefracturb, Tbef, zp, paprs(:,k), paprs(:,k+1), wls(:,k), qice_in, & |
---|
1044 | ziflcld, qincloud, zcf, tke(:,k), tke_dissip(:,k), sursat_e, invtau_e, zqliq, zqvapcl, zqice, & |
---|
1045 | zficeenv, dzficeenv, cldfraliq(:,k),sigma2_icefracturb(:,k),mean_icefracturb(:,k)) |
---|
1046 | DO i=1,klon |
---|
1047 | IF (pticefracturb(i)) THEN |
---|
1048 | zfice(i)=zficeenv(i) |
---|
1049 | dzfice(i)=dzficeenv(i) |
---|
1050 | ENDIF |
---|
1051 | ENDDO |
---|
1052 | |
---|
1053 | |
---|
1054 | ELSEIF (iflag_icefrac .GE. 2) THEN |
---|
1055 | ! compute also phase partitioning also in thermal clouds (neglecting tke in thermals as first assumption) |
---|
1056 | ! moreover, given the upward velocity of thermals, we assume that precipitation falls in the environment |
---|
1057 | ! hence we assume that no snow falls in thermals. |
---|
1058 | ! we activate only in the mixed phase regime not to distrub the cirrus param at very cold T |
---|
1059 | pticefracturb(:) = (Tbef(:) .GT. temp_nowater) .AND. (Tbef(:) .LT. RTT) |
---|
1060 | !Thermals |
---|
1061 | DO i=1,klon |
---|
1062 | IF (fraca(i,k) .GT. min_frac_th_cld) THEN |
---|
1063 | zcf(i)=MIN(MAX(rnebth(i,k),0.), 1.)/fraca(i,k) |
---|
1064 | qincloud(i)=zqn(i)*fraca(i,k) |
---|
1065 | ELSE |
---|
1066 | zcf(i) = 0. |
---|
1067 | qincloud(i) = 0. |
---|
1068 | ENDIF |
---|
1069 | sursat_e(i)=cloudth_senv(i,k)/zqsi(i) |
---|
1070 | invtau_e(i)=gamma_mixth*MAX(entr_therm(i,k)-detr_therm(i,k),0.)*RD*Tbef(i)/zp(i)/zdeltaz(i) |
---|
1071 | ENDDO |
---|
1072 | CALL icefrac_lscp_turb(klon, dtime, pticefracturb, Tbefth, zp, paprs(:,k), paprs(:,k+1), wth(:,k), qice_in, & |
---|
1073 | zeroklon, qincloud, zcf, zeroklon, zeroklon, sursat_e, invtau_e, zqliqth, zqvapclth, zqiceth, & |
---|
1074 | zficeth, dzficeth,cldfraliqth(:,k), sigma2_icefracturbth(:,k), mean_icefracturbth(:,k)) |
---|
1075 | !Environment |
---|
1076 | DO i=1,klon |
---|
1077 | qincloud(i)=zqn(i)*(1.-fraca(i,k)) |
---|
1078 | zcf(i)=MIN(MAX(rneb(i,k)-rnebth(i,k), 0.),1.)/(1.-fraca(i,k)) |
---|
1079 | IF (k .GT. 1) THEN |
---|
1080 | ! evaluate the mixing sursaturation using saturation deficit at level below |
---|
1081 | ! as air pacels detraining into clouds have not (less) seen yet entrainement from above |
---|
1082 | sursat_e(i)=cloudth_sth(i,k-1)/(zqsith(i)+zdqsith(i)*RCPD/RLSTT*(Tbefthm1(i)-Tbefth(i))) |
---|
1083 | ! mixing is assumed to scales with intensity of net detrainment/entrainment rate (D/dz-E/dz) / rho |
---|
1084 | invtau_e(i)=gamma_mixth*MAX(detr_therm(i,k)-entr_therm(i,k),0.)*RD*Tbef(i)/zp(i)/zdeltaz(i) |
---|
1085 | ELSE |
---|
1086 | sursat_e(i)=0. |
---|
1087 | invtau_e(i)=0. |
---|
1088 | ENDIF |
---|
1089 | ENDDO |
---|
1090 | CALL icefrac_lscp_turb(klon, dtime, pticefracturb, Tbef, zp, paprs(:,k), paprs(:,k+1), wls(:,k), qice_in, & |
---|
1091 | ziflcld, qincloud, zcf, tke(:,k), tke_dissip(:,k), sursat_e, invtau_e, zqliq, zqvapcl, zqice, & |
---|
1092 | zfice, dzfice, cldfraliq(:,k),sigma2_icefracturb(:,k), mean_icefracturb(:,k)) |
---|
1093 | |
---|
1094 | ! adjust zfice to account for condensates in thermals'fraction |
---|
1095 | DO i=1,klon |
---|
1096 | IF ( zqliqth(i)+zqliq(i)+zqiceth(i)+zqice(i) .GT. 0.) THEN |
---|
