[4651] | 1 | MODULE lmdz_cloudth |
---|
[2686] | 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[5144] | 7 | SUBROUTINE cloudth(ngrid, klev, ind2, & |
---|
| 8 | ztv, po, zqta, fraca, & |
---|
| 9 | qcloud, ctot, zpspsk, paprs, pplay, ztla, zthl, & |
---|
| 10 | ratqs, zqs, t, & |
---|
| 11 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
[2686] | 12 | |
---|
[5144] | 13 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert, iflag_ratqs |
---|
| 14 | USE lmdz_yoethf |
---|
[5153] | 15 | |
---|
[5144] | 16 | USE lmdz_yomcst |
---|
[2686] | 17 | |
---|
[5144] | 18 | IMPLICIT NONE |
---|
[5153] | 19 | INCLUDE "FCTTRE.h" |
---|
[4535] | 20 | |
---|
[2686] | 21 | |
---|
[5144] | 22 | !=========================================================================== |
---|
| 23 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 24 | ! Date : 25 Mai 2010 |
---|
| 25 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 26 | !=========================================================================== |
---|
[2686] | 27 | |
---|
[5144] | 28 | INTEGER itap, ind1, ind2 |
---|
| 29 | INTEGER ngrid, klev, klon, l, ig |
---|
| 30 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv |
---|
[2686] | 31 | |
---|
[5144] | 32 | REAL ztv(ngrid, klev) |
---|
| 33 | REAL po(ngrid) |
---|
| 34 | REAL zqenv(ngrid) |
---|
| 35 | REAL zqta(ngrid, klev) |
---|
[2686] | 36 | |
---|
[5144] | 37 | REAL fraca(ngrid, klev + 1) |
---|
| 38 | REAL zpspsk(ngrid, klev) |
---|
| 39 | REAL paprs(ngrid, klev + 1) |
---|
| 40 | REAL pplay(ngrid, klev) |
---|
| 41 | REAL ztla(ngrid, klev) |
---|
| 42 | REAL zthl(ngrid, klev) |
---|
[2686] | 43 | |
---|
[5144] | 44 | REAL zqsatth(ngrid, klev) |
---|
| 45 | REAL zqsatenv(ngrid, klev) |
---|
[2686] | 46 | |
---|
[5144] | 47 | REAL sigma1(ngrid, klev) |
---|
| 48 | REAL sigma2(ngrid, klev) |
---|
| 49 | REAL qlth(ngrid, klev) |
---|
| 50 | REAL qlenv(ngrid, klev) |
---|
| 51 | REAL qltot(ngrid, klev) |
---|
| 52 | REAL cth(ngrid, klev) |
---|
| 53 | REAL cenv(ngrid, klev) |
---|
| 54 | REAL ctot(ngrid, klev) |
---|
| 55 | REAL rneb(ngrid, klev) |
---|
| 56 | REAL t(ngrid, klev) |
---|
| 57 | REAL qsatmmussig1, qsatmmussig2, sqrt2pi, pi |
---|
| 58 | REAL rdd, cppd, Lv |
---|
| 59 | REAL alth, alenv, ath, aenv |
---|
| 60 | REAL sth, senv, sigma1s, sigma2s, xth, xenv |
---|
| 61 | REAL Tbef, zdelta, qsatbef, zcor |
---|
| 62 | REAL qlbef |
---|
| 63 | REAL ratqs(ngrid, klev) ! determine la largeur de distribution de vapeur |
---|
[2686] | 64 | |
---|
[5144] | 65 | REAL zpdf_sig(ngrid), zpdf_k(ngrid), zpdf_delta(ngrid) |
---|
| 66 | REAL zpdf_a(ngrid), zpdf_b(ngrid), zpdf_e1(ngrid), zpdf_e2(ngrid) |
---|
| 67 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 68 | REAL erf |
---|
[2686] | 69 | |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | |
---|
[5144] | 73 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 74 | ! Gestion de deux versions de cloudth |
---|
| 75 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 76 | |
---|
| 77 | IF (iflag_cloudth_vert>=1) THEN |
---|
| 78 | CALL cloudth_vert(ngrid, klev, ind2, & |
---|
| 79 | ztv, po, zqta, fraca, & |
---|
| 80 | qcloud, ctot, zpspsk, paprs, pplay, ztla, zthl, & |
---|
| 81 | ratqs, zqs, t) |
---|
[2686] | 82 | RETURN |
---|
[5144] | 83 | ENDIF |
---|
| 84 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2686] | 85 | |
---|
| 86 | |
---|
[5144] | 87 | !------------------------------------------------------------------------------- |
---|
| 88 | ! Initialisation des variables r?elles |
---|
| 89 | !------------------------------------------------------------------------------- |
---|
| 90 | sigma1(:, :) = 0. |
---|
| 91 | sigma2(:, :) = 0. |
---|
| 92 | qlth(:, :) = 0. |
---|
| 93 | qlenv(:, :) = 0. |
---|
| 94 | qltot(:, :) = 0. |
---|
| 95 | rneb(:, :) = 0. |
---|
| 96 | qcloud(:) = 0. |
---|
| 97 | cth(:, :) = 0. |
---|
| 98 | cenv(:, :) = 0. |
---|
| 99 | ctot(:, :) = 0. |
---|
| 100 | qsatmmussig1 = 0. |
---|
| 101 | qsatmmussig2 = 0. |
---|
| 102 | rdd = 287.04 |
---|
| 103 | cppd = 1005.7 |
---|
| 104 | pi = 3.14159 |
---|
| 105 | Lv = 2.5e6 |
---|
| 106 | sqrt2pi = sqrt(2. * pi) |
---|
[2686] | 107 | |
---|
| 108 | |
---|
| 109 | |
---|
[5144] | 110 | !------------------------------------------------------------------------------- |
---|
| 111 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
| 112 | !------------------------------------------------------------------------------- |
---|
[5158] | 113 | DO ind1 = 1, ngrid |
---|
[2686] | 114 | |
---|
[5144] | 115 | IF ((ztv(ind1, 1)>ztv(ind1, 2)).AND.(fraca(ind1, ind2)>1.e-10)) THEN |
---|
| 116 | zqenv(ind1) = (po(ind1) - fraca(ind1, ind2) * zqta(ind1, ind2)) / (1. - fraca(ind1, ind2)) |
---|
[2686] | 117 | |
---|
| 118 | |
---|
[5144] | 119 | ! zqenv(ind1)=po(ind1) |
---|
| 120 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
| 121 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 122 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 123 | qsatbef = MIN(0.5, qsatbef) |
---|
| 124 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 125 | qsatbef = qsatbef * zcor |
---|
| 126 | zqsatenv(ind1, ind2) = qsatbef |
---|
[2686] | 127 | |
---|
[5144] | 128 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
| 129 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
| 130 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
[2686] | 131 | |
---|
[5144] | 132 | Tbef = ztla(ind1, ind2) * zpspsk(ind1, ind2) |
---|
| 133 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 134 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 135 | qsatbef = MIN(0.5, qsatbef) |
---|
| 136 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 137 | qsatbef = qsatbef * zcor |
---|
| 138 | zqsatth(ind1, ind2) = qsatbef |
---|
[2686] | 139 | |
---|
[5144] | 140 | alth = (0.622 * Lv * zqsatth(ind1, ind2)) / (rdd * ztla(ind1, ind2)**2) |
---|
| 141 | ath = 1. / (1. + (alth * Lv / cppd)) |
---|
| 142 | sth = ath * (zqta(ind1, ind2) - zqsatth(ind1, ind2)) |
---|
[2686] | 143 | |
---|
| 144 | |
---|
| 145 | |
---|
[5144] | 146 | !------------------------------------------------------------------------------ |
---|
| 147 | ! Calcul des ?cart-types pour s |
---|
| 148 | !------------------------------------------------------------------------------ |
---|
[2686] | 149 | |
---|
[5144] | 150 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 151 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) |
---|
| 152 | ! if (paprs(ind1,ind2).gt.90000) THEN |
---|
| 153 | ! ratqs(ind1,ind2)=0.002 |
---|
| 154 | ! else |
---|
| 155 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 156 | ! endif |
---|
| 157 | sigma1s = (1.1**0.5) * (fraca(ind1, ind2)**0.6) / (1 - fraca(ind1, ind2)) * ((sth - senv)**2)**0.5 + 0.002 * po(ind1) |
---|
| 158 | sigma2s = 0.11 * ((sth - senv)**2)**0.5 / (fraca(ind1, ind2) + 0.01)**0.4 + 0.002 * zqta(ind1, ind2) |
---|
| 159 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 160 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
[2686] | 161 | |
---|
[5144] | 162 | !------------------------------------------------------------------------------ |
---|
| 163 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
| 164 | !------------------------------------------------------------------------------ |
---|
| 165 | sqrt2pi = sqrt(2. * pi) |
---|
| 166 | xth = sth / (sqrt(2.) * sigma2s) |
---|
| 167 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
| 168 | cth(ind1, ind2) = 0.5 * (1. + 1. * erf(xth)) |
---|
| 169 | cenv(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
| 170 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
[2686] | 171 | |
---|
[5144] | 172 | qlth(ind1, ind2) = sigma2s * ((exp(-1. * xth**2) / sqrt2pi) + xth * sqrt(2.) * cth(ind1, ind2)) |
---|
| 173 | qlenv(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1, ind2)) |
---|
| 174 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
[2686] | 175 | |
---|
[5144] | 176 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 177 | IF (ctot(ind1, ind2)<1.e-10) THEN |
---|
| 178 | ctot(ind1, ind2) = 0. |
---|
| 179 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
[2686] | 180 | |
---|
[5144] | 181 | else |
---|
[2686] | 182 | |
---|
[5144] | 183 | ctot(ind1, ind2) = ctot(ind1, ind2) |
---|
| 184 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqs(ind1) |
---|
[2686] | 185 | |
---|
[5144] | 186 | endif |
---|
[2686] | 187 | |
---|
| 188 | |
---|
[5144] | 189 | ! PRINT*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
[2686] | 190 | |
---|
| 191 | else ! gaussienne environnement seule |
---|
| 192 | |
---|
[5144] | 193 | zqenv(ind1) = po(ind1) |
---|
| 194 | Tbef = t(ind1, ind2) |
---|
| 195 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 196 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 197 | qsatbef = MIN(0.5, qsatbef) |
---|
| 198 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 199 | qsatbef = qsatbef * zcor |
---|
| 200 | zqsatenv(ind1, ind2) = qsatbef |
---|
[2686] | 201 | |
---|
| 202 | |
---|
[5144] | 203 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 204 | zthl(ind1, ind2) = t(ind1, ind2) * (101325 / paprs(ind1, ind2))**(rdd / cppd) |
---|
| 205 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
| 206 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
| 207 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
[2686] | 208 | |
---|
[5144] | 209 | sigma1s = ratqs(ind1, ind2) * zqenv(ind1) |
---|
[2686] | 210 | |
---|
[5144] | 211 | sqrt2pi = sqrt(2. * pi) |
---|
| 212 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
| 213 | ctot(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
| 214 | qltot(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1, ind2)) |
---|
[2686] | 215 | |
---|
[5144] | 216 | IF (ctot(ind1, ind2)<1.e-3) THEN |
---|
| 217 | ctot(ind1, ind2) = 0. |
---|
| 218 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
[2686] | 219 | |
---|
[5144] | 220 | else |
---|
[2686] | 221 | |
---|
[5144] | 222 | ctot(ind1, ind2) = ctot(ind1, ind2) |
---|
| 223 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqsatenv(ind1, ind2) |
---|
[2686] | 224 | |
---|
[5144] | 225 | endif |
---|
[2686] | 226 | |
---|
[5144] | 227 | endif |
---|
| 228 | enddo |
---|
[2686] | 229 | |
---|
[5144] | 230 | RETURN |
---|
| 231 | ! end |
---|
| 232 | END SUBROUTINE cloudth |
---|
[2686] | 233 | |
---|
| 234 | |
---|
[5144] | 235 | !=========================================================================== |
---|
| 236 | SUBROUTINE cloudth_vert(ngrid, klev, ind2, & |
---|
| 237 | ztv, po, zqta, fraca, & |
---|
| 238 | qcloud, ctot, zpspsk, paprs, pplay, ztla, zthl, & |
---|
| 239 | ratqs, zqs, t) |
---|
[5143] | 240 | |
---|
[5144] | 241 | !=========================================================================== |
---|
| 242 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 243 | ! Date : 25 Mai 2010 |
---|
| 244 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 245 | !=========================================================================== |
---|
[2686] | 246 | |
---|
[5144] | 247 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert, vert_alpha |
---|
| 248 | USE lmdz_yoethf |
---|
[5153] | 249 | |
---|
[5144] | 250 | USE lmdz_yomcst |
---|
[2686] | 251 | |
---|
[5144] | 252 | IMPLICIT NONE |
---|
[5153] | 253 | INCLUDE "FCTTRE.h" |
---|
[2686] | 254 | |
---|
[5144] | 255 | INTEGER itap, ind1, ind2 |
---|
| 256 | INTEGER ngrid, klev, klon, l, ig |
---|
[2686] | 257 | |
---|
[5144] | 258 | REAL ztv(ngrid, klev) |
---|
| 259 | REAL po(ngrid) |
---|
| 260 | REAL zqenv(ngrid) |
---|
| 261 | REAL zqta(ngrid, klev) |
---|
[2686] | 262 | |
---|
[5144] | 263 | REAL fraca(ngrid, klev + 1) |
---|
| 264 | REAL zpspsk(ngrid, klev) |
---|
| 265 | REAL paprs(ngrid, klev + 1) |
---|
| 266 | REAL pplay(ngrid, klev) |
---|
| 267 | REAL ztla(ngrid, klev) |
---|
| 268 | REAL zthl(ngrid, klev) |
---|
[2686] | 269 | |
---|
[5144] | 270 | REAL zqsatth(ngrid, klev) |
---|
| 271 | REAL zqsatenv(ngrid, klev) |
---|
[2686] | 272 | |
---|
[5144] | 273 | REAL sigma1(ngrid, klev) |
---|
| 274 | REAL sigma2(ngrid, klev) |
---|
| 275 | REAL qlth(ngrid, klev) |
---|
| 276 | REAL qlenv(ngrid, klev) |
---|
| 277 | REAL qltot(ngrid, klev) |
---|
| 278 | REAL cth(ngrid, klev) |
---|
| 279 | REAL cenv(ngrid, klev) |
---|
| 280 | REAL ctot(ngrid, klev) |
---|
| 281 | REAL rneb(ngrid, klev) |
---|
| 282 | REAL t(ngrid, klev) |
---|
| 283 | REAL qsatmmussig1, qsatmmussig2, sqrt2pi, pi |
---|
| 284 | REAL rdd, cppd, Lv, sqrt2, sqrtpi |
---|
| 285 | REAL alth, alenv, ath, aenv |
---|
| 286 | REAL sth, senv, sigma1s, sigma2s, xth, xenv |
---|
| 287 | REAL xth1, xth2, xenv1, xenv2, deltasth, deltasenv |
---|
| 288 | REAL IntJ, IntI1, IntI2, IntI3, coeffqlenv, coeffqlth |
---|
| 289 | REAL Tbef, zdelta, qsatbef, zcor |
---|
| 290 | REAL qlbef |
---|
| 291 | REAL ratqs(ngrid, klev) ! determine la largeur de distribution de vapeur |
---|
| 292 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
| 293 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
[2686] | 294 | |
---|
[5144] | 295 | REAL zpdf_sig(ngrid), zpdf_k(ngrid), zpdf_delta(ngrid) |
---|
| 296 | REAL zpdf_a(ngrid), zpdf_b(ngrid), zpdf_e1(ngrid), zpdf_e2(ngrid) |
---|
| 297 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 298 | REAL erf |
---|
[2686] | 299 | |
---|
[5144] | 300 | !------------------------------------------------------------------------------ |
---|
| 301 | ! Initialisation des variables r?elles |
---|
| 302 | !------------------------------------------------------------------------------ |
---|
| 303 | sigma1(:, :) = 0. |
---|
| 304 | sigma2(:, :) = 0. |
---|
| 305 | qlth(:, :) = 0. |
---|
| 306 | qlenv(:, :) = 0. |
---|
| 307 | qltot(:, :) = 0. |
---|
| 308 | rneb(:, :) = 0. |
---|
| 309 | qcloud(:) = 0. |
---|
| 310 | cth(:, :) = 0. |
---|
| 311 | cenv(:, :) = 0. |
---|
| 312 | ctot(:, :) = 0. |
---|
| 313 | qsatmmussig1 = 0. |
---|
| 314 | qsatmmussig2 = 0. |
---|
| 315 | rdd = 287.04 |
---|
| 316 | cppd = 1005.7 |
---|
| 317 | pi = 3.14159 |
---|
| 318 | Lv = 2.5e6 |
---|
| 319 | sqrt2pi = sqrt(2. * pi) |
---|
| 320 | sqrt2 = sqrt(2.) |
---|
| 321 | sqrtpi = sqrt(pi) |
---|
[2686] | 322 | |
---|
[5144] | 323 | !------------------------------------------------------------------------------- |
