1 | module eq_regions_mod |
---|
2 | |
---|
3 | ! Purpose. |
---|
4 | ! -------- |
---|
5 | ! eq_regions_mod provides the code to perform a high level |
---|
6 | ! partitioning of the surface of a sphere into regions of |
---|
7 | ! equal area and small diameter. |
---|
8 | ! the type. |
---|
9 | |
---|
10 | ! Background. |
---|
11 | ! ----------- |
---|
12 | ! This Fortran version of eq_regions is a much cut down version of the |
---|
13 | ! "Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox" of the |
---|
14 | ! same name developed by Paul Leopardi at the University of New South Wales. |
---|
15 | ! This version has been coded specifically for the case of partitioning the |
---|
16 | ! surface of a sphere or S^dim (where dim=2) as denoted in the original code. |
---|
17 | ! Only a subset of the original eq_regions package has been coded to determine |
---|
18 | ! the high level distribution of regions on a sphere, as the detailed |
---|
19 | ! distribution of grid points to each region is left to IFS software. |
---|
20 | ! This is required to take into account the spatial distribution of grid |
---|
21 | ! points in an IFS gaussian grid and provide an optimal (i.e. exact) |
---|
22 | ! distribution of grid points over regions. |
---|
23 | |
---|
24 | ! The following copyright notice for the eq_regions package is included from |
---|
25 | ! the original MatLab release. |
---|
26 | |
---|
27 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
28 | ! + Release 1.10 2005-06-26 + |
---|
29 | ! + + |
---|
30 | ! + Copyright (c) 2004, 2005, University of New South Wales + |
---|
31 | ! + + |
---|
32 | ! + Permission is hereby granted, free of charge, to any person obtaining + |
---|
33 | ! + a copy of this software and associated documentation files (the + |
---|
34 | ! + "Software"), to deal in the Software without restriction, including + |
---|
35 | ! + without limitation the rights to use, copy, modify, merge, publish, + |
---|
36 | ! + distribute, sublicense, and/or sell copies of the Software, and to + |
---|
37 | ! + permit persons to whom the Software is furnished to do so, subject to + |
---|
38 | ! + the following conditions: + |
---|
39 | ! + + |
---|
40 | ! + The above copyright notice and this permission notice shall be included + |
---|
41 | ! + in all copies or substantial portions of the Software. + |
---|
42 | ! + + |
---|
43 | ! + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + |
---|
44 | ! + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + |
---|
45 | ! + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + |
---|
46 | ! + IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + |
---|
47 | ! + CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + |
---|
48 | ! + TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + |
---|
49 | ! + SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + |
---|
50 | ! + + |
---|
51 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
52 | |
---|
53 | ! Author. |
---|
54 | ! ------- |
---|
55 | ! George Mozdzynski *ECMWF* |
---|
56 | |
---|
57 | ! Modifications. |
---|
58 | ! -------------- |
---|