1097 | zfice(i)=MIN(1., (zqiceth(i)+zqice(i))/(zqliqth(i)+zqliq(i)+zqiceth(i)+zqice(i))) |
---|
1098 | dzfice(i)=0. ! dxice/dT=0. always when using icefrac_lscp_turb |
---|
1099 | ENDIF |
---|
1100 | ENDDO |
---|
1101 | |
---|
1102 | ENDIF ! iflag_icefrac |
---|
1103 | |
---|
1104 | |
---|
1105 | |
---|
1106 | |
---|
1107 | DO i=1,klon |
---|
1108 | IF (keepgoing(i)) THEN |
---|
1109 | |
---|
1110 | ! P2.2.2> Approximative calculation of temperature variation DT |
---|
1111 | ! due to condensation. |
---|
1112 | ! Calculated variables: |
---|
1113 | ! dT : temperature change due to condensation |
---|
1114 | !--------------------------------------------------------------- |
---|
1115 | |
---|
1116 | |
---|
1117 | IF (zfice(i).LT.1) THEN |
---|
1118 | cste=RLVTT |
---|
1119 | ELSE |
---|
1120 | cste=RLSTT |
---|
1121 | ENDIF |
---|
1122 | |
---|
1123 | IF ( ok_unadjusted_clouds .OR. ok_unadjusted_contrails ) THEN |
---|
1124 | !--AB We relax the saturation adjustment assumption |
---|
1125 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
1126 | IF ( rneb(i,k) .GT. eps ) THEN |
---|
1127 | qlibef(i) = MAX(0., zqn(i) - qvc(i) / rneb(i,k)) |
---|
1128 | ELSE |
---|
1129 | qlibef(i) = 0. |
---|
1130 | ENDIF |
---|
1131 | ELSE |
---|
1132 | qlibef(i)=max(0.,zqn(i)-zqs(i)) |
---|
1133 | ENDIF |
---|
1134 | |
---|
1135 | IF ( ok_ice_sedim ) THEN |
---|
1136 | qice_sedim = (flauto(i) + flsed(i) + flsed_cont(i)) & |
---|
1137 | / ( paprs(i,k) - paprs(i,k+1) ) * RG * dtime |
---|
1138 | ! Add the ice that was sedimented, as it is not included in zqn |
---|
1139 | qlibef(i) = qlibef(i) + qice_sedim |
---|
1140 | ENDIF |
---|
1141 | |
---|
1142 | num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & |
---|
1143 | +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlibef(i) |
---|
1144 | denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
---|
1145 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & |
---|
1146 | *qlibef(i)*dzfice(i) |
---|
1147 | ! here we update a provisory temperature variable that only serves in the iteration |
---|
1148 | ! process |
---|
1149 | DT(i)=num/denom |
---|
1150 | n_i(i)=n_i(i)+1 |
---|
1151 | |
---|
1152 | ENDIF ! end keepgoing |
---|
1153 | |
---|
1154 | ENDDO ! end loop on i |
---|
1155 | |
---|
1156 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
---|
1157 | |
---|
1158 | ! P2.2> Final quantities calculation |
---|
1159 | ! Calculated variables: |
---|
1160 | ! rneb : cloud fraction |
---|
1161 | ! zcond: mean condensed water in the mesh |
---|
1162 | ! zqn : mean water vapor in the mesh |
---|
1163 | ! zfice: ice fraction in clouds |
---|
1164 | ! zt : temperature |
---|
1165 | ! rhcl : clear-sky relative humidity |
---|
1166 | ! ---------------------------------------------------------------- |
---|
1167 | |
---|
1168 | |
---|
1169 | ! Water vapor and condensed water update, subsequent latent heat exchange for each cloud type |
---|
1170 | !--------------------------------------------------------------------------------------------- |
---|
1171 | DO i=1, klon |
---|
1172 | ! Checks on rneb, rhcl and zqn |
---|
1173 | IF (rneb(i,k) .LE. 0.0) THEN |
---|
1174 | zqn(i) = 0.0 |
---|
1175 | rneb(i,k) = 0.0 |
---|
1176 | zcond(i) = 0.0 |
---|
1177 | rhcl(i,k)=zq(i)/zqs(i) |