---|
| 324 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
| 325 | !------------------------------------------------------------------------------- |
---|
[5158] | 326 | DO ind1 = 1, ngrid |
---|
[2686] | 327 | |
---|
[5144] | 328 | IF ((ztv(ind1, 1)>ztv(ind1, 2)).AND.(fraca(ind1, ind2)>1.e-10)) THEN |
---|
| 329 | zqenv(ind1) = (po(ind1) - fraca(ind1, ind2) * zqta(ind1, ind2)) / (1. - fraca(ind1, ind2)) |
---|
[2686] | 330 | |
---|
| 331 | |
---|
[5144] | 332 | ! zqenv(ind1)=po(ind1) |
---|
| 333 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
| 334 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 335 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 336 | qsatbef = MIN(0.5, qsatbef) |
---|
| 337 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 338 | qsatbef = qsatbef * zcor |
---|
| 339 | zqsatenv(ind1, ind2) = qsatbef |
---|
[2686] | 340 | |
---|
[5144] | 341 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
| 342 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
| 343 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
[2686] | 344 | |
---|
[5144] | 345 | Tbef = ztla(ind1, ind2) * zpspsk(ind1, ind2) |
---|
| 346 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 347 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 348 | qsatbef = MIN(0.5, qsatbef) |
---|
| 349 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 350 | qsatbef = qsatbef * zcor |
---|
| 351 | zqsatth(ind1, ind2) = qsatbef |
---|
[2686] | 352 | |
---|
[5144] | 353 | alth = (0.622 * Lv * zqsatth(ind1, ind2)) / (rdd * ztla(ind1, ind2)**2) |
---|
| 354 | ath = 1. / (1. + (alth * Lv / cppd)) |
---|
| 355 | sth = ath * (zqta(ind1, ind2) - zqsatth(ind1, ind2)) |
---|
[2686] | 356 | |
---|
| 357 | |
---|
| 358 | |
---|
[5144] | 359 | !------------------------------------------------------------------------------ |
---|
| 360 | ! Calcul des ?cart-types pour s |
---|
| 361 | !------------------------------------------------------------------------------ |
---|
[2686] | 362 | |
---|
[5144] | 363 | sigma1s = (0.92**0.5) * (fraca(ind1, ind2)**0.5) / (1 - fraca(ind1, ind2)) * ((sth - senv)**2)**0.5 + ratqs(ind1, ind2) * po(ind1) |
---|
| 364 | sigma2s = 0.09 * ((sth - senv)**2)**0.5 / (fraca(ind1, ind2) + 0.02)**0.5 + 0.002 * zqta(ind1, ind2) |
---|
| 365 | ! if (paprs(ind1,ind2).gt.90000) THEN |
---|
| 366 | ! ratqs(ind1,ind2)=0.002 |
---|
| 367 | ! else |
---|
| 368 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 369 | ! endif |
---|
| 370 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 371 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 372 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 373 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
[2686] | 374 | |
---|
[5144] | 375 | !------------------------------------------------------------------------------ |
---|
| 376 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
| 377 | !------------------------------------------------------------------------------ |
---|
| 378 | sqrt2pi = sqrt(2. * pi) |
---|
| 379 | xth = sth / (sqrt(2.) * sigma2s) |
---|
| 380 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
| 381 | cth(ind1, ind2) = 0.5 * (1. + 1. * erf(xth)) |
---|
| 382 | cenv(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
| 383 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
[2686] | 384 | |
---|
[5144] | 385 | qlth(ind1, ind2) = sigma2s * ((exp(-1. * xth**2) / sqrt2pi) + xth * sqrt(2.) * cth(ind1, ind2)) |
---|
| 386 | qlenv(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1, ind2)) |
---|
| 387 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
[2686] | 388 | |
---|
[5144] | 389 | IF (iflag_cloudth_vert == 1) THEN |
---|
| 390 | !------------------------------------------------------------------------------- |
---|
| 391 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs |
---|
| 392 | !------------------------------------------------------------------------------- |
---|
| 393 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 394 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 395 | deltasenv = aenv * ratqs(ind1, ind2) * zqsatenv(ind1, ind2) |
---|
| 396 | deltasth = ath * ratqs(ind1, ind2) * zqsatth(ind1, ind2) |
---|
| 397 | ! deltasenv=aenv*0.01*po(ind1) |
---|
| 398 | ! deltasth=ath*0.01*zqta(ind1,ind2) |
---|
| 399 | xenv1 = (senv - deltasenv) / (sqrt(2.) * sigma1s) |
---|
| 400 | xenv2 = (senv + deltasenv) / (sqrt(2.) * sigma1s) |
---|
| 401 | xth1 = (sth - deltasth) / (sqrt(2.) * sigma2s) |
---|
| 402 | xth2 = (sth + deltasth) / (sqrt(2.) * sigma2s) |
---|
| 403 | coeffqlenv = (sigma1s)**2 / (2 * sqrtpi * deltasenv) |
---|
| 404 | coeffqlth = (sigma2s)**2 / (2 * sqrtpi * deltasth) |
---|
[2686] | 405 | |
---|
[5144] | 406 | cth(ind1, ind2) = 0.5 * (1. + 1. * erf(xth2)) |
---|
| 407 | cenv(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv2)) |
---|
| 408 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
[2686] | 409 | |
---|
[5144] | 410 | IntJ = sigma1s * (exp(-1. * xenv1**2) / sqrt2pi) + 0.5 * senv * (1 + erf(xenv1)) |
---|
| 411 | IntI1 = coeffqlenv * 0.5 * (0.5 * sqrtpi * (erf(xenv2) - erf(xenv1)) + xenv1 * exp(-1. * xenv1**2) - xenv2 * exp(-1. * xenv2**2)) |
---|
| 412 | IntI2 = coeffqlenv * xenv2 * (exp(-1. * xenv2**2) - exp(-1. * xenv1**2)) |
---|
| 413 | IntI3 = coeffqlenv * 0.5 * sqrtpi * xenv2**2 * (erf(xenv2) - erf(xenv1)) |
---|
[2686] | 414 | |
---|
[5144] | 415 | qlenv(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
| 416 | ! qlenv(ind1,ind2)=IntJ |
---|
| 417 | ! PRINT*, qlenv(ind1,ind2),'VERIF EAU' |
---|
[2686] | 418 | |
---|
[5144] | 419 | IntJ = sigma2s * (exp(-1. * xth1**2) / sqrt2pi) + 0.5 * sth * (1 + erf(xth1)) |
---|
| 420 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) |
---|
| 421 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) |
---|
| 422 | IntI1 = coeffqlth * 0.5 * (0.5 * sqrtpi * (erf(xth2) - erf(xth1)) + xth1 * exp(-1. * xth1**2) - xth2 * exp(-1. * xth2**2)) |
---|
| 423 | IntI2 = coeffqlth * xth2 * (exp(-1. * xth2**2) - exp(-1. * xth1**2)) |
---|
| 424 | IntI3 = coeffqlth * 0.5 * sqrtpi * xth2**2 * (erf(xth2) - erf(xth1)) |
---|
| 425 | qlth(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
| 426 | ! qlth(ind1,ind2)=IntJ |
---|
| 427 | ! PRINT*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
| 428 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
[2686] | 429 | |
---|
[5144] | 430 | ELSE IF (iflag_cloudth_vert == 2) THEN |
---|
[2686] | 431 | |
---|
[5144] | 432 | !------------------------------------------------------------------------------- |
---|
| 433 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s |
---|
| 434 | !------------------------------------------------------------------------------- |
---|
| 435 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 436 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 437 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 438 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
| 439 | deltasenv = aenv * vert_alpha * sigma1s |
---|
| 440 | deltasth = ath * vert_alpha * sigma2s |
---|
[2686] | 441 | |
---|
[5144] | 442 | xenv1 = -(senv + deltasenv) / (sqrt(2.) * sigma1s) |
---|
| 443 | xenv2 = -(senv - deltasenv) / (sqrt(2.) * sigma1s) |
---|
| 444 | xth1 = -(sth + deltasth) / (sqrt(2.) * sigma2s) |
---|
| 445 | xth2 = -(sth - deltasth) / (sqrt(2.) * sigma2s) |
---|
| 446 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
| 447 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
[2686] | 448 | |
---|
[5144] | 449 | cth(ind1, ind2) = 0.5 * (1. - 1. * erf(xth1)) |
---|
| 450 | cenv(ind1, ind2) = 0.5 * (1. - 1. * erf(xenv1)) |
---|
| 451 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
[2686] | 452 | |
---|
[5144] | 453 | IntJ = 0.5 * senv * (1 - erf(xenv2)) + (sigma1s / sqrt2pi) * exp(-1. * xenv2**2) |
---|
| 454 | IntI1 = (((senv + deltasenv)**2 + (sigma1s)**2) / (8 * deltasenv)) * (erf(xenv2) - erf(xenv1)) |
---|
| 455 | IntI2 = (sigma1s**2 / (4 * deltasenv * sqrtpi)) * (xenv1 * exp(-1. * xenv1**2) - xenv2 * exp(-1. * xenv2**2)) |
---|
| 456 | IntI3 = ((sqrt2 * sigma1s * (senv + deltasenv)) / (4 * sqrtpi * deltasenv)) * (exp(-1. * xenv1**2) - exp(-1. * xenv2**2)) |
---|
[2686] | 457 | |
---|
[5144] | 458 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 459 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
| 460 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
[2686] | 461 | |
---|
[5144] | 462 | qlenv(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
| 463 | ! qlenv(ind1,ind2)=IntJ |
---|
| 464 | ! PRINT*, qlenv(ind1,ind2),'VERIF EAU' |
---|
[2686] | 465 | |
---|
[5144] | 466 | IntJ = 0.5 * sth * (1 - erf(xth2)) + (sigma2s / sqrt2pi) * exp(-1. * xth2**2) |
---|
| 467 | IntI1 = (((sth + deltasth)**2 + (sigma2s)**2) / (8 * deltasth)) * (erf(xth2) - erf(xth1)) |
---|
| 468 | IntI2 = (sigma2s**2 / (4 * deltasth * sqrtpi)) * (xth1 * exp(-1. * xth1**2) - xth2 * exp(-1. * xth2**2)) |
---|
| 469 | IntI3 = ((sqrt2 * sigma2s * (sth + deltasth)) / (4 * sqrtpi * deltasth)) * (exp(-1. * xth1**2) - exp(-1. * xth2**2)) |
---|
[2686] | 470 | |
---|
[5144] | 471 | qlth(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
| 472 | ! qlth(ind1,ind2)=IntJ |
---|
| 473 | ! PRINT*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
| 474 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
| 475 | |
---|
| 476 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
---|
| 477 | |
---|
| 478 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 479 | |
---|
| 480 | IF (cenv(ind1, ind2)<1.e-10.OR.cth(ind1, ind2)<1.e-10) THEN |
---|
| 481 | ctot(ind1, ind2) = 0. |
---|
| 482 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
| 483 | |
---|
| 484 | else |
---|
| 485 | |
---|
| 486 | ctot(ind1, ind2) = ctot(ind1, ind2) |
---|
| 487 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqs(ind1) |
---|
| 488 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
| 489 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
| 490 | |
---|
| 491 | endif |
---|
| 492 | |
---|
| 493 | |
---|
| 494 | |
---|
| 495 | ! PRINT*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
| 496 | |
---|
[2686] | 497 | else ! gaussienne environnement seule |
---|
| 498 | |
---|
[5144] | 499 | zqenv(ind1) = po(ind1) |
---|
| 500 | Tbef = t(ind1, ind2) |
---|
| 501 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 502 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 503 | qsatbef = MIN(0.5, qsatbef) |
---|
| 504 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 505 | qsatbef = qsatbef * zcor |
---|
| 506 | zqsatenv(ind1, ind2) = qsatbef |
---|
[2686] | 507 | |
---|
| 508 | |
---|
[5144] | 509 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 510 | zthl(ind1, ind2) = t(ind1, ind2) * (101325 / paprs(ind1, ind2))**(rdd / cppd) |
---|
| 511 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
| 512 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
| 513 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
[2686] | 514 | |
---|
[5144] | 515 | sigma1s = ratqs(ind1, ind2) * zqenv(ind1) |
---|
[2686] | 516 | |
---|
[5144] | 517 | sqrt2pi = sqrt(2. * pi) |
---|
| 518 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
| 519 | ctot(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
| 520 | qltot(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1, ind2)) |
---|
[2686] | 521 | |
---|
[5144] | 522 | IF (ctot(ind1, ind2)<1.e-3) THEN |
---|
| 523 | ctot(ind1, ind2) = 0. |
---|
| 524 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
[3493] | 525 | |
---|
[5144] | 526 | else |
---|
[3493] | 527 | |
---|
[5144] | 528 | ctot(ind1, ind2) = ctot(ind1, ind2) |
---|
| 529 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqsatenv(ind1, ind2) |
---|
[3493] | 530 | |
---|
[5144] | 531 | endif |
---|
[2686] | 532 | |
---|
[5144] | 533 | endif |
---|
| 534 | enddo |
---|
[2686] | 535 | |
---|
[5144] | 536 | RETURN |
---|
| 537 | ! end |
---|
| 538 | END SUBROUTINE cloudth_vert |
---|
[2686] | 539 | |
---|
| 540 | |
---|
[5144] | 541 | SUBROUTINE cloudth_v3(ngrid, klev, ind2, & |
---|
| 542 | ztv, po, zqta, fraca, & |
---|
| 543 | qcloud, ctot, ctot_vol, zpspsk, paprs, pplay, ztla, zthl, & |
---|
[5226] | 544 | ratqs, sigma_qtherm,zqs, t, & |
---|
[5144] | 545 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
[2686] | 546 | |
---|
[5144] | 547 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert |
---|
| 548 | USE lmdz_yoethf |
---|
[5153] | 549 | |
---|
[5144] | 550 | USE lmdz_yomcst |
---|
[2686] | 551 | |
---|
[5144] | 552 | IMPLICIT NONE |
---|
[5153] | 553 | INCLUDE "FCTTRE.h" |
---|
[2686] | 554 | |
---|
[4674] | 555 | |
---|
[5144] | 556 | !=========================================================================== |
---|
| 557 | ! Author : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 558 | ! Date : 25 Mai 2010 |
---|
| 559 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 560 | !=========================================================================== |
---|
[4674] | 561 | |
---|
[5144] | 562 | INTEGER, INTENT(IN) :: ind2 |
---|
| 563 | INTEGER, INTENT(IN) :: ngrid, klev |
---|
[2686] | 564 | |
---|
[5144] | 565 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: ztv |
---|
| 566 | REAL, DIMENSION(ngrid), INTENT(IN) :: po |
---|
| 567 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: zqta |
---|
| 568 | REAL, DIMENSION(ngrid, klev + 1), INTENT(IN) :: fraca |
---|
| 569 | REAL, DIMENSION(ngrid), INTENT(OUT) :: qcloud |
---|
| 570 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: ctot |
---|
| 571 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: ctot_vol |
---|
| 572 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: zpspsk |
---|
| 573 | REAL, DIMENSION(ngrid, klev + 1), INTENT(IN) :: paprs |
---|
| 574 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: pplay |
---|
| 575 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: ztla |
---|
| 576 | REAL, DIMENSION(ngrid, klev), INTENT(INOUT) :: zthl |
---|
[5226] | 577 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: ratqs, sigma_qtherm |
---|
[5144] | 578 | REAL, DIMENSION(ngrid), INTENT(IN) :: zqs |
---|
| 579 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: t |
---|