59 | ! Original : 2006-04-15 |
---|
60 | |
---|
61 | !-------------------------------------------------------------------------------- |
---|
62 | |
---|
63 | USE PARKIND1 ,ONLY : JPIM ,JPRB |
---|
64 | |
---|
65 | IMPLICIT NONE |
---|
66 | |
---|
67 | SAVE |
---|
68 | |
---|
69 | PRIVATE |
---|
70 | |
---|
71 | PUBLIC eq_regions,l_regions_debug,n_regions_ns,n_regions_ew,n_regions,my_region_ns,my_region_ew |
---|
72 | |
---|
73 | real(kind=jprb) pi |
---|
74 | logical :: l_regions_debug=.false. |
---|
75 | integer(kind=jpim) :: n_regions_ns |
---|
76 | integer(kind=jpim) :: n_regions_ew |
---|
77 | integer(kind=jpim) :: my_region_ns |
---|
78 | integer(kind=jpim) :: my_region_ew |
---|
79 | integer(kind=jpim),allocatable :: n_regions(:) |
---|
80 | |
---|
81 | |
---|
82 | !$OMP THREADPRIVATE(l_regions_debug,my_region_ew,my_region_ns,n_regions_ew,n_regions_ns,pi,n_regions) |
---|
83 | |
---|
84 | CONTAINS |
---|
85 | |
---|
86 | subroutine eq_regions(N) |
---|
87 | |
---|
88 | ! eq_regions uses the zonal equal area sphere partitioning algorithm to partition |
---|
89 | ! the surface of a sphere into N regions of equal area and small diameter. |
---|
90 | |
---|
91 | integer(kind=jpim),intent(in) :: N |
---|
92 | integer(kind=jpim) :: n_collars,j |
---|
93 | real(kind=jprb),allocatable :: r_regions(:) |
---|
94 | real(kind=jprb) :: c_polar |
---|
95 | |
---|
96 | pi=2.0_jprb*asin(1.0_jprb) |
---|
97 | |
---|
98 | n_regions(:)=0 |
---|
99 | |
---|
100 | if( N == 1 )then |
---|
101 | |
---|
102 | |
---|
103 | ! We have only one region, which must be the whole sphere. |
---|
104 | |
---|
105 | n_regions(1)=1 |
---|
106 | n_regions_ns=1 |
---|
107 | |
---|
108 | else |
---|
109 | |
---|
110 | |
---|
111 | ! Given N, determine c_polar |
---|
112 | ! the colatitude of the North polar spherical cap. |
---|
113 | |
---|
114 | c_polar = polar_colat(N) |
---|
115 | |
---|
116 | ! Given N, determine the ideal angle for spherical collars. |
---|
117 | ! Based on N, this ideal angle, and c_polar, |
---|
118 | ! determine n_collars, the number of collars between the polar caps. |
---|
119 | |
---|
120 | n_collars = num_collars(N,c_polar,ideal_collar_angle(N)) |
---|
121 | n_regions_ns=n_collars+2 |
---|
122 | |
---|
123 | ! Given N, c_polar and n_collars, determine r_regions, |
---|
124 | ! a list of the ideal real number of regions in each collar, |
---|
125 | ! plus the polar caps. |
---|
126 | ! The number of elements is n_collars+2. |
---|
127 | ! r_regions[1] is 1. |
---|
128 | ! r_regions[n_collars+2] is 1. |
---|
129 | ! The sum of r_regions is N. |
---|
130 | allocate(r_regions(n_collars+2)) |
---|
131 | call ideal_region_list(N,c_polar,n_collars,r_regions) |
---|
132 | |
---|
133 | ! Given N and r_regions, determine n_regions, a list of the natural number |
---|
134 | ! of regions in each collar and the polar caps. |
---|
135 | ! This list is as close as possible to r_regions. |
---|
136 | ! The number of elements is n_collars+2. |
---|
137 | ! n_regions[1] is 1. |
---|
138 | ! n_regions[n_collars+2] is 1. |
---|
139 | ! The sum of n_regions is N. |
---|
140 | |
---|
141 | call round_to_naturals(N,n_collars,r_regions) |