---|
1178 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
---|
1179 | zqn(i) = zq(i) |
---|
1180 | rneb(i,k) = 1.0 |
---|
1181 | IF ( ok_unadjusted_clouds .OR. ok_unadjusted_contrails ) THEN |
---|
1182 | !--AB We relax the saturation adjustment assumption |
---|
1183 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
1184 | zcond(i) = MAX(0., zqn(i) - qvc(i)) |
---|
1185 | ELSE |
---|
1186 | zcond(i) = MAX(0.0,zqn(i)-zqs(i)) |
---|
1187 | ENDIF |
---|
1188 | rhcl(i,k)=1.0 |
---|
1189 | ELSE |
---|
1190 | IF ( ok_unadjusted_clouds .OR. ok_unadjusted_contrails ) THEN |
---|
1191 | !--AB We relax the saturation adjustment assumption |
---|
1192 | |
---|
1193 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
1194 | zcond(i) = MAX(0., zqn(i) * rneb(i,k) - qvc(i)) |
---|
1195 | ELSE |
---|
1196 | zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k) |
---|
1197 | ENDIF |
---|
1198 | |
---|
1199 | ! following line is very strange and probably wrong |
---|
1200 | rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) |
---|
1201 | ! Correct calculation of clear-sky relative humidity. To activate once |
---|
1202 | ! issues related to zqn>zq in bi-gaussian clouds are corrected |
---|
1203 | !--Relative humidity (no unit) in clear sky, calculated as rh = q / qsat |
---|
1204 | !--This is slighly approximated, the actual formula is |
---|
1205 | !-- rh = q / qsat * (eps + (1-eps)*qsat) / (eps + (1-eps)*q) |
---|
1206 | !--Here, rh = (qtot - qincld * cldfra) / clrfra / qsat |
---|
1207 | !--where (qtot - qincld * cldfra) is the grid-mean clear sky water content |
---|
1208 | ! rhcl(i,k) = ( zq(i) - zqn(i) * rneb(i,k) ) / ( 1. - rneb(i,k) ) / zqs(i) |
---|
1209 | ! Overwrite partitioning for non shallow-convective clouds if iflag_icefrac>1 (icefrac turb param) |
---|
1210 | |
---|
1211 | ENDIF |
---|
1212 | |
---|
1213 | ! water vapor update |
---|
1214 | zq(i) = zq(i) - zcond(i) |
---|
1215 | |
---|
1216 | IF ( ok_ice_sedim ) THEN |
---|
1217 | qice_sedim = (flauto(i) + flsed(i) + flsed_cont(i)) & |
---|
1218 | / ( paprs(i,k) - paprs(i,k+1) ) * RG * dtime |
---|
1219 | ! Remove the ice that was sedimented. As it is not included in zqn, |
---|
1220 | ! we only remove it from the total water |
---|
1221 | zq(i) = zq(i) - qice_sedim |
---|
1222 | ! Temperature update due to phase change (sedimented ice was condensed) |
---|
1223 | zt(i) = zt(i) + qice_sedim & |
---|
1224 | * RLSTT / RCPD / ( 1. + RVTMP2 * ( zq(i) + zmqc(i) + zcond(i) ) ) |
---|
1225 | ENDIF |
---|
1226 | |
---|
1227 | ! temperature update due to phase change |
---|
1228 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & |
---|
1229 | & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & |
---|
1230 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
1231 | ENDDO |
---|
1232 | |
---|
1233 | ! ---------------------------------------------------------------- |
---|
1234 | ! P3> Precipitation processes, after cloud formation |
---|
1235 | ! - precipitation formation, melting/freezing |
---|
1236 | ! ---------------------------------------------------------------- |
---|
1237 | |
---|
1238 | ! Initiate the quantity of liquid and solid condensates |
---|