| 580 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv |
---|
[2686] | 581 | |
---|
[5144] | 582 | REAL zqenv(ngrid) |
---|
| 583 | REAL zqsatth(ngrid, klev) |
---|
| 584 | REAL zqsatenv(ngrid, klev) |
---|
[4674] | 585 | |
---|
[5144] | 586 | REAL sigma1(ngrid, klev) |
---|
| 587 | REAL sigma2(ngrid, klev) |
---|
| 588 | REAL qlth(ngrid, klev) |
---|
| 589 | REAL qlenv(ngrid, klev) |
---|
| 590 | REAL qltot(ngrid, klev) |
---|
| 591 | REAL cth(ngrid, klev) |
---|
| 592 | REAL cenv(ngrid, klev) |
---|
| 593 | REAL cth_vol(ngrid, klev) |
---|
| 594 | REAL cenv_vol(ngrid, klev) |
---|
| 595 | REAL rneb(ngrid, klev) |
---|
| 596 | REAL qsatmmussig1, qsatmmussig2, sqrt2pi, sqrt2, sqrtpi, pi |
---|
| 597 | REAL rdd, cppd, Lv |
---|
| 598 | REAL alth, alenv, ath, aenv |
---|
| 599 | REAL sth, senv, sigma1s, sigma2s, xth, xenv, exp_xenv1, exp_xenv2, exp_xth1, exp_xth2 |
---|
| 600 | REAL inverse_rho, beta, a_Brooks, b_Brooks, A_Maj_Brooks, Dx_Brooks, f_Brooks |
---|
| 601 | REAL Tbef, zdelta, qsatbef, zcor |
---|
| 602 | REAL qlbef |
---|
| 603 | REAL zpdf_sig(ngrid), zpdf_k(ngrid), zpdf_delta(ngrid) |
---|
| 604 | REAL zpdf_a(ngrid), zpdf_b(ngrid), zpdf_e1(ngrid), zpdf_e2(ngrid) |
---|
| 605 | REAL erf |
---|
| 606 | |
---|
| 607 | INTEGER :: ind1, l, ig |
---|
| 608 | |
---|
| 609 | IF (iflag_cloudth_vert>=1) THEN |
---|
| 610 | CALL cloudth_vert_v3(ngrid, klev, ind2, & |
---|
| 611 | ztv, po, zqta, fraca, & |
---|
| 612 | qcloud, ctot, ctot_vol, zpspsk, paprs, pplay, ztla, zthl, & |
---|
[5226] | 613 | ratqs, sigma_qtherm, zqs, t, & |
---|
[5144] | 614 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
[2686] | 615 | RETURN |
---|
[5144] | 616 | ENDIF |
---|
| 617 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2686] | 618 | |
---|
| 619 | |
---|
[5144] | 620 | !------------------------------------------------------------------------------- |
---|
| 621 | ! Initialisation des variables r?elles |
---|
| 622 | !------------------------------------------------------------------------------- |
---|
| 623 | sigma1(:, :) = 0. |
---|
| 624 | sigma2(:, :) = 0. |
---|
| 625 | qlth(:, :) = 0. |
---|
| 626 | qlenv(:, :) = 0. |
---|
| 627 | qltot(:, :) = 0. |
---|
| 628 | rneb(:, :) = 0. |
---|
| 629 | qcloud(:) = 0. |
---|
| 630 | cth(:, :) = 0. |
---|
| 631 | cenv(:, :) = 0. |
---|
| 632 | ctot(:, :) = 0. |
---|
| 633 | cth_vol(:, :) = 0. |
---|
| 634 | cenv_vol(:, :) = 0. |
---|
| 635 | ctot_vol(:, :) = 0. |
---|
| 636 | qsatmmussig1 = 0. |
---|
| 637 | qsatmmussig2 = 0. |
---|
| 638 | rdd = 287.04 |
---|
| 639 | cppd = 1005.7 |
---|
| 640 | pi = 3.14159 |
---|
| 641 | Lv = 2.5e6 |
---|
| 642 | sqrt2pi = sqrt(2. * pi) |
---|
| 643 | sqrt2 = sqrt(2.) |
---|
| 644 | sqrtpi = sqrt(pi) |
---|
[2686] | 645 | |
---|
| 646 | |
---|
[5144] | 647 | !------------------------------------------------------------------------------- |
---|
| 648 | ! Cloud fraction in the thermals and standard deviation of the PDFs |
---|
| 649 | !------------------------------------------------------------------------------- |
---|
[5158] | 650 | DO ind1 = 1, ngrid |
---|
[2686] | 651 | |
---|
[5144] | 652 | IF ((ztv(ind1, 1)>ztv(ind1, 2)).AND.(fraca(ind1, ind2)>1.e-10)) THEN |
---|
| 653 | zqenv(ind1) = (po(ind1) - fraca(ind1, ind2) * zqta(ind1, ind2)) / (1. - fraca(ind1, ind2)) |
---|
[2686] | 654 | |
---|
[5144] | 655 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
| 656 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 657 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 658 | qsatbef = MIN(0.5, qsatbef) |
---|
| 659 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 660 | qsatbef = qsatbef * zcor |
---|
| 661 | zqsatenv(ind1, ind2) = qsatbef |
---|
[2686] | 662 | |
---|
[5144] | 663 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) !qsl, p84 |
---|
| 664 | aenv = 1. / (1. + (alenv * Lv / cppd)) !al, p84 |
---|
| 665 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) !s, p84 |
---|
[2686] | 666 | |
---|
[5144] | 667 | !po = qt de l'environnement ET des thermique |
---|
| 668 | !zqenv = qt environnement |
---|
| 669 | !zqsatenv = qsat environnement |
---|
| 670 | !zthl = Tl environnement |
---|
[2686] | 671 | |
---|
[5144] | 672 | Tbef = ztla(ind1, ind2) * zpspsk(ind1, ind2) |
---|
| 673 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 674 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 675 | qsatbef = MIN(0.5, qsatbef) |
---|
| 676 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 677 | qsatbef = qsatbef * zcor |
---|
| 678 | zqsatth(ind1, ind2) = qsatbef |
---|
[2686] | 679 | |
---|
[5144] | 680 | alth = (0.622 * Lv * zqsatth(ind1, ind2)) / (rdd * ztla(ind1, ind2)**2) !qsl, p84 |
---|
| 681 | ath = 1. / (1. + (alth * Lv / cppd)) !al, p84 |
---|
| 682 | sth = ath * (zqta(ind1, ind2) - zqsatth(ind1, ind2)) !s, p84 |
---|
[2686] | 683 | |
---|
[5144] | 684 | !zqta = qt thermals |
---|
| 685 | !zqsatth = qsat thermals |
---|
| 686 | !ztla = Tl thermals |
---|
[2686] | 687 | |
---|
[5144] | 688 | !------------------------------------------------------------------------------ |
---|
| 689 | ! s standard deviations |
---|
| 690 | !------------------------------------------------------------------------------ |
---|
[2686] | 691 | |
---|
[5144] | 692 | ! tests |
---|
| 693 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 694 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) |
---|
| 695 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
| 696 | ! final option |
---|
| 697 | sigma1s = (1.1**0.5) * (fraca(ind1, ind2)**0.6) / (1 - fraca(ind1, ind2)) * ((sth - senv)**2)**0.5 + ratqs(ind1, ind2) * po(ind1) |
---|
| 698 | sigma2s = 0.11 * ((sth - senv)**2)**0.5 / (fraca(ind1, ind2) + 0.01)**0.4 + 0.002 * zqta(ind1, ind2) |
---|
[2686] | 699 | |
---|
[5144] | 700 | !------------------------------------------------------------------------------ |
---|
| 701 | ! Condensed water and cloud cover |
---|
| 702 | !------------------------------------------------------------------------------ |
---|
| 703 | xth = sth / (sqrt2 * sigma2s) |
---|
| 704 | xenv = senv / (sqrt2 * sigma1s) |
---|
| 705 | cth(ind1, ind2) = 0.5 * (1. + 1. * erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
| 706 | cenv(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
| 707 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
| 708 | ctot_vol(ind1, ind2) = ctot(ind1, ind2) |
---|
[2686] | 709 | |
---|
[5144] | 710 | qlth(ind1, ind2) = sigma2s * ((exp(-1. * xth**2) / sqrt2pi) + xth * sqrt2 * cth(ind1, ind2)) |
---|
| 711 | qlenv(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt2 * cenv(ind1, ind2)) |
---|
| 712 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
[2686] | 713 | |
---|
[5144] | 714 | IF (ctot(ind1, ind2)<1.e-10) THEN |
---|
| 715 | ctot(ind1, ind2) = 0. |
---|
| 716 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
| 717 | else |
---|
| 718 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqs(ind1) |
---|
| 719 | endif |
---|
| 720 | |
---|
[2686] | 721 | else ! Environnement only, follow the if l.110 |
---|
| 722 | |
---|
[5144] | 723 | zqenv(ind1) = po(ind1) |
---|
| 724 | Tbef = t(ind1, ind2) |
---|
| 725 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 726 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 727 | qsatbef = MIN(0.5, qsatbef) |
---|
| 728 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 729 | qsatbef = qsatbef * zcor |
---|
| 730 | zqsatenv(ind1, ind2) = qsatbef |
---|
[2686] | 731 | |
---|
[5144] | 732 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 733 | zthl(ind1, ind2) = t(ind1, ind2) * (101325 / paprs(ind1, ind2))**(rdd / cppd) |
---|
| 734 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
| 735 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
| 736 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
[2686] | 737 | |
---|
[5144] | 738 | sigma1s = ratqs(ind1, ind2) * zqenv(ind1) |
---|
[2686] | 739 | |
---|
[5144] | 740 | xenv = senv / (sqrt2 * sigma1s) |
---|
| 741 | ctot(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
| 742 | ctot_vol(ind1, ind2) = ctot(ind1, ind2) |
---|
| 743 | qltot(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt2 * cenv(ind1, ind2)) |
---|
[2686] | 744 | |
---|
[5144] | 745 | IF (ctot(ind1, ind2)<1.e-3) THEN |
---|
| 746 | ctot(ind1, ind2) = 0. |
---|
| 747 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
| 748 | else |
---|
| 749 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqsatenv(ind1, ind2) |
---|
| 750 | endif |
---|
| 751 | |
---|
[2686] | 752 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 |
---|
[5144] | 753 | enddo ! from the loop on ngrid l.108 |
---|
| 754 | RETURN |
---|
| 755 | ! end |
---|
| 756 | END SUBROUTINE cloudth_v3 |
---|
[2686] | 757 | |
---|
| 758 | |
---|
[5144] | 759 | !=========================================================================== |
---|
| 760 | SUBROUTINE cloudth_vert_v3(ngrid, klev, ind2, & |
---|
| 761 | ztv, po, zqta, fraca, & |
---|
| 762 | qcloud, ctot, ctot_vol, zpspsk, paprs, pplay, ztla, zthl, & |
---|
[5226] | 763 | ratqs, sigma_qtherm, zqs, t, & |
---|
[5144] | 764 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
[2686] | 765 | |
---|
[5144] | 766 | !=========================================================================== |
---|
| 767 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 768 | ! Date : 25 Mai 2010 |
---|
| 769 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 770 | !=========================================================================== |
---|
[2686] | 771 | |
---|
[5144] | 772 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert, iflag_ratqs |
---|
| 773 | USE lmdz_cloudth_ini, ONLY: vert_alpha, vert_alpha_th, sigma1s_factor, sigma1s_power, sigma2s_factor, sigma2s_power, cloudth_ratqsmin, iflag_cloudth_vert_noratqs |
---|
| 774 | USE lmdz_yoethf |
---|
[5153] | 775 | |
---|
[5144] | 776 | USE lmdz_yomcst |
---|
[2686] | 777 | |
---|
[5144] | 778 | IMPLICIT NONE |
---|
[5153] | 779 | INCLUDE "FCTTRE.h" |
---|
[2686] | 780 | |
---|
[5144] | 781 | INTEGER itap, ind1, ind2 |
---|
| 782 | INTEGER ngrid, klev, klon, l, ig |
---|
| 783 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv |
---|
[2686] | 784 | |
---|
[5144] | 785 | REAL ztv(ngrid, klev) |
---|
| 786 | REAL po(ngrid) |
---|
| 787 | REAL zqenv(ngrid) |
---|
| 788 | REAL zqta(ngrid, klev) |
---|
[4651] | 789 | |
---|
[5144] | 790 | REAL fraca(ngrid, klev + 1) |
---|
| 791 | REAL zpspsk(ngrid, klev) |
---|
| 792 | REAL paprs(ngrid, klev + 1) |
---|
| 793 | REAL pplay(ngrid, klev) |
---|
| 794 | REAL ztla(ngrid, klev) |
---|
| 795 | REAL zthl(ngrid, klev) |
---|
[2686] | 796 | |
---|
[5144] | 797 | REAL zqsatth(ngrid, klev) |
---|
| 798 | REAL zqsatenv(ngrid, klev) |
---|
[2957] | 799 | |
---|
[5144] | 800 | REAL sigma1(ngrid, klev) |
---|
| 801 | REAL sigma2(ngrid, klev) |
---|
| 802 | REAL qlth(ngrid, klev) |
---|
| 803 | REAL qlenv(ngrid, klev) |
---|
| 804 | REAL qltot(ngrid, klev) |
---|
| 805 | REAL cth(ngrid, klev) |
---|
| 806 | REAL cenv(ngrid, klev) |
---|
| 807 | REAL ctot(ngrid, klev) |
---|
| 808 | REAL cth_vol(ngrid, klev) |
---|
| 809 | REAL cenv_vol(ngrid, klev) |
---|
| 810 | REAL ctot_vol(ngrid, klev) |
---|
| 811 | REAL rneb(ngrid, klev) |
---|
| 812 | REAL t(ngrid, klev) |
---|
| 813 | REAL qsatmmussig1, qsatmmussig2, sqrtpi, sqrt2, sqrt2pi, pi |
---|
| 814 | REAL rdd, cppd, Lv |
---|
| 815 | REAL alth, alenv, ath, aenv |
---|
| 816 | REAL sth, senv, sigma1s, sigma2s, sigma1s_fraca, sigma1s_ratqs |
---|
| 817 | REAL inverse_rho, beta, a_Brooks, b_Brooks, A_Maj_Brooks, Dx_Brooks, f_Brooks |
---|
| 818 | REAL xth, xenv, exp_xenv1, exp_xenv2, exp_xth1, exp_xth2 |
---|
| 819 | REAL xth1, xth2, xenv1, xenv2, deltasth, deltasenv |
---|
| 820 | REAL IntJ, IntI1, IntI2, IntI3, IntJ_CF, IntI1_CF, IntI3_CF, coeffqlenv, coeffqlth |
---|
| 821 | REAL Tbef, zdelta, qsatbef, zcor |
---|
| 822 | REAL qlbef |
---|
[5226] | 823 | REAL ratqs(ngrid, klev), sigma_qtherm(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
[5144] | 824 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
| 825 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
[2686] | 826 | |
---|
[5144] | 827 | REAL zpdf_sig(ngrid), zpdf_k(ngrid), zpdf_delta(ngrid) |
---|
| 828 | REAL zpdf_a(ngrid), zpdf_b(ngrid), zpdf_e1(ngrid), zpdf_e2(ngrid) |
---|
| 829 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 830 | REAL erf |
---|
[3493] | 831 | |
---|
[5144] | 832 | REAL rhodz(ngrid, klev) |
---|
| 833 | REAL zrho(ngrid, klev) |
---|
| 834 | REAL dz(ngrid, klev) |
---|
[3493] | 835 | |
---|
[5144] | 836 | DO ind1 = 1, ngrid |
---|
| 837 | !Layer calculation |
---|
| 838 | rhodz(ind1, ind2) = (paprs(ind1, ind2) - paprs(ind1, ind2 + 1)) / rg !kg/m2 |
---|
| 839 | zrho(ind1, ind2) = pplay(ind1, ind2) / t(ind1, ind2) / rd !kg/m3 |
---|
| 840 | dz(ind1, ind2) = rhodz(ind1, ind2) / zrho(ind1, ind2) !m : epaisseur de la couche en metre |
---|
| 841 | END DO |
---|
[3999] | 842 | |
---|
[5144] | 843 | !------------------------------------------------------------------------------ |
---|
| 844 | ! Initialize |
---|
| 845 | !------------------------------------------------------------------------------ |
---|
[2686] | 846 | |
---|
[5144] | 847 | sigma1(:, :) = 0. |
---|
| 848 | sigma2(:, :) = 0. |
---|
| 849 | qlth(:, :) = 0. |
---|
| 850 | qlenv(:, :) = 0. |
---|
| 851 | qltot(:, :) = 0. |
---|
| 852 | rneb(:, :) = 0. |
---|
| 853 | qcloud(:) = 0. |
---|
| 854 | cth(:, :) = 0. |
---|
| 855 | cenv(:, :) = 0. |
---|
| 856 | ctot(:, :) = 0. |
---|
| 857 | cth_vol(:, :) = 0. |
---|
| 858 | cenv_vol(:, :) = 0. |
---|
| 859 | ctot_vol(:, :) = 0. |
---|
| 860 | qsatmmussig1 = 0. |
---|
| 861 | qsatmmussig2 = 0. |
---|
| 862 | rdd = 287.04 |
---|
| 863 | cppd = 1005.7 |
---|
| 864 | pi = 3.14159 |
---|
| 865 | Lv = 2.5e6 |
---|
| 866 | sqrt2pi = sqrt(2. * pi) |
---|
| 867 | sqrt2 = sqrt(2.) |
---|
| 868 | sqrtpi = sqrt(pi) |
---|
[2957] | 869 | |
---|
[2686] | 870 | |
---|
| 871 | |
---|
[5144] | 872 | !------------------------------------------------------------------------------- |
---|
| 873 | ! Calcul de la fraction du thermique et des ecart-types des distributions |
---|
| 874 | !------------------------------------------------------------------------------- |
---|
[5158] | 875 | DO ind1 = 1, ngrid |