---|
142 | deallocate(r_regions) |
---|
143 | if( N /= sum(n_regions(:)) )then |
---|
144 | write(*,'("eq_regions: N=",I10," sum(n_regions(:))=",I10)')N,sum(n_regions(:)) |
---|
145 | call abor1('eq_regions: N /= sum(n_regions)') |
---|
146 | endif |
---|
147 | |
---|
148 | endif |
---|
149 | |
---|
150 | if( l_regions_debug )then |
---|
151 | write(*,'("eq_regions: N=",I6," n_regions_ns=",I4)') N,n_regions_ns |
---|
152 | DO j=1,n_regions_ns |
---|
153 | write(*,'("eq_regions: n_regions(",I4,")=",I4)') j,n_regions(j) |
---|
154 | enddo |
---|
155 | endif |
---|
156 | n_regions_ew=maxval(n_regions(:)) |
---|
157 | |
---|
158 | return |
---|
159 | end subroutine eq_regions |
---|
160 | |
---|
161 | function num_collars(N,c_polar,a_ideal) result(num_c) |
---|
162 | |
---|
163 | !NUM_COLLARS The number of collars between the polar caps |
---|
164 | |
---|
165 | ! Given N, an ideal angle, and c_polar, |
---|
166 | ! determine n_collars, the number of collars between the polar caps. |
---|
167 | |
---|
168 | integer(kind=jpim),intent(in) :: N |
---|
169 | real(kind=jprb),intent(in) :: a_ideal,c_polar |
---|
170 | integer(kind=jpim) :: num_c |
---|
171 | logical enough |
---|
172 | enough = (N > 2) .and. (a_ideal > 0) |
---|
173 | if( enough )then |
---|
174 | num_c = max(1,nint((pi-2.*c_polar)/a_ideal)) |
---|
175 | else |
---|
176 | num_c = 0 |
---|
177 | endif |
---|
178 | return |
---|
179 | end function num_collars |
---|
180 | |
---|
181 | subroutine ideal_region_list(N,c_polar,n_collars,r_regions) |
---|
182 | |
---|
183 | !IDEAL_REGION_LIST The ideal real number of regions in each zone |
---|
184 | |
---|
185 | ! List the ideal real number of regions in each collar, plus the polar caps. |
---|
186 | |
---|
187 | ! Given N, c_polar and n_collars, determine r_regions, a list of the ideal real |
---|
188 | ! number of regions in each collar, plus the polar caps. |
---|
189 | ! The number of elements is n_collars+2. |
---|
190 | ! r_regions[1] is 1. |
---|
191 | ! r_regions[n_collars+2] is 1. |
---|
192 | ! The sum of r_regions is N. |
---|
193 | |
---|
194 | integer(kind=jpim),intent(in) :: N,n_collars |
---|
195 | real(kind=jprb),intent(in) :: c_polar |
---|
196 | real(kind=jprb),intent(out) :: r_regions(n_collars+2) |
---|
197 | integer(kind=jpim) :: collar_n |
---|
198 | real(kind=jprb) :: ideal_region_area,ideal_collar_area |
---|
199 | real(kind=jprb) :: a_fitting |
---|
200 | r_regions(:)=0.0_jprb |
---|
201 | r_regions(1) = 1.0_jprb |
---|
202 | if( n_collars > 0 )then |
---|
203 | |
---|
204 | ! Based on n_collars and c_polar, determine a_fitting, |
---|
205 | ! the collar angle such that n_collars collars fit between the polar caps. |
---|
206 | |
---|
207 | a_fitting = (pi-2.0_jprb*c_polar)/float(n_collars) |
---|
208 | ideal_region_area = area_of_ideal_region(N) |
---|
209 | DO collar_n=1,n_collars |
---|
210 | ideal_collar_area = area_of_collar(c_polar+(collar_n-1)*a_fitting, & |
---|
211 | & c_polar+collar_n*a_fitting) |
---|
212 | r_regions(1+collar_n) = ideal_collar_area / ideal_region_area |
---|
213 | enddo |
---|
214 | endif |
---|