1239 | ! Note that in the following, zcond is the total amount of condensates |
---|
1240 | ! including newly formed precipitations (i.e., condensates formed by the |
---|
1241 | ! condensation process), while zoliq is the total amount of condensates in |
---|
1242 | ! the cloud (i.e., on which precipitation processes have applied) |
---|
1243 | DO i = 1, klon |
---|
1244 | zoliq(i) = zcond(i) |
---|
1245 | zoliql(i) = zcond(i) * ( 1. - zfice(i) ) |
---|
1246 | zoliqi(i) = zcond(i) * zfice(i) |
---|
1247 | ENDDO |
---|
1248 | |
---|
1249 | !================================================================ |
---|
1250 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
---|
1251 | IF (ok_poprecip) THEN |
---|
1252 | |
---|
1253 | CALL poprecip_postcld(klon, dtime, paprs(:,k), paprs(:,k+1), zp, & |
---|
1254 | ctot_vol(:,k), ptconv(:,k), & |
---|
1255 | zt, zq, zoliql, zoliqi, zfice, & |
---|
1256 | rneb(:,k), znebprecipclr, znebprecipcld, & |
---|
1257 | zrfl, zrflclr, zrflcld, & |
---|
1258 | zifl, ziflclr, ziflcld, & |
---|
1259 | qraindiag(:,k), qsnowdiag(:,k), dqrauto(:,k), & |
---|
1260 | dqrcol(:,k), dqrmelt(:,k), dqrfreez(:,k), & |
---|
1261 | dqsauto(:,k), dqsagg(:,k), dqsrim(:,k), & |
---|
1262 | dqsmelt(:,k), dqsfreez(:,k) & |
---|
1263 | ) |
---|
1264 | DO i = 1, klon |
---|
1265 | zoliq(i) = zoliql(i) + zoliqi(i) |
---|
1266 | ENDDO |
---|
1267 | |
---|
1268 | !================================================================ |
---|
1269 | ELSE |
---|
1270 | |
---|
1271 | CALL histprecip_postcld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), zp, & |
---|
1272 | ctot_vol(:,k), ptconv(:,k), pt_pron_clds, zdqsdT_raw, & |
---|
1273 | zt, zq, zoliq, zoliql, zoliqi, zcond, zfice, zmqc, & |
---|
1274 | rneb(:,k), znebprecipclr, znebprecipcld, & |
---|
1275 | zneb, tot_zneb, zrho_up, zvelo_up, & |
---|
1276 | zrfl, zrflclr, zrflcld, zifl, ziflclr, ziflcld, & |
---|
1277 | zradocond, zradoice, dqrauto(:,k), dqsauto(:,k) & |
---|
1278 | ) |
---|
1279 | |
---|
1280 | ENDIF ! ok_poprecip |
---|
1281 | |
---|
1282 | IF ( ok_ice_sedim ) THEN |
---|
1283 | zifl(:) = zifl(:) + flauto(:) |
---|
1284 | ziflcld(:) = ziflcld(:) + flauto(:) |
---|
1285 | ENDIF |
---|
1286 | |
---|
1287 | ! End of precipitation processes after cloud formation |
---|
1288 | ! ---------------------------------------------------- |
---|
1289 | |
---|
1290 | !---------------------------------------------------------------------- |
---|
1291 | ! P4> Calculation of cloud condensates amount seen by radiative scheme |
---|
1292 | !---------------------------------------------------------------------- |
---|
1293 | |
---|
1294 | DO i=1,klon |
---|
1295 | |
---|
1296 | IF (ok_poprecip) THEN |
---|
1297 | IF (ok_radocond_snow) THEN |
---|
1298 | radocond(i,k) = zoliq(i) |
---|
1299 | zradoice(i) = zoliqi(i) + qsnowdiag(i,k) |
---|
1300 | ELSE |
---|
1301 | radocond(i,k) = zoliq(i) |
---|
1302 | zradoice(i) = zoliqi(i) |
---|
1303 | ENDIF |
---|
1304 | ELSE |
---|
1305 | radocond(i,k) = zradocond(i) |
---|
1306 | ENDIF |
---|
1307 | |
---|
1308 | ! calculate the percentage of ice in "radocond" so cloud+precip seen |
---|
1309 | ! by the radiation scheme |
---|
1310 | IF (radocond(i,k) .GT. 0.) THEN |
---|
1311 | radicefrac(i,k)=MIN(MAX(zradoice(i)/radocond(i,k),0.),1.) |