---|
[2686] | 876 | |
---|
[5144] | 877 | IF ((ztv(ind1, 1)>ztv(ind1, 2)).AND.(fraca(ind1, ind2)>1.e-10)) then !Thermal and environnement |
---|
[2686] | 878 | |
---|
[5144] | 879 | zqenv(ind1) = (po(ind1) - fraca(ind1, ind2) * zqta(ind1, ind2)) / (1. - fraca(ind1, ind2)) !qt = a*qtth + (1-a)*qtenv |
---|
[2686] | 880 | |
---|
[5144] | 881 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
| 882 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 883 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 884 | qsatbef = MIN(0.5, qsatbef) |
---|
| 885 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 886 | qsatbef = qsatbef * zcor |
---|
| 887 | zqsatenv(ind1, ind2) = qsatbef |
---|
[2686] | 888 | |
---|
[5144] | 889 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) !qsl, p84 |
---|
| 890 | aenv = 1. / (1. + (alenv * Lv / cppd)) !al, p84 |
---|
| 891 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) !s, p84 |
---|
[2686] | 892 | |
---|
[5144] | 893 | !zqenv = qt environnement |
---|
| 894 | !zqsatenv = qsat environnement |
---|
| 895 | !zthl = Tl environnement |
---|
[2686] | 896 | |
---|
[5144] | 897 | Tbef = ztla(ind1, ind2) * zpspsk(ind1, ind2) |
---|
| 898 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 899 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 900 | qsatbef = MIN(0.5, qsatbef) |
---|
| 901 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 902 | qsatbef = qsatbef * zcor |
---|
| 903 | zqsatth(ind1, ind2) = qsatbef |
---|
[2686] | 904 | |
---|
[5144] | 905 | alth = (0.622 * Lv * zqsatth(ind1, ind2)) / (rdd * ztla(ind1, ind2)**2) !qsl, p84 |
---|
| 906 | ath = 1. / (1. + (alth * Lv / cppd)) !al, p84 |
---|
| 907 | sth = ath * (zqta(ind1, ind2) - zqsatth(ind1, ind2)) !s, p84 |
---|
[2686] | 908 | |
---|
| 909 | |
---|
[5144] | 910 | !zqta = qt thermals |
---|
| 911 | !zqsatth = qsat thermals |
---|
| 912 | !ztla = Tl thermals |
---|
| 913 | !------------------------------------------------------------------------------ |
---|
| 914 | ! s standard deviation |
---|
| 915 | !------------------------------------------------------------------------------ |
---|
[2686] | 916 | |
---|
[5144] | 917 | sigma1s_fraca = (sigma1s_factor**0.5) * (fraca(ind1, ind2)**sigma1s_power) / & |
---|
| 918 | (1 - fraca(ind1, ind2)) * ((sth - senv)**2)**0.5 |
---|
| 919 | ! sigma1s_fraca = (1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
| 920 | IF (cloudth_ratqsmin>0.) THEN |
---|
| 921 | sigma1s_ratqs = cloudth_ratqsmin * po(ind1) |
---|
| 922 | ELSE |
---|
| 923 | sigma1s_ratqs = ratqs(ind1, ind2) * po(ind1) |
---|
| 924 | ENDIF |
---|
| 925 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
[5226] | 926 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
---|
| 927 | IF (iflag_ratqs==10.or.iflag_ratqs==11) THEN |
---|
[5144] | 928 | sigma1s = ratqs(ind1, ind2) * po(ind1) * aenv |
---|
[5226] | 929 | IF (iflag_ratqs==10.and.sigma_qtherm(ind1, ind2) /= 0) then |
---|
| 930 | sigma2s = sigma_qtherm(ind1, ind2)*ath |
---|
| 931 | ENDIF |
---|
| 932 | ENDIF |
---|
[5144] | 933 | ! tests |
---|
| 934 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 935 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) |
---|
| 936 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
| 937 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 938 | ! if (paprs(ind1,ind2).gt.90000) THEN |
---|
| 939 | ! ratqs(ind1,ind2)=0.002 |
---|
| 940 | ! else |
---|
| 941 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 942 | ! endif |
---|
| 943 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 944 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 945 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 946 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
[2686] | 947 | |
---|
[5144] | 948 | IF (iflag_cloudth_vert == 1) THEN |
---|
| 949 | !------------------------------------------------------------------------------- |
---|
| 950 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs |
---|
| 951 | !------------------------------------------------------------------------------- |
---|
[2686] | 952 | |
---|
[5144] | 953 | deltasenv = aenv * ratqs(ind1, ind2) * zqsatenv(ind1, ind2) |
---|
| 954 | deltasth = ath * ratqs(ind1, ind2) * zqsatth(ind1, ind2) |
---|
[2686] | 955 | |
---|
[5144] | 956 | xenv1 = (senv - deltasenv) / (sqrt(2.) * sigma1s) |
---|
| 957 | xenv2 = (senv + deltasenv) / (sqrt(2.) * sigma1s) |
---|
| 958 | xth1 = (sth - deltasth) / (sqrt(2.) * sigma2s) |
---|
| 959 | xth2 = (sth + deltasth) / (sqrt(2.) * sigma2s) |
---|
| 960 | coeffqlenv = (sigma1s)**2 / (2 * sqrtpi * deltasenv) |
---|
| 961 | coeffqlth = (sigma2s)**2 / (2 * sqrtpi * deltasth) |
---|
[2686] | 962 | |
---|
[5144] | 963 | cth(ind1, ind2) = 0.5 * (1. + 1. * erf(xth2)) |
---|
| 964 | cenv(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv2)) |
---|
| 965 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
[2686] | 966 | |
---|
[5144] | 967 | ! Environment |
---|
| 968 | IntJ = sigma1s * (exp(-1. * xenv1**2) / sqrt2pi) + 0.5 * senv * (1 + erf(xenv1)) |
---|
| 969 | IntI1 = coeffqlenv * 0.5 * (0.5 * sqrtpi * (erf(xenv2) - erf(xenv1)) + xenv1 * exp(-1. * xenv1**2) - xenv2 * exp(-1. * xenv2**2)) |
---|
| 970 | IntI2 = coeffqlenv * xenv2 * (exp(-1. * xenv2**2) - exp(-1. * xenv1**2)) |
---|
| 971 | IntI3 = coeffqlenv * 0.5 * sqrtpi * xenv2**2 * (erf(xenv2) - erf(xenv1)) |
---|
[2686] | 972 | |
---|
[5144] | 973 | qlenv(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
[2945] | 974 | |
---|
[5144] | 975 | ! Thermal |
---|
| 976 | IntJ = sigma2s * (exp(-1. * xth1**2) / sqrt2pi) + 0.5 * sth * (1 + erf(xth1)) |
---|
| 977 | IntI1 = coeffqlth * 0.5 * (0.5 * sqrtpi * (erf(xth2) - erf(xth1)) + xth1 * exp(-1. * xth1**2) - xth2 * exp(-1. * xth2**2)) |
---|
| 978 | IntI2 = coeffqlth * xth2 * (exp(-1. * xth2**2) - exp(-1. * xth1**2)) |
---|
| 979 | IntI3 = coeffqlth * 0.5 * sqrtpi * xth2**2 * (erf(xth2) - erf(xth1)) |
---|
| 980 | qlth(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
| 981 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
[2686] | 982 | |
---|
[5144] | 983 | ELSE IF (iflag_cloudth_vert >= 3) THEN |
---|
| 984 | IF (iflag_cloudth_vert < 5) THEN |
---|
| 985 | !------------------------------------------------------------------------------- |
---|
| 986 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
---|
| 987 | !------------------------------------------------------------------------------- |
---|
| 988 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 989 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 990 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 991 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
| 992 | IF (iflag_cloudth_vert == 3) THEN |
---|
| 993 | deltasenv = aenv * vert_alpha * sigma1s |
---|
| 994 | deltasth = ath * vert_alpha_th * sigma2s |
---|
| 995 | ELSE IF (iflag_cloudth_vert == 4) THEN |
---|
| 996 | IF (iflag_cloudth_vert_noratqs == 1) THEN |
---|
| 997 | deltasenv = vert_alpha * max(sigma1s_fraca, 1e-10) |
---|
| 998 | deltasth = vert_alpha_th * sigma2s |
---|
| 999 | ELSE |
---|
| 1000 | deltasenv = vert_alpha * sigma1s |
---|
| 1001 | deltasth = vert_alpha_th * sigma2s |
---|
| 1002 | ENDIF |
---|
| 1003 | ENDIF |
---|
[2686] | 1004 | |
---|
[5144] | 1005 | xenv1 = -(senv + deltasenv) / (sqrt(2.) * sigma1s) |
---|
| 1006 | xenv2 = -(senv - deltasenv) / (sqrt(2.) * sigma1s) |
---|
| 1007 | exp_xenv1 = exp(-1. * xenv1**2) |
---|
| 1008 | exp_xenv2 = exp(-1. * xenv2**2) |
---|
| 1009 | xth1 = -(sth + deltasth) / (sqrt(2.) * sigma2s) |
---|
| 1010 | xth2 = -(sth - deltasth) / (sqrt(2.) * sigma2s) |
---|
| 1011 | exp_xth1 = exp(-1. * xth1**2) |
---|
| 1012 | exp_xth2 = exp(-1. * xth2**2) |
---|
[2686] | 1013 | |
---|
[5144] | 1014 | !CF_surfacique |
---|
| 1015 | cth(ind1, ind2) = 0.5 * (1. - 1. * erf(xth1)) |
---|
| 1016 | cenv(ind1, ind2) = 0.5 * (1. - 1. * erf(xenv1)) |
---|
| 1017 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
[3493] | 1018 | |
---|
| 1019 | |
---|
[5144] | 1020 | !CF_volumique & eau condense |
---|
| 1021 | !environnement |
---|
| 1022 | IntJ = 0.5 * senv * (1 - erf(xenv2)) + (sigma1s / sqrt2pi) * exp_xenv2 |
---|
| 1023 | IntJ_CF = 0.5 * (1. - 1. * erf(xenv2)) |
---|
| 1024 | IF (deltasenv < 1.e-10) THEN |
---|
| 1025 | qlenv(ind1, ind2) = IntJ |
---|
| 1026 | cenv_vol(ind1, ind2) = IntJ_CF |
---|
| 1027 | else |
---|
| 1028 | IntI1 = (((senv + deltasenv)**2 + (sigma1s)**2) / (8 * deltasenv)) * (erf(xenv2) - erf(xenv1)) |
---|
| 1029 | IntI2 = (sigma1s**2 / (4 * deltasenv * sqrtpi)) * (xenv1 * exp_xenv1 - xenv2 * exp_xenv2) |
---|
| 1030 | IntI3 = ((sqrt2 * sigma1s * (senv + deltasenv)) / (4 * sqrtpi * deltasenv)) * (exp_xenv1 - exp_xenv2) |
---|
| 1031 | IntI1_CF = ((senv + deltasenv) * (erf(xenv2) - erf(xenv1))) / (4 * deltasenv) |
---|
| 1032 | IntI3_CF = (sqrt2 * sigma1s * (exp_xenv1 - exp_xenv2)) / (4 * sqrtpi * deltasenv) |
---|
| 1033 | qlenv(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
| 1034 | cenv_vol(ind1, ind2) = IntJ_CF + IntI1_CF + IntI3_CF |
---|
| 1035 | endif |
---|
[3493] | 1036 | |
---|
[5144] | 1037 | !thermique |
---|
| 1038 | IntJ = 0.5 * sth * (1 - erf(xth2)) + (sigma2s / sqrt2pi) * exp_xth2 |
---|
| 1039 | IntJ_CF = 0.5 * (1. - 1. * erf(xth2)) |
---|
| 1040 | IF (deltasth < 1.e-10) THEN |
---|
| 1041 | qlth(ind1, ind2) = IntJ |
---|
| 1042 | cth_vol(ind1, ind2) = IntJ_CF |
---|
| 1043 | else |
---|
| 1044 | IntI1 = (((sth + deltasth)**2 + (sigma2s)**2) / (8 * deltasth)) * (erf(xth2) - erf(xth1)) |
---|
| 1045 | IntI2 = (sigma2s**2 / (4 * deltasth * sqrtpi)) * (xth1 * exp_xth1 - xth2 * exp_xth2) |
---|
| 1046 | IntI3 = ((sqrt2 * sigma2s * (sth + deltasth)) / (4 * sqrtpi * deltasth)) * (exp_xth1 - exp_xth2) |
---|
| 1047 | IntI1_CF = ((sth + deltasth) * (erf(xth2) - erf(xth1))) / (4 * deltasth) |
---|
| 1048 | IntI3_CF = (sqrt2 * sigma2s * (exp_xth1 - exp_xth2)) / (4 * sqrtpi * deltasth) |
---|
| 1049 | qlth(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
| 1050 | cth_vol(ind1, ind2) = IntJ_CF + IntI1_CF + IntI3_CF |
---|
| 1051 | endif |
---|
[3493] | 1052 | |
---|
[5144] | 1053 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
| 1054 | ctot_vol(ind1, ind2) = fraca(ind1, ind2) * cth_vol(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv_vol(ind1, ind2) |
---|
[3493] | 1055 | |
---|
[5144] | 1056 | ELSE IF (iflag_cloudth_vert == 5) THEN |
---|
| 1057 | sigma1s = (0.71794 + 0.000498239 * dz(ind1, ind2)) * (fraca(ind1, ind2)**0.5) & |
---|
| 1058 | / (1 - fraca(ind1, ind2)) * (((sth - senv)**2)**0.5) & |
---|
| 1059 | + ratqs(ind1, ind2) * po(ind1) !Environment |
---|
| 1060 | sigma2s = (0.03218 + 0.000092655 * dz(ind1, ind2)) / ((fraca(ind1, ind2) + 0.02)**0.5) * (((sth - senv)**2)**0.5) + 0.002 * zqta(ind1, ind2) !Thermals |
---|
| 1061 | !sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 1062 | !sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 1063 | xth = sth / (sqrt(2.) * sigma2s) |
---|
| 1064 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
[3493] | 1065 | |
---|
[5144] | 1066 | !Volumique |
---|
| 1067 | cth_vol(ind1, ind2) = 0.5 * (1. + 1. * erf(xth)) |
---|
| 1068 | cenv_vol(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
| 1069 | ctot_vol(ind1, ind2) = fraca(ind1, ind2) * cth_vol(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv_vol(ind1, ind2) |
---|
[5160] | 1070 | !PRINT *,'jeanjean_CV=',ctot_vol(ind1,ind2) |
---|
[3493] | 1071 | |
---|
[5144] | 1072 | qlth(ind1, ind2) = sigma2s * ((exp(-1. * xth**2) / sqrt2pi) + xth * sqrt(2.) * cth_vol(ind1, ind2)) |
---|
| 1073 | qlenv(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv_vol(ind1, ind2)) |
---|
| 1074 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
[3493] | 1075 | |
---|
[5144] | 1076 | !Surfacique |
---|
| 1077 | !Neggers |
---|
| 1078 | !beta=0.0044 |
---|
| 1079 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
[5160] | 1080 | !PRINT *,'jeanjean : beta=',beta |
---|
[5144] | 1081 | !cth(ind1,ind2)=cth_vol(ind1,ind2)*inverse_rho |
---|
| 1082 | !cenv(ind1,ind2)=cenv_vol(ind1,ind2)*inverse_rho |
---|
| 1083 | !ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
[3493] | 1084 | |
---|
[5144] | 1085 | !Brooks |
---|
| 1086 | a_Brooks = 0.6694 |
---|
| 1087 | b_Brooks = 0.1882 |
---|
| 1088 | A_Maj_Brooks = 0.1635 !-- sans shear |
---|
| 1089 | !A_Maj_Brooks=0.17 !-- ARM LES |
---|
| 1090 | !A_Maj_Brooks=0.18 !-- RICO LES |
---|
| 1091 | !A_Maj_Brooks=0.19 !-- BOMEX LES |
---|
| 1092 | Dx_Brooks = 200000. |
---|
| 1093 | f_Brooks = A_Maj_Brooks * (dz(ind1, ind2)**(a_Brooks)) * (Dx_Brooks**(-b_Brooks)) |
---|
[5160] | 1094 | !PRINT *,'jeanjean_f=',f_Brooks |
---|
[3493] | 1095 | |
---|
[5144] | 1096 | cth(ind1, ind2) = 1. / (1. + exp(-1. * f_Brooks) * ((1. / max(1.e-15, min(cth_vol(ind1, ind2), 1.))) - 1.)) |
---|
| 1097 | cenv(ind1, ind2) = 1. / (1. + exp(-1. * f_Brooks) * ((1. / max(1.e-15, min(cenv_vol(ind1, ind2), 1.))) - 1.)) |
---|
| 1098 | ctot(ind1, ind2) = 1. / (1. + exp(-1. * f_Brooks) * ((1. / max(1.e-15, min(ctot_vol(ind1, ind2), 1.))) - 1.)) |
---|
[5160] | 1099 | !PRINT *,'JJ_ctot_1',ctot(ind1,ind2) |
---|
[2686] | 1100 | |
---|
[5144] | 1101 | ENDIF ! of if (iflag_cloudth_vert<5) |
---|
| 1102 | ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4) |
---|
[2686] | 1103 | |
---|
[5144] | 1104 | ! if (ctot(ind1,ind2).lt.1.e-10) THEN |
---|
| 1105 | IF (cenv(ind1, ind2)<1.e-10.OR.cth(ind1, ind2)<1.e-10) THEN |
---|
| 1106 | ctot(ind1, ind2) = 0. |
---|
| 1107 | ctot_vol(ind1, ind2) = 0. |
---|
| 1108 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
[2686] | 1109 | |
---|
[5144] | 1110 | else |
---|
[2686] | 1111 | |
---|
[5144] | 1112 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqs(ind1) |
---|
| 1113 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
| 1114 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
| 1115 | |
---|
| 1116 | endif |
---|
| 1117 | |
---|
[3493] | 1118 | else ! gaussienne environnement seule |
---|
[3999] | 1119 | |
---|
[5144] | 1120 | zqenv(ind1) = po(ind1) |
---|
| 1121 | Tbef = t(ind1, ind2) |
---|
| 1122 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 1123 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 1124 | qsatbef = MIN(0.5, qsatbef) |
---|