215 | r_regions(2+n_collars) = 1. |
---|
216 | return |
---|
217 | end subroutine ideal_region_list |
---|
218 | |
---|
219 | function ideal_collar_angle(N) result(ideal) |
---|
220 | |
---|
221 | ! IDEAL_COLLAR_ANGLE The ideal angle for spherical collars of an EQ partition |
---|
222 | |
---|
223 | ! IDEAL_COLLAR_ANGLE(N) sets ANGLE to the ideal angle for the |
---|
224 | ! spherical collars of an EQ partition of the unit sphere S^2 into N regions. |
---|
225 | |
---|
226 | integer(kind=jpim),intent(in) :: N |
---|
227 | real(kind=jprb) :: ideal |
---|
228 | ideal = area_of_ideal_region(N)**(0.5_jprb) |
---|
229 | return |
---|
230 | end function ideal_collar_angle |
---|
231 | |
---|
232 | subroutine round_to_naturals(N,n_collars,r_regions) |
---|
233 | |
---|
234 | ! ROUND_TO_NATURALS Round off a given list of numbers of regions |
---|
235 | |
---|
236 | ! Given N and r_regions, determine n_regions, a list of the natural number |
---|
237 | ! of regions in each collar and the polar caps. |
---|
238 | ! This list is as close as possible to r_regions, using rounding. |
---|
239 | ! The number of elements is n_collars+2. |
---|
240 | ! n_regions[1] is 1. |
---|
241 | ! n_regions[n_collars+2] is 1. |
---|
242 | ! The sum of n_regions is N. |
---|
243 | |
---|
244 | integer(kind=jpim),intent(in) :: N,n_collars |
---|
245 | real(kind=jprb),intent(in) :: r_regions(n_collars+2) |
---|
246 | integer(kind=jpim) :: zone_n |
---|
247 | real(kind=jprb) :: discrepancy |
---|
248 | n_regions(1:n_collars+2) = r_regions(:) |
---|
249 | discrepancy = 0.0_jprb |
---|
250 | DO zone_n = 1,n_collars+2 |
---|
251 | n_regions(zone_n) = nint(r_regions(zone_n)+discrepancy); |
---|
252 | discrepancy = discrepancy+r_regions(zone_n)-float(n_regions(zone_n)); |
---|
253 | enddo |
---|
254 | return |
---|
255 | end subroutine round_to_naturals |
---|
256 | |
---|
257 | function polar_colat(N) result(polar_c) |
---|
258 | |
---|
259 | ! Given N, determine the colatitude of the North polar spherical cap. |
---|
260 | |
---|
261 | integer(kind=jpim),intent(in) :: N |
---|
262 | real(kind=jprb) :: area |
---|
263 | real(kind=jprb) :: polar_c |
---|
264 | if( N == 1 ) polar_c=pi |
---|
265 | if( N == 2 ) polar_c=pi/2.0_jprb |
---|
266 | if( N > 2 )then |
---|
267 | area=area_of_ideal_region(N) |
---|
268 | polar_c=sradius_of_cap(area) |
---|
269 | endif |
---|
270 | return |
---|
271 | end function polar_colat |
---|
272 | |
---|
273 | function area_of_ideal_region(N) result(area) |
---|
274 | |
---|
275 | ! AREA_OF_IDEAL_REGION(N) sets AREA to be the area of one of N equal |
---|
276 | ! area regions on S^2, that is 1/N times AREA_OF_SPHERE. |
---|
277 | |
---|
278 | integer(kind=jpim),intent(in) :: N |
---|
279 | real(kind=jprb) :: area_of_sphere |
---|
280 | real(kind=jprb) :: area |
---|
281 | area_of_sphere = (2.0_jprb*pi**1.5_jprb/gamma(1.5_jprb)) |
---|
282 | area = area_of_sphere/float(N) |
---|
283 | return |
---|
284 | end function area_of_ideal_region |
---|
285 | |
---|
286 | function sradius_of_cap(area) result(sradius) |
---|
287 | |
---|
288 | ! SRADIUS_OF_CAP(AREA) returns the spherical radius of |