---|
1312 | ENDIF |
---|
1313 | ENDDO |
---|
1314 | |
---|
1315 | ! ---------------------------------------------------------------- |
---|
1316 | ! P5> Wet scavenging |
---|
1317 | ! ---------------------------------------------------------------- |
---|
1318 | |
---|
1319 | !Scavenging through nucleation in the layer |
---|
1320 | |
---|
1321 | DO i = 1,klon |
---|
1322 | |
---|
1323 | IF(zcond(i).GT.zoliq(i)+1.e-10) THEN |
---|
1324 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
---|
1325 | ELSE |
---|
1326 | beta(i,k) = 0. |
---|
1327 | ENDIF |
---|
1328 | |
---|
1329 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
1330 | |
---|
1331 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
1332 | |
---|
1333 | IF (temp(i,k) .GE. temp_nowater) THEN |
---|
1334 | zalpha_tr = a_tr_sca(3) |
---|
1335 | ELSE |
---|
1336 | zalpha_tr = a_tr_sca(4) |
---|
1337 | ENDIF |
---|
1338 | |
---|
1339 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/MAX(rneb(i,k),seuil_neb)) |
---|
1340 | frac_nucl(i,k)= 1.-MAX(rneb(i,k),seuil_neb)*zfrac_lessi |
---|
1341 | |
---|
1342 | ! Nucleation with a factor of -1 instead of -0.5 |
---|
1343 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/MAX(rneb(i,k),seuil_neb)) |
---|
1344 | |
---|
1345 | ENDIF |
---|
1346 | |
---|
1347 | ENDDO |
---|
1348 | |
---|
1349 | ! Scavenging through impaction in the underlying layer |
---|
1350 | |
---|
1351 | DO kk = k-1, 1, -1 |
---|
1352 | |
---|
1353 | DO i = 1, klon |
---|
1354 | |
---|
1355 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
1356 | |
---|
1357 | IF (temp(i,kk) .GE. temp_nowater) THEN |
---|
1358 | zalpha_tr = a_tr_sca(1) |
---|
1359 | ELSE |
---|
1360 | zalpha_tr = a_tr_sca(2) |
---|
1361 | ENDIF |
---|
1362 | |
---|
1363 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/MAX(rneb(i,k),seuil_neb)) |
---|
1364 | frac_impa(i,kk)= 1.-MAX(rneb(i,k),seuil_neb)*zfrac_lessi |
---|
1365 | |
---|
1366 | ENDIF |
---|
1367 | |
---|
1368 | ENDDO |
---|
1369 | |
---|
1370 | ENDDO |
---|
1371 | |
---|
1372 | !------------------------------------------------------------ |
---|
1373 | ! P6 > write diagnostics and outputs |
---|
1374 | !------------------------------------------------------------ |
---|
1375 | |
---|
1376 | CALL calc_qsat_ecmwf(klon,zt,zeroklon,zp,RTT,1,.false.,qsatl(:,k),zdqs) |
---|
1377 | CALL calc_qsat_ecmwf(klon,zt,zeroklon,zp,RTT,2,.false.,qsati(:,k),zdqs) |
---|
1378 | |
---|
1379 | !--AB Write diagnostics and tracers for ice supersaturation |
---|
1380 | IF ( ok_plane_contrail ) THEN |
---|
1381 | DO i = 1, klon |
---|
1382 | IF ( zoliq(i) .LE. 0. ) THEN |
---|
1383 | contfra(i) = 0. |
---|
1384 | qcont(i) = 0. |
---|
1385 | qvcont(i) = 0. |
---|
1386 | Ncont(i) = 0. |
---|
1387 | ENDIF |
---|
1388 | ENDDO |
---|
1389 | cfc_seri(:,k) = contfra(:) |
---|
1390 | nic_seri(:,k) = Ncont(:) |
---|
1391 | !--Ice water content of contrails |
---|
1392 | qice_cont(:,k) = qcont(:) - qvcont(:) |
---|
1393 | IF ( ok_unadjusted_contrails ) THEN |
---|
1394 | qtc_seri(:,k) = qvcont(:) |
---|
1395 | qic_seri(:,k) = qice_cont(:,k) |
---|
1396 | ELSE |
---|
1397 | qtc_seri(:,k) = qcont(:) |
---|
1398 | ENDIF |
---|
1399 | !--Radiative properties |
---|