| 1125 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 1126 | qsatbef = qsatbef * zcor |
---|
| 1127 | zqsatenv(ind1, ind2) = qsatbef |
---|
[2686] | 1128 | |
---|
| 1129 | |
---|
[5144] | 1130 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 1131 | zthl(ind1, ind2) = t(ind1, ind2) * (101325 / paprs(ind1, ind2))**(rdd / cppd) |
---|
| 1132 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
| 1133 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
| 1134 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
| 1135 | sth = 0. |
---|
[2686] | 1136 | |
---|
[5144] | 1137 | sigma1s = ratqs(ind1, ind2) * zqenv(ind1) |
---|
| 1138 | sigma2s = 0. |
---|
[2686] | 1139 | |
---|
[5144] | 1140 | sqrt2pi = sqrt(2. * pi) |
---|
| 1141 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
| 1142 | ctot(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
| 1143 | ctot_vol(ind1, ind2) = ctot(ind1, ind2) |
---|
| 1144 | qltot(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1, ind2)) |
---|
[2686] | 1145 | |
---|
[5144] | 1146 | IF (ctot(ind1, ind2)<1.e-3) THEN |
---|
| 1147 | ctot(ind1, ind2) = 0. |
---|
| 1148 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
[3493] | 1149 | |
---|
[5144] | 1150 | else |
---|
[3493] | 1151 | |
---|
[5144] | 1152 | ! ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 1153 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqsatenv(ind1, ind2) |
---|
[3493] | 1154 | |
---|
[5144] | 1155 | endif |
---|
| 1156 | |
---|
[2686] | 1157 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 |
---|
[2958] | 1158 | ! Outputs used to check the PDFs |
---|
[5144] | 1159 | cloudth_senv(ind1, ind2) = senv |
---|
| 1160 | cloudth_sth(ind1, ind2) = sth |
---|
| 1161 | cloudth_sigmaenv(ind1, ind2) = sigma1s |
---|
| 1162 | cloudth_sigmath(ind1, ind2) = sigma2s |
---|
[2958] | 1163 | |
---|
[5144] | 1164 | enddo ! from the loop on ngrid l.333 |
---|
| 1165 | RETURN |
---|
| 1166 | ! end |
---|
| 1167 | END SUBROUTINE cloudth_vert_v3 |
---|
[3493] | 1168 | |
---|
[5144] | 1169 | SUBROUTINE cloudth_v6(ngrid, klev, ind2, & |
---|
| 1170 | ztv, po, zqta, fraca, & |
---|
| 1171 | qcloud, ctot_surf, ctot_vol, zpspsk, paprs, pplay, ztla, zthl, & |
---|
| 1172 | ratqs, zqs, T, & |
---|
| 1173 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
[3493] | 1174 | |
---|
[5144] | 1175 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert |
---|
| 1176 | USE lmdz_yoethf |
---|
[5153] | 1177 | |
---|
[5144] | 1178 | USE lmdz_yomcst |
---|
[3493] | 1179 | |
---|
[5144] | 1180 | IMPLICIT NONE |
---|
[5153] | 1181 | INCLUDE "FCTTRE.h" |
---|
[3493] | 1182 | |
---|
[5144] | 1183 | !Domain variables |
---|
| 1184 | INTEGER ngrid !indice Max lat-lon |
---|
| 1185 | INTEGER klev !indice Max alt |
---|
| 1186 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv |
---|
| 1187 | INTEGER ind1 !indice in [1:ngrid] |
---|
| 1188 | INTEGER ind2 !indice in [1:klev] |
---|
| 1189 | !thermal plume fraction |
---|
| 1190 | REAL fraca(ngrid, klev + 1) !thermal plumes fraction in the gridbox |
---|
| 1191 | !temperatures |
---|
| 1192 | REAL T(ngrid, klev) !temperature |
---|
| 1193 | REAL zpspsk(ngrid, klev) !factor (p/p0)**kappa (used for potential variables) |
---|
| 1194 | REAL ztv(ngrid, klev) !potential temperature (voir thermcell_env.F90) |
---|
| 1195 | REAL ztla(ngrid, klev) !liquid temperature in the thermals (Tl_th) |
---|
| 1196 | REAL zthl(ngrid, klev) !liquid temperature in the environment (Tl_env) |
---|
| 1197 | !pressure |
---|
| 1198 | REAL paprs(ngrid, klev + 1) !pressure at the interface of levels |
---|
| 1199 | REAL pplay(ngrid, klev) !pressure at the middle of the level |
---|
| 1200 | !humidity |
---|
| 1201 | REAL ratqs(ngrid, klev) !width of the total water subgrid-scale distribution |
---|
| 1202 | REAL po(ngrid) !total water (qt) |
---|
| 1203 | REAL zqenv(ngrid) !total water in the environment (qt_env) |
---|
| 1204 | REAL zqta(ngrid, klev) !total water in the thermals (qt_th) |
---|
| 1205 | REAL zqsatth(ngrid, klev) !water saturation level in the thermals (q_sat_th) |
---|
| 1206 | REAL zqsatenv(ngrid, klev) !water saturation level in the environment (q_sat_env) |
---|
| 1207 | REAL qlth(ngrid, klev) !condensed water in the thermals |
---|
| 1208 | REAL qlenv(ngrid, klev) !condensed water in the environment |
---|
| 1209 | REAL qltot(ngrid, klev) !condensed water in the gridbox |
---|
| 1210 | !cloud fractions |
---|
| 1211 | REAL cth_vol(ngrid, klev) !cloud fraction by volume in the thermals |
---|
| 1212 | REAL cenv_vol(ngrid, klev) !cloud fraction by volume in the environment |
---|
| 1213 | REAL ctot_vol(ngrid, klev) !cloud fraction by volume in the gridbox |
---|
| 1214 | REAL cth_surf(ngrid, klev) !cloud fraction by surface in the thermals |
---|
| 1215 | REAL cenv_surf(ngrid, klev) !cloud fraction by surface in the environment |
---|
| 1216 | REAL ctot_surf(ngrid, klev) !cloud fraction by surface in the gridbox |
---|
| 1217 | !PDF of saturation deficit variables |
---|
| 1218 | REAL rdd, cppd, Lv |
---|
| 1219 | REAL Tbef, zdelta, qsatbef, zcor |
---|
| 1220 | REAL alth, alenv, ath, aenv |
---|
| 1221 | REAL sth, senv !saturation deficits in the thermals and environment |
---|
| 1222 | REAL sigma_env, sigma_th !standard deviations of the biGaussian PDF |
---|
| 1223 | !cloud fraction variables |
---|
| 1224 | REAL xth, xenv |
---|
| 1225 | REAL inverse_rho, beta !Neggers et al. (2011) method |
---|
| 1226 | REAL a_Brooks, b_Brooks, A_Maj_Brooks, Dx_Brooks, f_Brooks !Brooks et al. (2005) method |
---|
| 1227 | !Incloud total water variables |
---|
| 1228 | REAL zqs(ngrid) !q_sat |
---|
| 1229 | REAL qcloud(ngrid) !eau totale dans le nuage |
---|
| 1230 | !Some arithmetic variables |
---|
| 1231 | REAL erf, pi, sqrt2, sqrt2pi |
---|
| 1232 | !Depth of the layer |
---|
| 1233 | REAL dz(ngrid, klev) !epaisseur de la couche en metre |
---|
| 1234 | REAL rhodz(ngrid, klev) |
---|
| 1235 | REAL zrho(ngrid, klev) |
---|
| 1236 | DO ind1 = 1, ngrid |
---|
| 1237 | rhodz(ind1, ind2) = (paprs(ind1, ind2) - paprs(ind1, ind2 + 1)) / rg ![kg/m2] |
---|
| 1238 | zrho(ind1, ind2) = pplay(ind1, ind2) / T(ind1, ind2) / rd ![kg/m3] |
---|
| 1239 | dz(ind1, ind2) = rhodz(ind1, ind2) / zrho(ind1, ind2) ![m] |
---|
| 1240 | END DO |
---|
[3493] | 1241 | |
---|
[5144] | 1242 | !------------------------------------------------------------------------------ |
---|
| 1243 | ! Initialization |
---|
| 1244 | !------------------------------------------------------------------------------ |
---|
| 1245 | qlth(:, :) = 0. |
---|
| 1246 | qlenv(:, :) = 0. |
---|
| 1247 | qltot(:, :) = 0. |
---|
| 1248 | cth_vol(:, :) = 0. |
---|
| 1249 | cenv_vol(:, :) = 0. |
---|
| 1250 | ctot_vol(:, :) = 0. |
---|
| 1251 | cth_surf(:, :) = 0. |
---|
| 1252 | cenv_surf(:, :) = 0. |
---|
| 1253 | ctot_surf(:, :) = 0. |
---|
| 1254 | qcloud(:) = 0. |
---|
| 1255 | rdd = 287.04 |
---|
| 1256 | cppd = 1005.7 |
---|
| 1257 | pi = 3.14159 |
---|
| 1258 | Lv = 2.5e6 |
---|
| 1259 | sqrt2 = sqrt(2.) |
---|
| 1260 | sqrt2pi = sqrt(2. * pi) |
---|
[3493] | 1261 | |
---|
[5144] | 1262 | DO ind1 = 1, ngrid |
---|
| 1263 | !------------------------------------------------------------------------------- |
---|
| 1264 | !Both thermal and environment in the gridbox |
---|
| 1265 | !------------------------------------------------------------------------------- |
---|
| 1266 | IF ((ztv(ind1, 1)>ztv(ind1, 2)).AND.(fraca(ind1, ind2)>1.e-10)) THEN |
---|
[3493] | 1267 | !-------------------------------------------- |
---|
| 1268 | !calcul de qsat_env |
---|
| 1269 | !-------------------------------------------- |
---|
[5144] | 1270 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
| 1271 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 1272 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 1273 | qsatbef = MIN(0.5, qsatbef) |
---|
| 1274 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 1275 | qsatbef = qsatbef * zcor |
---|
| 1276 | zqsatenv(ind1, ind2) = qsatbef |
---|
[3493] | 1277 | !-------------------------------------------- |
---|
| 1278 | !calcul de s_env |
---|
| 1279 | !-------------------------------------------- |
---|
[5144] | 1280 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) !qsl, p84 these Arnaud Jam |
---|
| 1281 | aenv = 1. / (1. + (alenv * Lv / cppd)) !al, p84 these Arnaud Jam |
---|
| 1282 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) !s, p84 these Arnaud Jam |
---|
[3493] | 1283 | !-------------------------------------------- |
---|
| 1284 | !calcul de qsat_th |
---|
| 1285 | !-------------------------------------------- |
---|
[5144] | 1286 | Tbef = ztla(ind1, ind2) * zpspsk(ind1, ind2) |
---|
| 1287 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 1288 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 1289 | qsatbef = MIN(0.5, qsatbef) |
---|
| 1290 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 1291 | qsatbef = qsatbef * zcor |
---|
| 1292 | zqsatth(ind1, ind2) = qsatbef |
---|
[3493] | 1293 | !-------------------------------------------- |
---|
[5144] | 1294 | !calcul de s_th |
---|
[3493] | 1295 | !-------------------------------------------- |
---|
[5144] | 1296 | alth = (0.622 * Lv * zqsatth(ind1, ind2)) / (rdd * ztla(ind1, ind2)**2) !qsl, p84 these Arnaud Jam |
---|
| 1297 | ath = 1. / (1. + (alth * Lv / cppd)) !al, p84 these Arnaud Jam |
---|
| 1298 | sth = ath * (zqta(ind1, ind2) - zqsatth(ind1, ind2)) !s, p84 these Arnaud Jam |
---|
[3493] | 1299 | !-------------------------------------------- |
---|
| 1300 | !calcul standard deviations bi-Gaussian PDF |
---|
| 1301 | !-------------------------------------------- |
---|
[5144] | 1302 | sigma_th = (0.03218 + 0.000092655 * dz(ind1, ind2)) / ((fraca(ind1, ind2) + 0.01)**0.5) * (((sth - senv)**2)**0.5) + 0.002 * zqta(ind1, ind2) |
---|
| 1303 | sigma_env = (0.71794 + 0.000498239 * dz(ind1, ind2)) * (fraca(ind1, ind2)**0.5) & |
---|
| 1304 | / (1 - fraca(ind1, ind2)) * (((sth - senv)**2)**0.5) & |
---|
| 1305 | + ratqs(ind1, ind2) * po(ind1) |
---|
| 1306 | xth = sth / (sqrt2 * sigma_th) |
---|
| 1307 | xenv = senv / (sqrt2 * sigma_env) |
---|
[3493] | 1308 | !-------------------------------------------- |
---|
| 1309 | !Cloud fraction by volume CF_vol |
---|
| 1310 | !-------------------------------------------- |
---|
[5144] | 1311 | cth_vol(ind1, ind2) = 0.5 * (1. + 1. * erf(xth)) |
---|
| 1312 | cenv_vol(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
| 1313 | ctot_vol(ind1, ind2) = fraca(ind1, ind2) * cth_vol(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv_vol(ind1, ind2) |
---|
| 1314 | !-------------------------------------------- |
---|
[3493] | 1315 | !Condensed water qc |
---|
| 1316 | !-------------------------------------------- |
---|
[5144] | 1317 | qlth(ind1, ind2) = sigma_th * ((exp(-1. * xth**2) / sqrt2pi) + xth * sqrt2 * cth_vol(ind1, ind2)) |
---|
| 1318 | qlenv(ind1, ind2) = sigma_env * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt2 * cenv_vol(ind1, ind2)) |
---|
| 1319 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
[3493] | 1320 | !-------------------------------------------- |
---|
| 1321 | !Cloud fraction by surface CF_surf |
---|
| 1322 | !-------------------------------------------- |
---|
| 1323 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
[5144] | 1324 | !beta=0.0044 (Jouhaud et al.2018) |
---|
| 1325 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
| 1326 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
[3493] | 1327 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
[5144] | 1328 | a_Brooks = 0.6694 |
---|
| 1329 | b_Brooks = 0.1882 |
---|
| 1330 | A_Maj_Brooks = 0.1635 !-- sans dependence au cisaillement de vent |
---|
| 1331 | Dx_Brooks = 200000. !-- si l'on considere des mailles de 200km de cote |
---|
| 1332 | f_Brooks = A_Maj_Brooks * (dz(ind1, ind2)**(a_Brooks)) * (Dx_Brooks**(-b_Brooks)) |
---|
| 1333 | ctot_surf(ind1, ind2) = 1. / (1. + exp(-1. * f_Brooks) * ((1. / max(1.e-15, min(ctot_vol(ind1, ind2), 1.))) - 1.)) |
---|
[3493] | 1334 | !-------------------------------------------- |
---|
| 1335 | !Incloud Condensed water qcloud |
---|
| 1336 | !-------------------------------------------- |
---|
[5144] | 1337 | IF (ctot_surf(ind1, ind2) < 1.e-10) THEN |
---|
| 1338 | ctot_vol(ind1, ind2) = 0. |
---|
| 1339 | ctot_surf(ind1, ind2) = 0. |
---|
| 1340 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
| 1341 | else |
---|
| 1342 | qcloud(ind1) = qltot(ind1, ind2) / ctot_vol(ind1, ind2) + zqs(ind1) |
---|
| 1343 | endif |
---|
[3493] | 1344 | |
---|
| 1345 | |
---|
| 1346 | |
---|
[5144] | 1347 | !------------------------------------------------------------------------------- |
---|
| 1348 | !Environment only in the gridbox |
---|
| 1349 | !------------------------------------------------------------------------------- |
---|
[3493] | 1350 | ELSE |
---|
| 1351 | !-------------------------------------------- |
---|
| 1352 | !calcul de qsat_env |
---|
| 1353 | !-------------------------------------------- |
---|
[5144] | 1354 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
| 1355 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
| 1356 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
| 1357 | qsatbef = MIN(0.5, qsatbef) |
---|
| 1358 | zcor = 1. / (1. - retv * qsatbef) |
---|
| 1359 | qsatbef = qsatbef * zcor |
---|
| 1360 | zqsatenv(ind1, ind2) = qsatbef |
---|
[3493] | 1361 | !-------------------------------------------- |
---|
| 1362 | !calcul de s_env |
---|
| 1363 | !-------------------------------------------- |
---|
[5144] | 1364 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) !qsl, p84 these Arnaud Jam |
---|
| 1365 | aenv = 1. / (1. + (alenv * Lv / cppd)) !al, p84 these Arnaud Jam |
---|
| 1366 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) !s, p84 these Arnaud Jam |
---|
[3493] | 1367 | !-------------------------------------------- |
---|
| 1368 | !calcul standard deviations Gaussian PDF |
---|
| 1369 | !-------------------------------------------- |
---|
[5144] | 1370 | zqenv(ind1) = po(ind1) |
---|
| 1371 | sigma_env = ratqs(ind1, ind2) * zqenv(ind1) |
---|
| 1372 | xenv = senv / (sqrt2 * sigma_env) |
---|
[3493] | 1373 | !-------------------------------------------- |
---|