---|
289 | ! an S^2 spherical cap of area AREA. |
---|
290 | |
---|
291 | real(kind=jprb),intent(in) :: area |
---|
292 | real(kind=jprb) :: sradius |
---|
293 | sradius = 2.0_jprb*asin(sqrt(area/pi)/2.0_jprb) |
---|
294 | return |
---|
295 | end function sradius_of_cap |
---|
296 | |
---|
297 | function area_of_collar(a_top, a_bot) result(area) |
---|
298 | |
---|
299 | ! AREA_OF_COLLAR Area of spherical collar |
---|
300 | |
---|
301 | ! AREA_OF_COLLAR(A_TOP, A_BOT) sets AREA to be the area of an S^2 spherical |
---|
302 | ! collar specified by A_TOP, A_BOT, where A_TOP is top (smaller) spherical radius, |
---|
303 | ! A_BOT is bottom (larger) spherical radius. |
---|
304 | |
---|
305 | real(kind=jprb),intent(in) :: a_top,a_bot |
---|
306 | real(kind=jprb) area |
---|
307 | area = area_of_cap(a_bot) - area_of_cap(a_top) |
---|
308 | return |
---|
309 | end function area_of_collar |
---|
310 | |
---|
311 | function area_of_cap(s_cap) result(area) |
---|
312 | |
---|
313 | ! AREA_OF_CAP Area of spherical cap |
---|
314 | |
---|
315 | ! AREA_OF_CAP(S_CAP) sets AREA to be the area of an S^2 spherical |
---|
316 | ! cap of spherical radius S_CAP. |
---|
317 | |
---|
318 | real(kind=jprb),intent(in) :: s_cap |
---|
319 | real(kind=jprb) area |
---|
320 | area = 4.0_jprb*pi * sin(s_cap/2.0_jprb)**2 |
---|
321 | return |
---|
322 | end function area_of_cap |
---|
323 | |
---|
324 | function gamma(x) result(gamma_res) |
---|
325 | real(kind=jprb),intent(in) :: x |
---|
326 | real(kind=jprb) :: gamma_res |
---|
327 | real(kind=jprb) :: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13 |
---|
328 | real(kind=jprb) :: w,y |
---|
329 | integer(kind=jpim) :: k,n |
---|
330 | parameter (& |
---|
331 | & p0 = 0.999999999999999990e+00_jprb,& |
---|
332 | & p1 = -0.422784335098466784e+00_jprb,& |
---|
333 | & p2 = -0.233093736421782878e+00_jprb,& |
---|
334 | & p3 = 0.191091101387638410e+00_jprb,& |
---|
335 | & p4 = -0.024552490005641278e+00_jprb,& |
---|
336 | & p5 = -0.017645244547851414e+00_jprb,& |
---|
337 | & p6 = 0.008023273027855346e+00_jprb) |
---|
338 | parameter (& |
---|
339 | & p7 = -0.000804329819255744e+00_jprb,& |
---|
340 | & p8 = -0.000360837876648255e+00_jprb,& |
---|
341 | & p9 = 0.000145596568617526e+00_jprb,& |
---|
342 | & p10 = -0.000017545539395205e+00_jprb,& |
---|
343 | & p11 = -0.000002591225267689e+00_jprb,& |
---|
344 | & p12 = 0.000001337767384067e+00_jprb,& |
---|
345 | & p13 = -0.000000199542863674e+00_jprb) |
---|
346 | n = nint(x - 2) |
---|
347 | w = x - (n + 2) |
---|
348 | y = ((((((((((((p13 * w + p12) * w + p11) * w + p10) *& |
---|
349 | & w + p9) * w + p8) * w + p7) * w + p6) * w + p5) *& |
---|
350 | & w + p4) * w + p3) * w + p2) * w + p1) * w + p0 |
---|
351 | if (n .gt. 0) then |
---|
352 | w = x - 1 |
---|
353 | DO k = 2, n |
---|
354 | w = w * (x - k) |
---|
355 | end do |
---|
356 | else |
---|
357 | w = 1 |
---|
358 | DO k = 0, -n - 1 |
---|
359 | y = y * (x + k) |
---|
360 | end do |
---|
361 | end if |
---|
362 | gamma_res = w / y |
---|
363 | return |
---|
364 | end function gamma |
---|
365 | |
---|
366 | end module eq_regions_mod |
---|