1400 | contfrarad(:,k) = contfra(:) |
---|
1401 | qradice_cont(:,k) = qice_cont(:,k) |
---|
1402 | ENDIF |
---|
1403 | |
---|
1404 | IF ( ok_ice_supersat ) THEN |
---|
1405 | DO i = 1, klon |
---|
1406 | |
---|
1407 | !--We save the cloud properties that will be advected |
---|
1408 | cf_seri(i,k) = rneb(i,k) |
---|
1409 | qvc_seri(i,k) = qvc(i) |
---|
1410 | |
---|
1411 | !--We keep convective clouds properties in memory, and account for |
---|
1412 | !--the sink of condensed water from precipitation |
---|
1413 | IF ( ptconv(i,k) ) THEN |
---|
1414 | qvcon_old(i,k) = qvcon(i,k) |
---|
1415 | qccon_old(i,k) = qccon(i,k) |
---|
1416 | ELSE |
---|
1417 | qvcon_old(i,k) = 0. |
---|
1418 | qccon_old(i,k) = 0. |
---|
1419 | ENDIF |
---|
1420 | |
---|
1421 | !--If everything was precipitated, the remaining empty cloud is dissipated |
---|
1422 | !--and everything is transfered to the subsaturated clear sky region |
---|
1423 | !--NB. we do not change rneb, as it is a diagnostic only |
---|
1424 | IF ( zoliq(i) .LE. 0. ) THEN |
---|
1425 | cf_seri(i,k) = 0. |
---|
1426 | qvc_seri(i,k) = 0. |
---|
1427 | ENDIF |
---|
1428 | |
---|
1429 | !--Diagnostics |
---|
1430 | gamma_cond(i,k) = gammasat(i) |
---|
1431 | subfra(i,k) = totfra_in(i) - cf_seri(i,k) - issrfra(i,k) |
---|
1432 | qsub(i,k) = qtot_in(i) - qvc_seri(i,k) - qissr(i,k) |
---|
1433 | qcld(i,k) = qvc_seri(i,k) + zoliq(i) |
---|
1434 | |
---|
1435 | IF ( ok_higher_cirrus_cover .AND. pt_pron_clds(i) .AND. .NOT. ptconv(i,k) ) THEN |
---|
1436 | !--Following Brooks et al. (2005) |
---|
1437 | !--This is only valid for cirrus clouds |
---|
1438 | !--We do not apply it do convective clouds |
---|
1439 | IF ( ( rneb(i,k) .GT. eps ) .AND. ( rneb(i,k) .LT. (1. - eps) ) ) THEN |
---|
1440 | dz = ( paprs(i,k) - paprs(i,k+1) ) / RG / pplay(i,k) * zt(i) * RD |
---|
1441 | coef_cover = (0.0706 + 0.1274 * shear(i)**0.3015) & |
---|
1442 | * dz**0.7679 / SQRT(cell_area(i))**0.2254 |
---|
1443 | rneb(i,k) = 1. / (1. + EXP(-coef_cover) * (1. / rneb(i,k) - 1.)) |
---|
1444 | IF ( contfrarad(i,k) .GT. eps ) THEN |
---|
1445 | contfrarad(i,k) = cfc_seri(i,k) / cf_seri(i,k) * rneb(i,k) |
---|
1446 | ENDIF |
---|
1447 | ENDIF |
---|
1448 | ENDIF |
---|
1449 | |
---|
1450 | !--Calculation of the ice supersaturated fraction following Lamquin et al (2012) |
---|
1451 | !--methodology: in each layer, we make a maximum random overlap assumption for |
---|
1452 | !--ice supersaturation |
---|
1453 | IF ( ( paprs(i,k) .GT. 10000. ) .AND. ( paprs(i,k) .LE. 15000. ) ) THEN |
---|
1454 | IF ( issrfra100to150UP(i) .GT. ( 1. - eps ) ) THEN |
---|
1455 | issrfra100to150(i) = 1. |
---|
1456 | ELSE |
---|
1457 | issrfra100to150(i) = 1. - ( 1. - issrfra100to150(i) ) * & |
---|
1458 | ( 1. - MAX( issrfra(i,k), issrfra100to150UP(i) ) ) & |
---|
1459 | / ( 1. - issrfra100to150UP(i) ) |
---|
1460 | issrfra100to150UP(i) = issrfra(i,k) |
---|
1461 | ENDIF |
---|
1462 | ELSEIF ( ( paprs(i,k) .GT. 15000. ) .AND. ( paprs(i,k) .LE. 20000. ) ) THEN |
---|
1463 | IF ( issrfra150to200UP(i) .GT. ( 1. - eps ) ) THEN |
---|
1464 | issrfra150to200(i) = 1. |
---|
1465 | ELSE |
---|
1466 | issrfra150to200(i) = 1. - ( 1. - issrfra150to200(i) ) * & |
---|
1467 | ( 1. - MAX( issrfra(i,k), issrfra150to200UP(i) ) ) & |