| 1374 | !Cloud fraction by volume CF_vol |
---|
| 1375 | !-------------------------------------------- |
---|
[5144] | 1376 | ctot_vol(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
[3493] | 1377 | !-------------------------------------------- |
---|
| 1378 | !Condensed water qc |
---|
| 1379 | !-------------------------------------------- |
---|
[5144] | 1380 | qltot(ind1, ind2) = sigma_env * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt2 * ctot_vol(ind1, ind2)) |
---|
[3493] | 1381 | !-------------------------------------------- |
---|
| 1382 | !Cloud fraction by surface CF_surf |
---|
| 1383 | !-------------------------------------------- |
---|
| 1384 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
[5144] | 1385 | !beta=0.0044 (Jouhaud et al.2018) |
---|
| 1386 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
| 1387 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
[3493] | 1388 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
[5144] | 1389 | a_Brooks = 0.6694 |
---|
| 1390 | b_Brooks = 0.1882 |
---|
| 1391 | A_Maj_Brooks = 0.1635 !-- sans dependence au shear |
---|
| 1392 | Dx_Brooks = 200000. |
---|
| 1393 | f_Brooks = A_Maj_Brooks * (dz(ind1, ind2)**(a_Brooks)) * (Dx_Brooks**(-b_Brooks)) |
---|
| 1394 | ctot_surf(ind1, ind2) = 1. / (1. + exp(-1. * f_Brooks) * ((1. / max(1.e-15, min(ctot_vol(ind1, ind2), 1.))) - 1.)) |
---|
[3493] | 1395 | !-------------------------------------------- |
---|
| 1396 | !Incloud Condensed water qcloud |
---|
| 1397 | !-------------------------------------------- |
---|
[5144] | 1398 | IF (ctot_surf(ind1, ind2) < 1.e-8) THEN |
---|
| 1399 | ctot_vol(ind1, ind2) = 0. |
---|
| 1400 | ctot_surf(ind1, ind2) = 0. |
---|
| 1401 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
| 1402 | else |
---|
| 1403 | qcloud(ind1) = qltot(ind1, ind2) / ctot_vol(ind1, ind2) + zqsatenv(ind1, ind2) |
---|
| 1404 | endif |
---|
[3493] | 1405 | |
---|
| 1406 | END IF ! From the separation (thermal/envrionnement) et (environnement only) |
---|
| 1407 | |
---|
| 1408 | ! Outputs used to check the PDFs |
---|
[5144] | 1409 | cloudth_senv(ind1, ind2) = senv |
---|
| 1410 | cloudth_sth(ind1, ind2) = sth |
---|
| 1411 | cloudth_sigmaenv(ind1, ind2) = sigma_env |
---|
| 1412 | cloudth_sigmath(ind1, ind2) = sigma_th |
---|
[3493] | 1413 | |
---|
[5144] | 1414 | END DO ! From the loop on ngrid |
---|
[3493] | 1415 | |
---|
[5144] | 1416 | END SUBROUTINE cloudth_v6 |
---|
[5105] | 1417 | |
---|
[3999] | 1418 | |
---|
[5144] | 1419 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 1420 | SUBROUTINE cloudth_mpc(klon, klev, ind2, mpc_bl_points, & |
---|
| 1421 | & temp, qt, qt_th, frac_th, zpspsk, paprsup, paprsdn, play, thetal_th, & |
---|
| 1422 | & ratqs, qcloud, qincloud, icefrac, ctot, ctot_vol, & |
---|
| 1423 | & cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
| 1424 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 1425 | ! Author : Etienne Vignon (LMDZ/CNRS) |
---|
| 1426 | ! Date: April 2024 |
---|
| 1427 | ! Date: Adapted from cloudth_vert_v3 in 2023 by Arnaud Otavio Jam |
---|
| 1428 | ! IMPORTANT NOTE: we assume iflag_cloudth_vert=7 |
---|
| 1429 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[3999] | 1430 | |
---|
[5144] | 1431 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert, iflag_ratqs |
---|
| 1432 | USE lmdz_cloudth_ini, ONLY: C_mpc, Ni, C_cap, Ei, d_top, vert_alpha, vert_alpha_th, sigma1s_factor, sigma1s_power, sigma2s_factor, sigma2s_power, cloudth_ratqsmin, iflag_cloudth_vert_noratqs |
---|
| 1433 | USE lmdz_lscp_tools, only: CALC_QSAT_ECMWF |
---|
| 1434 | USE lmdz_lscp_ini, only: RTT, RG, RPI, RD, RCPD, RLVTT, RLSTT, temp_nowater, min_frac_th_cld, min_neb_th |
---|
[3999] | 1435 | |
---|
[5144] | 1436 | IMPLICIT NONE |
---|
[3999] | 1437 | |
---|
| 1438 | |
---|
[5144] | 1439 | !------------------------------------------------------------------------------ |
---|
| 1440 | ! Declaration |
---|
| 1441 | !------------------------------------------------------------------------------ |
---|
[3999] | 1442 | |
---|
[5144] | 1443 | ! INPUT/OUTPUT |
---|
[3999] | 1444 | |
---|
[5144] | 1445 | INTEGER, INTENT(IN) :: klon, klev, ind2 |
---|
[3999] | 1446 | |
---|
[5144] | 1447 | REAL, DIMENSION(klon), INTENT(IN) :: temp ! Temperature (liquid temperature) in the mesh [K] : has seen evap of precip |
---|
| 1448 | REAL, DIMENSION(klon), INTENT(IN) :: qt ! total water specific humidity in the mesh [kg/kg]: has seen evap of precip |
---|
| 1449 | REAL, DIMENSION(klon), INTENT(IN) :: qt_th ! total water specific humidity in thermals [kg/kg]: has not seen evap of precip |
---|
| 1450 | REAL, DIMENSION(klon), INTENT(IN) :: thetal_th ! Liquid potential temperature in thermals [K]: has not seen the evap of precip |
---|
| 1451 | REAL, DIMENSION(klon), INTENT(IN) :: frac_th ! Fraction of the mesh covered by thermals [0-1] |
---|
| 1452 | REAL, DIMENSION(klon), INTENT(IN) :: zpspsk ! Exner potential |
---|
| 1453 | REAL, DIMENSION(klon), INTENT(IN) :: paprsup ! Pressure at top layer interface [Pa] |
---|
| 1454 | REAL, DIMENSION(klon), INTENT(IN) :: paprsdn ! Pressure at bottom layer interface [Pa] |
---|
| 1455 | REAL, DIMENSION(klon), INTENT(IN) :: play ! Pressure of layers [Pa] |
---|
| 1456 | REAL, DIMENSION(klon), INTENT(IN) :: ratqs ! Parameter that determines the width of the total water distrib. |
---|
[3999] | 1457 | |
---|
[5144] | 1458 | INTEGER, DIMENSION(klon, klev), INTENT(INOUT) :: mpc_bl_points ! grid points with convective (thermals) mixed phase clouds |
---|
[3999] | 1459 | |
---|
[5144] | 1460 | REAL, DIMENSION(klon), INTENT(OUT) :: ctot ! Cloud fraction [0-1] |
---|
| 1461 | REAL, DIMENSION(klon), INTENT(OUT) :: ctot_vol ! Volume cloud fraction [0-1] |
---|
| 1462 | REAL, DIMENSION(klon), INTENT(OUT) :: qcloud ! In cloud total water content [kg/kg] |
---|
| 1463 | REAL, DIMENSION(klon), INTENT(OUT) :: qincloud ! In cloud condensed water content [kg/kg] |
---|
| 1464 | REAL, DIMENSION(klon), INTENT(OUT) :: icefrac ! Fraction of ice in clouds [0-1] |
---|
| 1465 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sth ! mean saturation deficit in thermals |
---|
| 1466 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_senv ! mean saturation deficit in environment |
---|
| 1467 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmath ! std of saturation deficit in thermals |
---|
| 1468 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmaenv ! std of saturation deficit in environment |
---|
[3999] | 1469 | |
---|
| 1470 | |
---|
[5144] | 1471 | ! LOCAL VARIABLES |
---|
[3999] | 1472 | |
---|
[5144] | 1473 | INTEGER itap, ind1, l, ig, iter, k |
---|
| 1474 | INTEGER iflag_topthermals, niter |
---|
[4380] | 1475 | |
---|
[5144] | 1476 | REAL qcth(klon) |
---|
| 1477 | REAL qcenv(klon) |
---|
| 1478 | REAL qctot(klon) |
---|
| 1479 | REAL cth(klon) |
---|
| 1480 | REAL cenv(klon) |
---|
| 1481 | REAL cth_vol(klon) |
---|
| 1482 | REAL cenv_vol(klon) |
---|
| 1483 | REAL qt_env(klon), thetal_env(klon) |
---|
| 1484 | REAL icefracenv(klon), icefracth(klon) |
---|
| 1485 | REAL sqrtpi, sqrt2, sqrt2pi |
---|
| 1486 | REAL alth, alenv, ath, aenv |
---|
| 1487 | REAL sth, senv, sigma1s, sigma2s, sigma1s_fraca, sigma1s_ratqs |
---|
| 1488 | REAL inverse_rho, beta, a_Brooks, b_Brooks, A_Maj_Brooks, Dx_Brooks, f_Brooks |
---|
| 1489 | REAL xth, xenv, exp_xenv1, exp_xenv2, exp_xth1, exp_xth2 |
---|
| 1490 | REAL xth1, xth2, xenv1, xenv2, deltasth, deltasenv |
---|
| 1491 | REAL IntJ, IntI1, IntI2, IntI3, IntJ_CF, IntI1_CF, IntI3_CF, coeffqlenv, coeffqlth |
---|
| 1492 | REAL zdelta, qsatbef, zcor |
---|
| 1493 | REAL Tbefth(klon), Tbefenv(klon), zrho(klon), rhoth(klon) |
---|
| 1494 | REAL qlbef |
---|
| 1495 | REAL dqsatenv(klon), dqsatth(klon) |
---|
| 1496 | REAL erf |
---|
| 1497 | REAL zpdf_sig(klon), zpdf_k(klon), zpdf_delta(klon) |
---|
| 1498 | REAL zpdf_a(klon), zpdf_b(klon), zpdf_e1(klon), zpdf_e2(klon) |
---|
| 1499 | REAL rhodz(klon) |
---|
| 1500 | REAL rho(klon) |
---|
| 1501 | REAL dz(klon) |
---|
| 1502 | REAL qslenv(klon), qslth(klon), qsienv(klon), qsith(klon) |
---|
| 1503 | REAL alenvl, aenvl |
---|
| 1504 | REAL sthi, sthl, sthil, althl, athl, althi, athi, sthlc, deltasthc, sigma2sc |
---|
| 1505 | REAL senvi, senvl, qbase, sbase, qliqth, qiceth |
---|
| 1506 | REAL qmax, ttarget, stmp, cout, coutref, fraci |
---|
| 1507 | REAL maxi, mini, pas |
---|
[3999] | 1508 | |
---|
[5144] | 1509 | ! Modifty the saturation deficit PDF in thermals |
---|
| 1510 | ! in the presence of ice crystals |
---|
| 1511 | CHARACTER (len = 80) :: abort_message |
---|
| 1512 | CHARACTER (len = 20) :: routname = 'cloudth_mpc' |
---|
[3999] | 1513 | |
---|
| 1514 | |
---|
[5144] | 1515 | !------------------------------------------------------------------------------ |
---|
| 1516 | ! Initialisation |
---|
| 1517 | !------------------------------------------------------------------------------ |
---|
[3999] | 1518 | |
---|
| 1519 | |
---|
[5144] | 1520 | ! Few initial checksS |
---|
[3999] | 1521 | |
---|
[5144] | 1522 | DO k = 1, klev |
---|
[3999] | 1523 | DO ind1 = 1, klon |
---|
[5144] | 1524 | rhodz(ind1) = (paprsdn(ind1) - paprsup(ind1)) / rg !kg/m2 |
---|
| 1525 | zrho(ind1) = play(ind1) / temp(ind1) / rd !kg/m3 |
---|
| 1526 | dz(ind1) = rhodz(ind1) / zrho(ind1) !m : epaisseur de la couche en metre |
---|
[3999] | 1527 | END DO |
---|
[5144] | 1528 | END DO |
---|
[3999] | 1529 | |
---|
[5144] | 1530 | icefracth(:) = 0. |
---|
| 1531 | icefracenv(:) = 0. |
---|
| 1532 | sqrt2pi = sqrt(2. * rpi) |
---|
| 1533 | sqrt2 = sqrt(2.) |
---|
| 1534 | sqrtpi = sqrt(rpi) |
---|
| 1535 | icefrac(:) = 0. |
---|
[3999] | 1536 | |
---|
[5144] | 1537 | !------------------------------------------------------------------------------- |
---|
| 1538 | ! Identify grid points with potential mixed-phase conditions |
---|
| 1539 | !------------------------------------------------------------------------------- |
---|
[3999] | 1540 | |
---|
[5144] | 1541 | DO ind1 = 1, klon |
---|
| 1542 | IF ((temp(ind1) < RTT) .AND. (temp(ind1) > temp_nowater) & |
---|
| 1543 | .AND. (ind2<=klev - 2) & |
---|
| 1544 | .AND. (frac_th(ind1)>min_frac_th_cld)) THEN |
---|
| 1545 | mpc_bl_points(ind1, ind2) = 1 |
---|
| 1546 | ELSE |
---|
| 1547 | mpc_bl_points(ind1, ind2) = 0 |
---|
| 1548 | ENDIF |
---|
| 1549 | ENDDO |
---|
[3999] | 1550 | |
---|
| 1551 | |
---|
[5144] | 1552 | !------------------------------------------------------------------------------- |
---|
| 1553 | ! Thermal fraction calculation and standard deviation of the distribution |
---|
| 1554 | !------------------------------------------------------------------------------- |
---|
[3999] | 1555 | |
---|
[5144] | 1556 | ! initialisations and calculation of temperature, humidity and saturation specific humidity |
---|
[3999] | 1557 | |
---|
[5144] | 1558 | DO ind1 = 1, klon |
---|
[3999] | 1559 | |
---|
[5144] | 1560 | rhodz(ind1) = (paprsdn(ind1) - paprsup(ind1)) / rg ! kg/m2 |
---|
| 1561 | rho(ind1) = play(ind1) / temp(ind1) / rd ! kg/m3 |
---|
| 1562 | dz(ind1) = rhodz(ind1) / rho(ind1) ! m : epaisseur de la couche en metre |
---|
| 1563 | Tbefenv(ind1) = temp(ind1) |
---|
| 1564 | thetal_env(ind1) = Tbefenv(ind1) / zpspsk(ind1) |
---|
| 1565 | Tbefth(ind1) = thetal_th(ind1) * zpspsk(ind1) |
---|
| 1566 | rhoth(ind1) = play(ind1) / Tbefth(ind1) / RD |
---|
| 1567 | qt_env(ind1) = (qt(ind1) - frac_th(ind1) * qt_th(ind1)) / (1. - frac_th(ind1)) !qt = a*qtth + (1-a)*qtenv |
---|
[3999] | 1568 | |
---|
[5144] | 1569 | ENDDO |
---|
[3999] | 1570 | |
---|
[5144] | 1571 | ! Calculation of saturation specific humidity |
---|
| 1572 | CALL CALC_QSAT_ECMWF(klon, Tbefenv, qt_env, play, RTT, 1, .FALSE., qslenv, dqsatenv) |
---|
| 1573 | CALL CALC_QSAT_ECMWF(klon, Tbefenv, qt_env, play, RTT, 2, .FALSE., qsienv, dqsatenv) |
---|
| 1574 | CALL CALC_QSAT_ECMWF(klon, Tbefth, qt_th, play, RTT, 1, .FALSE., qslth, dqsatth) |
---|
[4072] | 1575 | |
---|
[5144] | 1576 | DO ind1 = 1, klon |
---|
[4072] | 1577 | |
---|
[5144] | 1578 | IF (frac_th(ind1)>min_frac_th_cld) THEN !Thermal and environnement |
---|
[4072] | 1579 | |
---|
[5144] | 1580 | ! unlike in the other cloudth routine, |
---|
| 1581 | ! We consider distributions of the saturation deficit WRT liquid |
---|
| 1582 | ! at positive AND negative celcius temperature |
---|
| 1583 | ! subsequently, cloud fraction corresponds to the part of the pdf corresponding |
---|
| 1584 | ! to superstauration with respect to liquid WHATEVER the temperature |
---|
[4072] | 1585 | |
---|
[5144] | 1586 | ! Environment: |
---|
[4072] | 1587 | |
---|
[5144] | 1588 | alenv = (0.622 * RLVTT * qslenv(ind1)) / (rd * thetal_env(ind1)**2) |
---|
| 1589 | aenv = 1. / (1. + (alenv * RLVTT / rcpd)) |
---|
| 1590 | senv = aenv * (qt_env(ind1) - qslenv(ind1)) |
---|
[4072] | 1591 | |
---|
| 1592 | |
---|
[5144] | 1593 | ! Thermals: |
---|
[3999] | 1594 | |
---|
[5144] | 1595 | alth = (0.622 * RLVTT * qslth(ind1)) / (rd * thetal_th(ind1)**2) |
---|
| 1596 | ath = 1. / (1. + (alth * RLVTT / rcpd)) |
---|
| 1597 | sth = ath * (qt_th(ind1) - qslth(ind1)) |
---|
[3999] | 1598 | |
---|
| 1599 | |
---|
[5144] | 1600 | ! IF (mpc_bl_points(ind1,ind2) .EQ. 0) THEN ! No BL MPC |
---|
[3999] | 1601 | |
---|
| 1602 | |
---|
[5144] | 1603 | ! Standard deviation of the distributions |
---|
[3999] | 1604 | |
---|
[5144] | 1605 | sigma1s_fraca = (sigma1s_factor**0.5) * (frac_th(ind1)**sigma1s_power) / & |
---|
| 1606 | (1 - frac_th(ind1)) * ((sth - senv)**2)**0.5 |
---|
[3999] | 1607 | |
---|
[5144] | 1608 | IF (cloudth_ratqsmin>0.) THEN |
---|
| 1609 | sigma1s_ratqs = cloudth_ratqsmin * qt(ind1) |
---|
| 1610 | ELSE |
---|
| 1611 | sigma1s_ratqs = ratqs(ind1) * qt(ind1) |
---|
| 1612 | ENDIF |
---|
[3999] | 1613 | |
---|
[5144] | 1614 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
| 1615 | IF (iflag_ratqs==11) THEN |
---|
| 1616 | sigma1s = ratqs(ind1) * qt(ind1) * aenv |
---|
| 1617 | ENDIF |
---|
| 1618 | sigma2s = (sigma2s_factor * (((sth - senv)**2)**0.5) / ((frac_th(ind1) + 0.02)**sigma2s_power)) + 0.002 * qt_th(ind1) |
---|
[3999] | 1619 | |
---|
[5144] | 1620 | deltasenv = aenv * vert_alpha * sigma1s |
---|
| 1621 | deltasth = ath * vert_alpha_th * sigma2s |
---|
[3999] | 1622 | |
---|
[5144] | 1623 | xenv1 = -(senv + deltasenv) / (sqrt(2.) * sigma1s) |
---|
| 1624 | xenv2 = -(senv - deltasenv) / (sqrt(2.) * sigma1s) |
---|
| 1625 | exp_xenv1 = exp(-1. * xenv1**2) |
---|
| 1626 | exp_xenv2 = exp(-1. * xenv2**2) |
---|
| 1627 | xth1 = -(sth + deltasth) / (sqrt(2.) * sigma2s) |
---|
| 1628 | xth2 = -(sth - deltasth) / (sqrt(2.) * sigma2s) |
---|
| 1629 | exp_xth1 = exp(-1. * xth1**2) |
---|
| 1630 | exp_xth2 = exp(-1. * xth2**2) |
---|
[3999] | 1631 | |
---|
[5144] | 1632 | !surface CF |
---|
[3999] | 1633 | |
---|
[5144] | 1634 | cth(ind1) = 0.5 * (1. - 1. * erf(xth1)) |
---|
| 1635 | cenv(ind1) = 0.5 * (1. - 1. * erf(xenv1)) |
---|
| 1636 | ctot(ind1) = frac_th(ind1) * cth(ind1) + (1. - 1. * frac_th(ind1)) * cenv(ind1) |
---|
[3999] | 1637 | |
---|
| 1638 | |
---|
[5144] | 1639 | !volume CF, condensed water and ice fraction |
---|
[3999] | 1640 | |
---|
[5144] | 1641 | !environnement |
---|
[3999] | 1642 | |
---|
[5144] | 1643 | IntJ = 0.5 * senv * (1 - erf(xenv2)) + (sigma1s / sqrt2pi) * exp_xenv2 |
---|
| 1644 | IntJ_CF = 0.5 * (1. - 1. * erf(xenv2)) |
---|
[3999] | 1645 | |
---|
[5144] | 1646 | IF (deltasenv < 1.e-10) THEN |
---|
| 1647 | qcenv(ind1) = IntJ |
---|
| 1648 | cenv_vol(ind1) = IntJ_CF |
---|
| 1649 | ELSE |
---|
| 1650 | IntI1 = (((senv + deltasenv)**2 + (sigma1s)**2) / (8 * deltasenv)) * (erf(xenv2) - erf(xenv1)) |
---|
| 1651 | IntI2 = (sigma1s**2 / (4 * deltasenv * sqrtpi)) * (xenv1 * exp_xenv1 - xenv2 * exp_xenv2) |
---|
| 1652 | IntI3 = ((sqrt2 * sigma1s * (senv + deltasenv)) / (4 * sqrtpi * deltasenv)) * (exp_xenv1 - exp_xenv2) |
---|
| 1653 | IntI1_CF = ((senv + deltasenv) * (erf(xenv2) - erf(xenv1))) / (4 * deltasenv) |
---|
| 1654 | IntI3_CF = (sqrt2 * sigma1s * (exp_xenv1 - exp_xenv2)) / (4 * sqrtpi * deltasenv) |
---|
| 1655 | qcenv(ind1) = IntJ + IntI1 + IntI2 + IntI3 |
---|
| 1656 | cenv_vol(ind1) = IntJ_CF + IntI1_CF + IntI3_CF |
---|
| 1657 | IF (Tbefenv(ind1) < temp_nowater) THEN |
---|
| 1658 | ! freeze all droplets in cirrus temperature regime |
---|
| 1659 | icefracenv(ind1) = 1. |
---|
| 1660 | ENDIF |
---|
| 1661 | ENDIF |
---|
[3999] | 1662 | |
---|
| 1663 | |
---|
| 1664 | |
---|
[5144] | 1665 | !thermals |
---|
[3999] | 1666 | |
---|
[5144] | 1667 | IntJ = 0.5 * sth * (1 - erf(xth2)) + (sigma2s / sqrt2pi) * exp_xth2 |
---|
| 1668 | IntJ_CF = 0.5 * (1. - 1. * erf(xth2)) |
---|
[3999] | 1669 | |
---|
[5144] | 1670 | IF (deltasth < 1.e-10) THEN |
---|
| 1671 | qcth(ind1) = IntJ |
---|
| 1672 | cth_vol(ind1) = IntJ_CF |
---|
| 1673 | ELSE |
---|
| 1674 | IntI1 = (((sth + deltasth)**2 + (sigma2s)**2) / (8 * deltasth)) * (erf(xth2) - erf(xth1)) |
---|
| 1675 | IntI2 = (sigma2s**2 / (4 * deltasth * sqrtpi)) * (xth1 * exp_xth1 - xth2 * exp_xth2) |
---|
| 1676 | IntI3 = ((sqrt2 * sigma2s * (sth + deltasth)) / (4 * sqrtpi * deltasth)) * (exp_xth1 - exp_xth2) |
---|
| 1677 | IntI1_CF = ((sth + deltasth) * (erf(xth2) - erf(xth1))) / (4 * deltasth) |
---|
| 1678 | IntI3_CF = (sqrt2 * sigma2s * (exp_xth1 - exp_xth2)) / (4 * sqrtpi * deltasth) |
---|
| 1679 | qcth(ind1) = IntJ + IntI1 + IntI2 + IntI3 |
---|
| 1680 | cth_vol(ind1) = IntJ_CF + IntI1_CF + IntI3_CF |
---|
| 1681 | IF (Tbefth(ind1) < temp_nowater) THEN |
---|
| 1682 | ! freeze all droplets in cirrus temperature regime |
---|
| 1683 | icefracth(ind1) = 1. |
---|
| 1684 | ENDIF |
---|
[3999] | 1685 | |
---|
[5144] | 1686 | ENDIF |
---|
[4910] | 1687 | |
---|
[5144] | 1688 | qctot(ind1) = frac_th(ind1) * qcth(ind1) + (1. - 1. * frac_th(ind1)) * qcenv(ind1) |
---|
| 1689 | ctot_vol(ind1) = frac_th(ind1) * cth_vol(ind1) + (1. - 1. * frac_th(ind1)) * cenv_vol(ind1) |
---|
[3999] | 1690 | |
---|
[5144] | 1691 | IF (cenv(ind1)<min_neb_th.AND.cth(ind1)<min_neb_th) THEN |
---|
| 1692 | ctot(ind1) = 0. |
---|
| 1693 | ctot_vol(ind1) = 0. |
---|
| 1694 | qcloud(ind1) = qslenv(ind1) |
---|
| 1695 | qincloud(ind1) = 0. |
---|
| 1696 | icefrac(ind1) = 0. |
---|
| 1697 | ELSE |
---|
| 1698 | qcloud(ind1) = qctot(ind1) / ctot(ind1) + qslenv(ind1) |
---|
| 1699 | qincloud(ind1) = qctot(ind1) / ctot(ind1) |
---|
| 1700 | IF (qctot(ind1) > 0) THEN |
---|
| 1701 | icefrac(ind1) = (frac_th(ind1) * qcth(ind1) * icefracth(ind1) + (1. - 1. * frac_th(ind1)) * qcenv(ind1) * icefracenv(ind1)) / qctot(ind1) |
---|
| 1702 | icefrac(ind1) = max(min(1., icefrac(ind1)), 0.) |
---|
| 1703 | ENDIF |
---|
| 1704 | ENDIF |
---|
[3999] | 1705 | |
---|
| 1706 | |
---|
[5144] | 1707 | ! ELSE ! mpc_bl_points>0 |
---|
[3999] | 1708 | |
---|
[5144] | 1709 | ELSE ! gaussian for environment only |
---|
[3999] | 1710 | |
---|
[5144] | 1711 | alenv = (0.622 * RLVTT * qslenv(ind1)) / (rd * thetal_env(ind1)**2) |
---|
| 1712 | aenv = 1. / (1. + (alenv * RLVTT / rcpd)) |
---|
| 1713 | senv = aenv * (qt_env(ind1) - qslenv(ind1)) |
---|
| 1714 | sth = 0. |
---|
| 1715 | sigma1s = ratqs(ind1) * qt_env(ind1) |
---|
| 1716 | sigma2s = 0. |
---|
[3999] | 1717 | |
---|
[5144] | 1718 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
| 1719 | cenv(ind1) = 0.5 * (1. - 1. * erf(xenv)) |
---|
| 1720 | ctot(ind1) = 0.5 * (1. + 1. * erf(xenv)) |
---|
| 1721 | ctot_vol(ind1) = ctot(ind1) |
---|
| 1722 | qctot(ind1) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1)) |
---|
[3999] | 1723 | |
---|
[5082] | 1724 | IF (ctot(ind1)<min_neb_th) THEN |
---|
[5144] | 1725 | ctot(ind1) = 0. |
---|
| 1726 | qcloud(ind1) = qslenv(ind1) |
---|
| 1727 | qincloud(ind1) = 0. |
---|
| 1728 | ELSE |
---|
| 1729 | qcloud(ind1) = qctot(ind1) / ctot(ind1) + qslenv(ind1) |
---|
| 1730 | qincloud(ind1) = MAX(qctot(ind1) / ctot(ind1), 0.) |
---|
[3999] | 1731 | ENDIF |
---|
| 1732 | |
---|
[5144] | 1733 | ENDIF ! From the separation (thermal/envrionnement) and (environnement only,) l.335 et l.492 |
---|
[3999] | 1734 | |
---|
[5144] | 1735 | ! Outputs used to check the PDFs |
---|
| 1736 | cloudth_senv(ind1) = senv |
---|
| 1737 | cloudth_sth(ind1) = sth |
---|
| 1738 | cloudth_sigmaenv(ind1) = sigma1s |
---|
| 1739 | cloudth_sigmath(ind1) = sigma2s |
---|
[3999] | 1740 | |
---|
[4114] | 1741 | ENDDO !loop on klon |
---|
[3999] | 1742 | |
---|
[5144] | 1743 | END SUBROUTINE cloudth_mpc |
---|
[4114] | 1744 | |
---|
[3999] | 1745 | |
---|
[5144] | 1746 | ! ELSE ! mpc_bl_points>0 |
---|
[3999] | 1747 | |
---|
[5144] | 1748 | ! ! Treat boundary layer mixed phase clouds |
---|
[5105] | 1749 | |
---|
[5144] | 1750 | ! ! thermals |
---|
| 1751 | ! !========= |
---|
[3999] | 1752 | |
---|
[5144] | 1753 | ! ! ice phase |
---|
| 1754 | ! !........... |
---|
[4910] | 1755 | |
---|
[5144] | 1756 | ! qiceth=0. |
---|
| 1757 | ! deltazlev_mpc=dz(ind1,:) |
---|
| 1758 | ! temp_mpc=ztla(ind1,:)*zpspsk(ind1,:) |
---|
| 1759 | ! pres_mpc=pplay(ind1,:) |
---|
| 1760 | ! fraca_mpc=fraca(ind1,:) |
---|
| 1761 | ! snowf_mpc=snowflux(ind1,:) |
---|
| 1762 | ! iflag_topthermals=0 |
---|
| 1763 | ! IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 0)) THEN |
---|
| 1764 | ! iflag_topthermals = 1 |
---|
| 1765 | ! ELSE IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 1) & |
---|
| 1766 | ! .AND. (mpc_bl_points(ind1,ind2+2) .EQ. 0) ) THEN |
---|
| 1767 | ! iflag_topthermals = 2 |
---|
| 1768 | ! ELSE |
---|
| 1769 | ! iflag_topthermals = 0 |
---|
| 1770 | ! ENDIF |
---|
[4910] | 1771 | |
---|
[5144] | 1772 | ! CALL ICE_MPC_BL_CLOUDS(ind1,ind2,klev,Ni,Ei,C_cap,d_top,iflag_topthermals,temp_mpc,pres_mpc,zqta(ind1,:), & |
---|
| 1773 | ! qsith(ind1,:),qlth(ind1,:),deltazlev_mpc,wiceth(ind1,:),fraca_mpc,qith(ind1,:)) |
---|
[5099] | 1774 | |
---|
[5144] | 1775 | ! ! qmax calculation |
---|
| 1776 | ! sigma2s=(sigma2s_factor*((MAX((sthl-senvl),0.)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
---|
| 1777 | ! deltasth=athl*vert_alpha_th*sigma2s |
---|
| 1778 | ! xth1=-(sthl+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1779 | ! xth2=-(sthl-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1780 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
| 1781 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
| 1782 | ! IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
| 1783 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
| 1784 | ! IntI1=(((sthl+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
| 1785 | ! IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
| 1786 | ! IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
| 1787 | ! IntI1_CF=((sthl+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
| 1788 | ! IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
| 1789 | ! qmax=MAX(IntJ+IntI1+IntI2+IntI3,0.) |
---|
[5099] | 1790 | |
---|
| 1791 | |
---|
[5144] | 1792 | ! ! Liquid phase |
---|
| 1793 | ! !................ |
---|
| 1794 | ! ! We account for the effect of ice crystals in thermals on sthl |
---|
| 1795 | ! ! and on the width of the distribution |
---|
[5099] | 1796 | |
---|
[5144] | 1797 | ! sthlc=sthl*1./(1.+C_mpc*qith(ind1,ind2)) & |
---|
| 1798 | ! + (1.-1./(1.+C_mpc*qith(ind1,ind2))) * athl*(qsith(ind1,ind2)-qslth(ind1)) |
---|
[5099] | 1799 | |
---|
[5144] | 1800 | ! sigma2sc=(sigma2s_factor*((MAX((sthlc-senvl),0.)**2)**0.5) & |
---|
| 1801 | ! /((fraca(ind1,ind2)+0.02)**sigma2s_power)) & |
---|
| 1802 | ! +0.002*zqta(ind1,ind2) |
---|
| 1803 | ! deltasthc=athl*vert_alpha_th*sigma2sc |
---|
[5099] | 1804 | |
---|
| 1805 | |
---|
[5144] | 1806 | ! xth1=-(sthlc+deltasthc)/(sqrt(2.)*sigma2sc) |
---|
| 1807 | ! xth2=-(sthlc-deltasthc)/(sqrt(2.)*sigma2sc) |
---|
| 1808 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
| 1809 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
| 1810 | ! IntJ=0.5*sthlc*(1-erf(xth2))+(sigma2sc/sqrt2pi)*exp_xth2 |
---|
| 1811 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
| 1812 | ! IntI1=(((sthlc+deltasthc)**2+(sigma2sc)**2)/(8*deltasthc))*(erf(xth2)-erf(xth1)) |
---|
| 1813 | ! IntI2=(sigma2sc**2/(4*deltasthc*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
| 1814 | ! IntI3=((sqrt2*sigma2sc*(sthlc+deltasthc))/(4*sqrtpi*deltasthc))*(exp_xth1-exp_xth2) |
---|
| 1815 | ! IntI1_CF=((sthlc+deltasthc)*(erf(xth2)-erf(xth1)))/(4*deltasthc) |
---|
| 1816 | ! IntI3_CF=(sqrt2*sigma2sc*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasthc) |
---|
| 1817 | ! qliqth=IntJ+IntI1+IntI2+IntI3 |
---|
[5099] | 1818 | |
---|
[5144] | 1819 | ! qlth(ind1,ind2)=MAX(0.,qliqth) |
---|
[5099] | 1820 | |
---|
[5144] | 1821 | ! ! Condensed water |
---|
[5099] | 1822 | |
---|
[5144] | 1823 | ! qcth(ind1,ind2)=qlth(ind1,ind2)+qith(ind1,ind2) |
---|
[5099] | 1824 | |
---|
| 1825 | |
---|
[5144] | 1826 | ! ! consistency with subgrid distribution |
---|
[5099] | 1827 | |
---|
[5144] | 1828 | ! IF ((qcth(ind1,ind2) .GT. qmax) .AND. (qcth(ind1,ind2) .GT. 0)) THEN |
---|
| 1829 | ! fraci=qith(ind1,ind2)/qcth(ind1,ind2) |
---|
| 1830 | ! qcth(ind1,ind2)=qmax |
---|
| 1831 | ! qith(ind1,ind2)=fraci*qmax |
---|
| 1832 | ! qlth(ind1,ind2)=(1.-fraci)*qmax |
---|
| 1833 | ! ENDIF |
---|
[5099] | 1834 | |
---|
[5144] | 1835 | ! ! Cloud Fraction |
---|
| 1836 | ! !............... |
---|
| 1837 | ! ! calculation of qbase which is the value of the water vapor within mixed phase clouds |
---|
| 1838 | ! ! such that the total water in cloud = qbase+qliqth+qiceth |
---|
| 1839 | ! ! sbase is the value of s such that int_sbase^\intfy s ds = cloud fraction |
---|
| 1840 | ! ! sbase and qbase calculation (note that sbase is wrt liq so negative) |
---|
| 1841 | ! ! look for an approximate solution with iteration |
---|
[5099] | 1842 | |
---|
[5144] | 1843 | ! ttarget=qcth(ind1,ind2) |
---|
| 1844 | ! mini= athl*(qsith(ind1,ind2)-qslth(ind1)) |
---|
| 1845 | ! maxi= 0. !athl*(3.*sqrt(sigma2s)) |
---|
| 1846 | ! niter=20 |
---|
| 1847 | ! pas=(maxi-mini)/niter |
---|
| 1848 | ! stmp=mini |
---|
| 1849 | ! sbase=stmp |
---|
| 1850 | ! coutref=1.E6 |
---|
| 1851 | ! DO iter=1,niter |
---|
| 1852 | ! cout=ABS(sigma2s/SQRT(2.*RPI)*EXP(-((sthl-stmp)/sigma2s)**2)+(sthl-stmp)/SQRT(2.)*(1.-erf(-(sthl-stmp)/sigma2s)) & |
---|
| 1853 | ! + stmp/2.*(1.-erf(-(sthl-stmp)/sigma2s)) -ttarget) |
---|
| 1854 | ! IF (cout .LT. coutref) THEN |
---|
| 1855 | ! sbase=stmp |
---|
| 1856 | ! coutref=cout |
---|
| 1857 | ! ELSE |
---|
| 1858 | ! stmp=stmp+pas |
---|
| 1859 | ! ENDIF |
---|
| 1860 | ! ENDDO |
---|
| 1861 | ! qbase=MAX(0., sbase/athl+qslth(ind1)) |
---|
[5099] | 1862 | |
---|
[5144] | 1863 | ! ! surface cloud fraction in thermals |
---|
| 1864 | ! cth(ind1,ind2)=0.5*(1.-erf((sbase-sthl)/sqrt(2.)/sigma2s)) |
---|
| 1865 | ! cth(ind1,ind2)=MIN(MAX(cth(ind1,ind2),0.),1.) |
---|
[5099] | 1866 | |
---|
| 1867 | |
---|
[5144] | 1868 | ! !volume cloud fraction in thermals |
---|
| 1869 | ! !to be checked |
---|
| 1870 | ! xth1=-(sthl+deltasth-sbase)/(sqrt(2.)*sigma2s) |
---|
| 1871 | ! xth2=-(sthl-deltasth-sbase)/(sqrt(2.)*sigma2s) |
---|
| 1872 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
| 1873 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
[5099] | 1874 | |
---|
[5144] | 1875 | ! IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
| 1876 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
[5099] | 1877 | |
---|
[5144] | 1878 | ! IF (deltasth .LT. 1.e-10) THEN |
---|
| 1879 | ! cth_vol(ind1,ind2)=IntJ_CF |
---|
| 1880 | ! ELSE |
---|
| 1881 | ! IntI1=(((sthl+deltasth-sbase)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
| 1882 | ! IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
| 1883 | ! IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
| 1884 | ! IntI1_CF=((sthl-sbase+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
| 1885 | ! IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
| 1886 | ! cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
| 1887 | ! ENDIF |
---|
| 1888 | ! cth_vol(ind1,ind2)=MIN(MAX(0.,cth_vol(ind1,ind2)),1.) |
---|
[5099] | 1889 | |
---|
| 1890 | |
---|
| 1891 | |
---|
[5144] | 1892 | ! ! Environment |
---|
| 1893 | ! !============= |
---|
| 1894 | ! ! In the environment/downdrafts, ONLY liquid clouds |
---|
| 1895 | ! ! See Shupe et al. 2008, JAS |
---|
[5099] | 1896 | |
---|
[5144] | 1897 | ! ! standard deviation of the distribution in the environment |
---|
| 1898 | ! sth=sthl |
---|
| 1899 | ! senv=senvl |
---|
| 1900 | ! sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
---|
| 1901 | ! & (1-fraca(ind1,ind2))*(MAX((sth-senv),0.)**2)**0.5 |
---|