---|
1468 | / ( 1. - issrfra150to200UP(i) ) |
---|
1469 | issrfra150to200UP(i) = issrfra(i,k) |
---|
1470 | ENDIF |
---|
1471 | ELSEIF ( ( paprs(i,k) .GT. 20000. ) .AND. ( paprs(i,k) .LE. 25000. ) ) THEN |
---|
1472 | IF ( issrfra200to250UP(i) .GT. ( 1. - eps ) ) THEN |
---|
1473 | issrfra200to250(i) = 1. |
---|
1474 | ELSE |
---|
1475 | issrfra200to250(i) = 1. - ( 1. - issrfra200to250(i) ) * & |
---|
1476 | ( 1. - MAX( issrfra(i,k), issrfra200to250UP(i) ) ) & |
---|
1477 | / ( 1. - issrfra200to250UP(i) ) |
---|
1478 | issrfra200to250UP(i) = issrfra(i,k) |
---|
1479 | ENDIF |
---|
1480 | ELSEIF ( ( paprs(i,k) .GT. 25000. ) .AND. ( paprs(i,k) .LE. 30000. ) ) THEN |
---|
1481 | IF ( issrfra250to300UP(i) .GT. ( 1. - eps ) ) THEN |
---|
1482 | issrfra250to300(i) = 1. |
---|
1483 | ELSE |
---|
1484 | issrfra250to300(i) = 1. - ( 1. - issrfra250to300(i) ) * & |
---|
1485 | ( 1. - MAX( issrfra(i,k), issrfra250to300UP(i) ) ) & |
---|
1486 | / ( 1. - issrfra250to300UP(i) ) |
---|
1487 | issrfra250to300UP(i) = issrfra(i,k) |
---|
1488 | ENDIF |
---|
1489 | ELSEIF ( ( paprs(i,k) .GT. 30000. ) .AND. ( paprs(i,k) .LE. 40000. ) ) THEN |
---|
1490 | IF ( issrfra300to400UP(i) .GT. ( 1. - eps ) ) THEN |
---|
1491 | issrfra300to400(i) = 1. |
---|
1492 | ELSE |
---|
1493 | issrfra300to400(i) = 1. - ( 1. - issrfra300to400(i) ) * & |
---|
1494 | ( 1. - MAX( issrfra(i,k), issrfra300to400UP(i) ) ) & |
---|
1495 | / ( 1. - issrfra300to400UP(i) ) |
---|
1496 | issrfra300to400UP(i) = issrfra(i,k) |
---|
1497 | ENDIF |
---|
1498 | ELSEIF ( ( paprs(i,k) .GT. 40000. ) .AND. ( paprs(i,k) .LE. 50000. ) ) THEN |
---|
1499 | IF ( issrfra400to500UP(i) .GT. ( 1. - eps ) ) THEN |
---|
1500 | issrfra400to500(i) = 1. |
---|
1501 | ELSE |
---|
1502 | issrfra400to500(i) = 1. - ( 1. - issrfra400to500(i) ) * & |
---|
1503 | ( 1. - MAX( issrfra(i,k), issrfra400to500UP(i) ) ) & |
---|
1504 | / ( 1. - issrfra400to500UP(i) ) |
---|
1505 | issrfra400to500UP(i) = issrfra(i,k) |
---|
1506 | ENDIF |
---|
1507 | ENDIF |
---|
1508 | |
---|
1509 | ENDDO |
---|
1510 | ENDIF |
---|
1511 | |
---|
1512 | IF ( ok_plane_contrail ) THEN |
---|
1513 | !--Other useful diagnostics |
---|
1514 | DO i = 1, klon |
---|
1515 | !--Very young countrails |
---|
1516 | IF ( dcfc_ini(i,k) .GT. eps ) THEN |
---|
1517 | rho = pplay(i,k) / zt(i) / RD |
---|
1518 | nice_ygcont(i,k) = dnic_ini(i,k) / dcfc_ini(i,k) / 1e6 * rho |
---|
1519 | iwc_ygcont(i,k) = dqic_ini(i,k) / dcfc_ini(i,k) * 1e3 * rho |
---|
1520 | rvol_ygcont(i,k) = (dqic_ini(i,k) / MAX(eps, dnic_ini(i,k)) / rho_ice * 3. / 4. / RPI)**(1./3.) * 1e6 |
---|
1521 | |
---|
1522 | rhodz = ( paprs(i,k) - paprs(i,k+1) ) / RG |
---|
1523 | iwp_cont = 1e3 * dqic_ini(i,k) / dcfc_ini(i,k) * rhodz |
---|
1524 | rei_cont = MIN(200., MAX(10., rvol_ygcont(i,k) / eff2vol_radius_contrails)) |
---|
1525 | tau_ygcont(i,k) = iwp_cont*(3.448e-3+2.431/rei_cont) |
---|
1526 | ELSE |
---|
1527 | nice_ygcont(i,k) = missing_val |
---|
1528 | iwc_ygcont(i,k) = missing_val |
---|
1529 | rvol_ygcont(i,k) = missing_val |
---|
1530 | tau_ygcont(i,k) = missing_val |
---|
1531 | ENDIF |
---|
1532 | !--All contrails |
---|
1533 | IF ( cfc_seri(i,k) .GT. 1e-8 ) THEN |
---|
1534 | rho = pplay(i,k) / zt(i) / RD |