| 1902 | ! ! for mixed phase clouds, there is no contribution from large scale ratqs to the distribution |
---|
| 1903 | ! ! in the environement |
---|
[5099] | 1904 | |
---|
[5144] | 1905 | ! sigma1s_ratqs=1E-10 |
---|
| 1906 | ! IF (cloudth_ratqsmin>0.) THEN |
---|
| 1907 | ! sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
---|
| 1908 | ! ENDIF |
---|
[5099] | 1909 | |
---|
[5144] | 1910 | ! sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
| 1911 | ! IF (iflag_ratqs.EQ.11) THEN |
---|
| 1912 | ! sigma1s = ratqs(ind1,ind2)*po(ind1)*aenv |
---|
| 1913 | ! ENDIF |
---|
| 1914 | ! IF (iflag_ratqs.EQ.11) THEN |
---|
| 1915 | ! sigma1s = ratqs(ind1,ind2)*po(ind1)*aenvl |
---|
| 1916 | ! ENDIF |
---|
| 1917 | ! deltasenv=aenvl*vert_alpha*sigma1s |
---|
| 1918 | ! xenv1=-(senvl+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1919 | ! xenv2=-(senvl-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1920 | ! exp_xenv1 = exp(-1.*xenv1**2) |
---|
| 1921 | ! exp_xenv2 = exp(-1.*xenv2**2) |
---|
[5099] | 1922 | |
---|
[5144] | 1923 | ! !surface CF |
---|
| 1924 | ! cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
[5099] | 1925 | |
---|
[5144] | 1926 | ! !volume CF and condensed water |
---|
| 1927 | ! IntJ=0.5*senvl*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
| 1928 | ! IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
[5099] | 1929 | |
---|
[5144] | 1930 | ! IF (deltasenv .LT. 1.e-10) THEN |
---|
| 1931 | ! qcenv(ind1,ind2)=IntJ |
---|
| 1932 | ! cenv_vol(ind1,ind2)=IntJ_CF |
---|
| 1933 | ! ELSE |
---|
| 1934 | ! IntI1=(((senvl+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
| 1935 | ! IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
| 1936 | ! IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
| 1937 | ! IntI1_CF=((senvl+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
| 1938 | ! IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
| 1939 | ! qcenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 ! only liquid water in environment |
---|
| 1940 | ! cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
| 1941 | ! ENDIF |
---|
[5099] | 1942 | |
---|
[5144] | 1943 | ! qcenv(ind1,ind2)=MAX(qcenv(ind1,ind2),0.) |
---|
| 1944 | ! cenv_vol(ind1,ind2)=MIN(MAX(cenv_vol(ind1,ind2),0.),1.) |
---|
[5099] | 1945 | |
---|
| 1946 | |
---|
| 1947 | |
---|
[5144] | 1948 | ! ! Thermals + environment |
---|
| 1949 | ! ! ======================= |
---|
| 1950 | ! ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 1951 | ! qctot(ind1,ind2)=fraca(ind1,ind2)*qcth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2) |
---|
| 1952 | ! ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
| 1953 | ! IF (qcth(ind1,ind2) .GT. 0) THEN |
---|
| 1954 | ! icefrac(ind1,ind2)=fraca(ind1,ind2)*qith(ind1,ind2) & |
---|
| 1955 | ! /(fraca(ind1,ind2)*qcth(ind1,ind2) & |
---|
| 1956 | ! +(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2)) |
---|
| 1957 | ! icefrac(ind1,ind2)=MAX(MIN(1.,icefrac(ind1,ind2)),0.) |
---|
| 1958 | ! ELSE |
---|
| 1959 | ! icefrac(ind1,ind2)=0. |
---|
| 1960 | ! ENDIF |
---|
[5099] | 1961 | |
---|
[5144] | 1962 | ! IF (cenv(ind1,ind2).LT.1.e-10.OR.cth(ind1,ind2).LT.1.e-10) THEN |
---|
| 1963 | ! ctot(ind1,ind2)=0. |
---|
| 1964 | ! ctot_vol(ind1,ind2)=0. |
---|
| 1965 | ! qincloud(ind1)=0. |
---|
| 1966 | ! qcloud(ind1)=zqsatenv(ind1) |
---|
| 1967 | ! ELSE |
---|
| 1968 | ! qcloud(ind1)=fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)+qbase) & |
---|
| 1969 | ! +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)+qslenv(ind1)) |
---|
| 1970 | ! qincloud(ind1)=MAX(fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)) & |
---|
| 1971 | ! +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)),0.) |
---|
| 1972 | ! ENDIF |
---|
[5099] | 1973 | |
---|
[5144] | 1974 | ! ENDIF ! mpc_bl_points |
---|
[5099] | 1975 | |
---|
| 1976 | |
---|
| 1977 | |
---|
[5144] | 1978 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 1979 | SUBROUTINE ICE_MPC_BL_CLOUDS(ind1, ind2, klev, Ni, Ei, C_cap, d_top, iflag_topthermals, temp, pres, qth, qsith, qlth, deltazlev, vith, fraca, qith) |
---|
[5099] | 1980 | |
---|
[5144] | 1981 | ! parameterization of ice for boundary |
---|
| 1982 | ! layer mixed-phase clouds assuming a stationary system |
---|
[5099] | 1983 | |
---|
[5144] | 1984 | ! Note that vapor deposition on ice crystals and riming of liquid droplets |
---|
| 1985 | ! depend on the ice number concentration Ni |
---|
| 1986 | ! One could assume that Ni depends on qi, e.g., Ni=beta*(qi*rho)**xi |
---|
| 1987 | ! and use values from Hong et al. 2004, MWR for instance |
---|
| 1988 | ! One may also estimate Ni as a function of T, as in Meyers 1922 or Fletcher 1962 |
---|
| 1989 | ! One could also think of a more complex expression of Ni; |
---|
| 1990 | ! function of qi, T, the concentration in aerosols or INP .. |
---|
| 1991 | ! Here we prefer fixing Ni to a tuning parameter |
---|
| 1992 | ! By default we take 2.0L-1=2.0e3m-3, median value from measured vertical profiles near Svalbard |
---|
| 1993 | ! in Mioche et al. 2017 |
---|
[4910] | 1994 | |
---|
| 1995 | |
---|
[5144] | 1996 | ! References: |
---|
| 1997 | !------------ |
---|
| 1998 | ! This parameterization is thoroughly described in Vignon et al. |
---|
[4910] | 1999 | |
---|
[5144] | 2000 | ! More specifically |
---|
| 2001 | ! for the Water vapor deposition process: |
---|
[3999] | 2002 | |
---|
[5144] | 2003 | ! Rotstayn, L. D., 1997: A physically based scheme for the treat- |
---|
| 2004 | ! ment of stratiform cloudfs and precipitation in large-scale |
---|
| 2005 | ! models. I: Description and evaluation of the microphysical |
---|
| 2006 | ! processes. Quart. J. Roy. Meteor. Soc., 123, 1227–1282. |
---|
[5099] | 2007 | |
---|
[5144] | 2008 | ! Morrison, H., and A. Gettelman, 2008: A new two-moment bulk |
---|
| 2009 | ! stratiform cloud microphysics scheme in the NCAR Com- |
---|
| 2010 | ! munity Atmosphere Model (CAM3). Part I: Description and |
---|
| 2011 | ! numerical tests. J. Climate, 21, 3642–3659 |
---|
[5099] | 2012 | |
---|
[5144] | 2013 | ! for the Riming process: |
---|
[5099] | 2014 | |
---|
[5144] | 2015 | ! Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and micro- |
---|
| 2016 | ! scale structure and organization of clouds and precipitation in |
---|
| 2017 | ! midlatitude cyclones. VII: A model for the ‘‘seeder-feeder’’ |
---|
| 2018 | ! process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206 |
---|
[5099] | 2019 | |
---|
[5144] | 2020 | ! Thompson, G., R. M. Rasmussen, and K. Manning, 004: Explicit |
---|
| 2021 | ! forecasts of winter precipitation using an improved bulk |
---|
| 2022 | ! microphysics scheme. Part I: Description and sensitivityThompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit |
---|
| 2023 | ! forecasts of winter precipitation using an improved bulk |
---|
| 2024 | ! microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542 |
---|
[5099] | 2025 | |
---|
[5144] | 2026 | ! For the formation of clouds by thermals: |
---|
[5099] | 2027 | |
---|
[5144] | 2028 | ! Rio, C., & Hourdin, F. (2008). A thermal plume model for the convective boundary layer : Representation of cumulus clouds. Journal of |
---|
| 2029 | ! the Atmospheric Sciences, 65, 407–425. |
---|
[5099] | 2030 | |
---|
[5144] | 2031 | ! Jam, A., Hourdin, F., Rio, C., & Couvreux, F. (2013). Resolved versus parametrized boundary-layer plumes. Part III: Derivation of a |
---|
| 2032 | ! statistical scheme for cumulus clouds. Boundary-layer Meteorology, 147, 421–441. https://doi.org/10.1007/s10546-012-9789-3 |
---|
[5099] | 2033 | |
---|
| 2034 | |
---|
| 2035 | |
---|
[5144] | 2036 | ! Contact: Etienne Vignon, etienne.vignon@lmd.ipsl.fr |
---|
| 2037 | !============================================================================= |
---|
[5099] | 2038 | |
---|
[5117] | 2039 | USE phys_state_var_mod, ONLY: fm_therm, detr_therm, entr_therm |
---|
[5144] | 2040 | USE lmdz_yomcst |
---|
[3999] | 2041 | |
---|
[5134] | 2042 | IMPLICIT NONE |
---|
[3999] | 2043 | |
---|
[5144] | 2044 | INTEGER, INTENT(IN) :: ind1, ind2, klev ! horizontal and vertical indices and dimensions |
---|
[4072] | 2045 | INTEGER, INTENT(IN) :: iflag_topthermals ! uppermost layer of thermals ? |
---|
[5144] | 2046 | REAL, INTENT(IN) :: Ni ! ice number concentration [m-3] |
---|
| 2047 | REAL, INTENT(IN) :: Ei ! ice-droplet collision efficiency |
---|
| 2048 | REAL, INTENT(IN) :: C_cap ! ice crystal capacitance |
---|
| 2049 | REAL, INTENT(IN) :: d_top ! cloud-top ice crystal mixing parameter |
---|
| 2050 | REAL, DIMENSION(klev), INTENT(IN) :: temp ! temperature [K] within thermals |
---|
| 2051 | REAL, DIMENSION(klev), INTENT(IN) :: pres ! pressure [Pa] |
---|
| 2052 | REAL, DIMENSION(klev), INTENT(IN) :: qth ! mean specific water content in thermals [kg/kg] |
---|
| 2053 | REAL, DIMENSION(klev), INTENT(IN) :: qsith ! saturation specific humidity wrt ice in thermals [kg/kg] |
---|
| 2054 | REAL, DIMENSION(klev), INTENT(IN) :: qlth ! condensed liquid water in thermals, approximated value [kg/kg] |
---|
| 2055 | REAL, DIMENSION(klev), INTENT(IN) :: deltazlev ! layer thickness [m] |
---|
| 2056 | REAL, DIMENSION(klev), INTENT(IN) :: vith ! ice crystal fall velocity [m/s] |
---|
| 2057 | REAL, DIMENSION(klev + 1), INTENT(IN) :: fraca ! fraction of the mesh covered by thermals |
---|
| 2058 | REAL, DIMENSION(klev), INTENT(INOUT) :: qith ! condensed ice water , thermals [kg/kg] |
---|
[3999] | 2059 | |
---|
[5144] | 2060 | INTEGER ind2p1, ind2p2 |
---|
[3999] | 2061 | REAL rho(klev) |
---|
| 2062 | REAL unsurtaudet, unsurtaustardep, unsurtaurim |
---|
[4072] | 2063 | REAL qi, AA, BB, Ka, Dv, rhoi |
---|
| 2064 | REAL p0, t0, fp1, fp2 |
---|
[3999] | 2065 | REAL alpha, flux_term |
---|
| 2066 | REAL det_term, precip_term, rim_term, dep_term |
---|
| 2067 | |
---|
[5144] | 2068 | ind2p1 = ind2 + 1 |
---|
| 2069 | ind2p2 = ind2 + 2 |
---|
[3999] | 2070 | |
---|
[5144] | 2071 | rho = pres / temp / RD ! air density kg/m3 |
---|
[3999] | 2072 | |
---|
[5144] | 2073 | Ka = 2.4e-2 ! thermal conductivity of the air, SI |
---|
| 2074 | p0 = 101325.0 ! ref pressure |
---|
| 2075 | T0 = 273.15 ! ref temp |
---|
| 2076 | rhoi = 500.0 ! cloud ice density following Reisner et al. 1998 |
---|
| 2077 | alpha = 700. ! fallvelocity param |
---|
[3999] | 2078 | |
---|
[5144] | 2079 | IF (iflag_topthermals > 0) THEN ! uppermost thermals levels |
---|
[3999] | 2080 | |
---|
[5144] | 2081 | Dv = 0.0001 * 0.211 * (p0 / pres(ind2)) * ((temp(ind2) / T0)**1.94) ! water vapor diffusivity in air, SI |
---|
[3999] | 2082 | |
---|
[5144] | 2083 | ! Detrainment term: |
---|
[3999] | 2084 | |
---|
[5144] | 2085 | unsurtaudet = detr_therm(ind1, ind2) / rho(ind2) / deltazlev(ind2) |
---|
[3999] | 2086 | |
---|
[4072] | 2087 | |
---|
[5144] | 2088 | ! Deposition term |
---|
| 2089 | AA = RLSTT / Ka / temp(ind2) * (RLSTT / RV / temp(ind2) - 1.) |
---|
| 2090 | BB = 1. / (rho(ind2) * Dv * qsith(ind2)) |
---|
| 2091 | unsurtaustardep = C_cap * (Ni**0.66) * (qth(ind2) - qsith(ind2)) / qsith(ind2) & |
---|
| 2092 | * 4. * RPI / (AA + BB) * (6. * rho(ind2) / rhoi / RPI / Gamma(4.))**(0.33) |
---|
[3999] | 2093 | |
---|
[5144] | 2094 | ! Riming term neglected at this level |
---|
| 2095 | !unsurtaurim=rho(ind2)*alpha*3./rhoi/2.*Ei*qlth(ind2)*((p0/pres(ind2))**0.4) |
---|
[3999] | 2096 | |
---|
[5144] | 2097 | qi = fraca(ind2) * unsurtaustardep / MAX((d_top * unsurtaudet), 1E-12) |
---|
| 2098 | qi = MAX(qi, 0.)**(3. / 2.) |
---|
[3999] | 2099 | |
---|
| 2100 | ELSE ! other levels, estimate qi(k) from variables at k+1 and k+2 |
---|
| 2101 | |
---|
[5144] | 2102 | Dv = 0.0001 * 0.211 * (p0 / pres(ind2p1)) * ((temp(ind2p1) / T0)**1.94) ! water vapor diffusivity in air, SI |
---|
[3999] | 2103 | |
---|
[5144] | 2104 | ! Detrainment term: |
---|
[3999] | 2105 | |
---|
[5144] | 2106 | unsurtaudet = detr_therm(ind1, ind2p1) / rho(ind2p1) / deltazlev(ind2p1) |
---|
| 2107 | det_term = -unsurtaudet * qith(ind2p1) * rho(ind2p1) |
---|
[3999] | 2108 | |
---|
| 2109 | |
---|
[5144] | 2110 | ! Deposition term |
---|
[3999] | 2111 | |
---|
[5144] | 2112 | AA = RLSTT / Ka / temp(ind2p1) * (RLSTT / RV / temp(ind2p1) - 1.) |
---|
| 2113 | BB = 1. / (rho(ind2p1) * Dv * qsith(ind2p1)) |
---|
| 2114 | unsurtaustardep = C_cap * (Ni**0.66) * (qth(ind2p1) - qsith(ind2p1)) & |
---|
| 2115 | / qsith(ind2p1) * 4. * RPI / (AA + BB) & |
---|
| 2116 | * (6. * rho(ind2p1) / rhoi / RPI / Gamma(4.))**(0.33) |
---|
| 2117 | dep_term = rho(ind2p1) * fraca(ind2p1) * (qith(ind2p1)**0.33) * unsurtaustardep |
---|
[3999] | 2118 | |
---|
[5144] | 2119 | ! Riming term |
---|
[3999] | 2120 | |
---|
[5144] | 2121 | unsurtaurim = rho(ind2p1) * alpha * 3. / rhoi / 2. * Ei * qlth(ind2p1) * ((p0 / pres(ind2p1))**0.4) |
---|
| 2122 | rim_term = rho(ind2p1) * fraca(ind2p1) * qith(ind2p1) * unsurtaurim |
---|
[4072] | 2123 | |
---|
[5144] | 2124 | ! Precip term |
---|
[3999] | 2125 | |
---|
[5144] | 2126 | ! We assume that there is no solid precipitation outside thermals |
---|
| 2127 | ! so the precipitation flux within thermals is equal to the precipitation flux |
---|
| 2128 | ! at mesh-scale divided by thermals fraction |
---|
[3999] | 2129 | |
---|
[5144] | 2130 | fp2 = 0. |
---|
| 2131 | fp1 = 0. |
---|
| 2132 | IF (fraca(ind2p1) > 0.) THEN |
---|
| 2133 | fp2 = -qith(ind2p2) * rho(ind2p2) * vith(ind2p2) * fraca(ind2p2)! flux defined positive upward |
---|
| 2134 | fp1 = -qith(ind2p1) * rho(ind2p1) * vith(ind2p1) * fraca(ind2p1) |
---|
| 2135 | ENDIF |
---|
[3999] | 2136 | |
---|
[5144] | 2137 | precip_term = -1. / deltazlev(ind2p1) * (fp2 - fp1) |
---|
[4072] | 2138 | |
---|
[5144] | 2139 | ! Calculation in a top-to-bottom loop |
---|
[3999] | 2140 | |
---|
[5144] | 2141 | IF (fm_therm(ind1, ind2p1) > 0.) THEN |
---|
| 2142 | qi = 1. / fm_therm(ind1, ind2p1) * & |
---|
| 2143 | (deltazlev(ind2p1) * (-rim_term - dep_term - det_term - precip_term) + & |
---|
| 2144 | fm_therm(ind1, ind2p2) * (qith(ind2p1))) |
---|
| 2145 | END IF |
---|
[5105] | 2146 | |
---|
[5144] | 2147 | ENDIF ! top thermals |
---|
[3999] | 2148 | |
---|
[5144] | 2149 | qith(ind2) = MAX(0., qi) |
---|
| 2150 | |
---|
| 2151 | END SUBROUTINE ICE_MPC_BL_CLOUDS |
---|
| 2152 | |
---|
[4651] | 2153 | END MODULE lmdz_cloudth |
---|