---|
1535 | nice_cont(i,k) = nic_seri(i,k) / cfc_seri(i,k) / 1e6 * rho |
---|
1536 | iwc_cont(i,k) = qice_cont(i,k) / cfc_seri(i,k) * 1e3 * rho |
---|
1537 | rvol_cont(i,k) = (qice_cont(i,k) / MAX(eps, nic_seri(i,k)) / rho_ice * 3. / 4. / RPI)**(1./3.) * 1e6 |
---|
1538 | |
---|
1539 | rhodz = ( paprs(i,k) - paprs(i,k+1) ) / RG |
---|
1540 | iwp_cont = 1e3 * qice_cont(i,k) / contfrarad(i,k) * rhodz |
---|
1541 | rei_cont = MIN(200., MAX(10., rvol_cont(i,k) / eff2vol_radius_contrails)) |
---|
1542 | tau_cont(i,k) = iwp_cont*(3.448e-3+2.431/rei_cont) |
---|
1543 | IF ( tau_cont(i,k) .GT. 0.05 ) THEN |
---|
1544 | nice_vscont(i,k) = nice_cont(i,k) |
---|
1545 | iwc_vscont(i,k) = iwc_cont(i,k) |
---|
1546 | rvol_vscont(i,k) = rvol_cont(i,k) |
---|
1547 | tau_vscont(i,k) = tau_cont(i,k) |
---|
1548 | ELSE |
---|
1549 | nice_vscont(i,k) = missing_val |
---|
1550 | iwc_vscont(i,k) = missing_val |
---|
1551 | rvol_vscont(i,k) = missing_val |
---|
1552 | tau_vscont(i,k) = missing_val |
---|
1553 | ENDIF |
---|
1554 | ELSE |
---|
1555 | nice_cont(i,k) = missing_val |
---|
1556 | iwc_cont(i,k) = missing_val |
---|
1557 | rvol_cont(i,k) = missing_val |
---|
1558 | tau_cont(i,k) = missing_val |
---|
1559 | nice_vscont(i,k) = missing_val |
---|
1560 | iwc_vscont(i,k) = missing_val |
---|
1561 | rvol_vscont(i,k) = missing_val |
---|
1562 | tau_vscont(i,k) = missing_val |
---|
1563 | ENDIF |
---|
1564 | ENDDO |
---|
1565 | ENDIF |
---|
1566 | |
---|
1567 | ! Outputs: |
---|
1568 | !------------------------------- |
---|
1569 | ! Precipitation fluxes at layer interfaces |
---|
1570 | ! + precipitation fractions + |
---|
1571 | ! temperature and water species tendencies |
---|
1572 | DO i = 1, klon |
---|
1573 | psfl(i,k)=zifl(i) |
---|
1574 | prfl(i,k)=zrfl(i) |
---|
1575 | pfraclr(i,k)=znebprecipclr(i) |
---|
1576 | pfracld(i,k)=znebprecipcld(i) |
---|
1577 | distcltop(i,k)=zdistcltop(i) |
---|
1578 | temp_cltop(i,k)=ztemp_cltop(i) |
---|
1579 | d_q(i,k) = zq(i) - qt(i,k) |
---|
1580 | d_t(i,k) = zt(i) - temp(i,k) |
---|
1581 | |
---|
1582 | IF (ok_bug_phase_lscp) THEN |
---|
1583 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
---|
1584 | d_qi(i,k) = zfice(i)*zoliq(i) |
---|
1585 | ELSE |
---|
1586 | d_ql(i,k) = zoliql(i) |
---|
1587 | d_qi(i,k) = zoliqi(i) |
---|
1588 | ENDIF |
---|
1589 | |
---|
1590 | ENDDO |
---|
1591 | |
---|
1592 | |
---|
1593 | ENDDO ! loop on k from top to bottom |
---|
1594 | |
---|
1595 | |
---|
1596 | ! Rain or snow at the surface (depending on the first layer temperature) |
---|
1597 | DO i = 1, klon |
---|
1598 | snow(i) = zifl(i) |
---|
1599 | rain(i) = zrfl(i) |
---|
1600 | ! c_iso final output |
---|
1601 | ENDDO |
---|
1602 | |
---|
1603 | IF ( ok_ice_sedim ) THEN |
---|
1604 | DO i = 1, klon |
---|
1605 | snow(i) = snow(i) + flsed(i) + flsed_cont(i) |
---|
1606 | ENDDO |
---|
1607 | ENDIF |
---|
1608 | |
---|
1609 | IF (ncoreczq>0) THEN |
---|
1610 | WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' |
---|
1611 | ENDIF |
---|
1612 | |
---|
1613 | |
---|
1614 | RETURN |
---|
1615 | |
---|
1616 | END SUBROUTINE lscp |
---|
1617 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1618 | |
---|
1619 | END MODULE lmdz_lscp_main |
---|