1 | MODULE lmdz_cloudth |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE cloudth(ngrid, klev, ind2, & |
---|
8 | ztv, po, zqta, fraca, & |
---|
9 | qcloud, ctot, zpspsk, paprs, pplay, ztla, zthl, & |
---|
10 | ratqs, zqs, t, & |
---|
11 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
12 | |
---|
13 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert, iflag_ratqs |
---|
14 | USE lmdz_yoethf |
---|
15 | |
---|
16 | USE lmdz_yomcst |
---|
17 | |
---|
18 | IMPLICIT NONE |
---|
19 | INCLUDE "FCTTRE.h" |
---|
20 | |
---|
21 | |
---|
22 | !=========================================================================== |
---|
23 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
24 | ! Date : 25 Mai 2010 |
---|
25 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
26 | !=========================================================================== |
---|
27 | |
---|
28 | INTEGER itap, ind1, ind2 |
---|
29 | INTEGER ngrid, klev, klon, l, ig |
---|
30 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv |
---|
31 | |
---|
32 | REAL ztv(ngrid, klev) |
---|
33 | REAL po(ngrid) |
---|
34 | REAL zqenv(ngrid) |
---|
35 | REAL zqta(ngrid, klev) |
---|
36 | |
---|
37 | REAL fraca(ngrid, klev + 1) |
---|
38 | REAL zpspsk(ngrid, klev) |
---|
39 | REAL paprs(ngrid, klev + 1) |
---|
40 | REAL pplay(ngrid, klev) |
---|
41 | REAL ztla(ngrid, klev) |
---|
42 | REAL zthl(ngrid, klev) |
---|
43 | |
---|
44 | REAL zqsatth(ngrid, klev) |
---|
45 | REAL zqsatenv(ngrid, klev) |
---|
46 | |
---|
47 | REAL sigma1(ngrid, klev) |
---|
48 | REAL sigma2(ngrid, klev) |
---|
49 | REAL qlth(ngrid, klev) |
---|
50 | REAL qlenv(ngrid, klev) |
---|
51 | REAL qltot(ngrid, klev) |
---|
52 | REAL cth(ngrid, klev) |
---|
53 | REAL cenv(ngrid, klev) |
---|
54 | REAL ctot(ngrid, klev) |
---|
55 | REAL rneb(ngrid, klev) |
---|
56 | REAL t(ngrid, klev) |
---|
57 | REAL qsatmmussig1, qsatmmussig2, sqrt2pi, pi |
---|
58 | REAL rdd, cppd, Lv |
---|
59 | REAL alth, alenv, ath, aenv |
---|
60 | REAL sth, senv, sigma1s, sigma2s, xth, xenv |
---|
61 | REAL Tbef, zdelta, qsatbef, zcor |
---|
62 | REAL qlbef |
---|
63 | REAL ratqs(ngrid, klev) ! determine la largeur de distribution de vapeur |
---|
64 | |
---|
65 | REAL zpdf_sig(ngrid), zpdf_k(ngrid), zpdf_delta(ngrid) |
---|
66 | REAL zpdf_a(ngrid), zpdf_b(ngrid), zpdf_e1(ngrid), zpdf_e2(ngrid) |
---|
67 | REAL zqs(ngrid), qcloud(ngrid) |
---|
68 | REAL erf |
---|
69 | |
---|
70 | |
---|
71 | |
---|
72 | |
---|
73 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
74 | ! Gestion de deux versions de cloudth |
---|
75 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
76 | |
---|
77 | IF (iflag_cloudth_vert>=1) THEN |
---|
78 | CALL cloudth_vert(ngrid, klev, ind2, & |
---|
79 | ztv, po, zqta, fraca, & |
---|
80 | qcloud, ctot, zpspsk, paprs, pplay, ztla, zthl, & |
---|
81 | ratqs, zqs, t) |
---|
82 | RETURN |
---|
83 | ENDIF |
---|
84 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
85 | |
---|
86 | |
---|
87 | !------------------------------------------------------------------------------- |
---|
88 | ! Initialisation des variables r?elles |
---|
89 | !------------------------------------------------------------------------------- |
---|
90 | sigma1(:, :) = 0. |
---|
91 | sigma2(:, :) = 0. |
---|
92 | qlth(:, :) = 0. |
---|
93 | qlenv(:, :) = 0. |
---|
94 | qltot(:, :) = 0. |
---|
95 | rneb(:, :) = 0. |
---|
96 | qcloud(:) = 0. |
---|
97 | cth(:, :) = 0. |
---|
98 | cenv(:, :) = 0. |
---|
99 | ctot(:, :) = 0. |
---|
100 | qsatmmussig1 = 0. |
---|
101 | qsatmmussig2 = 0. |
---|
102 | rdd = 287.04 |
---|
103 | cppd = 1005.7 |
---|
104 | pi = 3.14159 |
---|
105 | Lv = 2.5e6 |
---|
106 | sqrt2pi = sqrt(2. * pi) |
---|
107 | |
---|
108 | |
---|
109 | |
---|
110 | !------------------------------------------------------------------------------- |
---|
111 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
112 | !------------------------------------------------------------------------------- |
---|
113 | DO ind1 = 1, ngrid |
---|
114 | |
---|
115 | IF ((ztv(ind1, 1)>ztv(ind1, 2)).AND.(fraca(ind1, ind2)>1.e-10)) THEN |
---|
116 | zqenv(ind1) = (po(ind1) - fraca(ind1, ind2) * zqta(ind1, ind2)) / (1. - fraca(ind1, ind2)) |
---|
117 | |
---|
118 | |
---|
119 | ! zqenv(ind1)=po(ind1) |
---|
120 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
121 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
122 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
123 | qsatbef = MIN(0.5, qsatbef) |
---|
124 | zcor = 1. / (1. - retv * qsatbef) |
---|
125 | qsatbef = qsatbef * zcor |
---|
126 | zqsatenv(ind1, ind2) = qsatbef |
---|
127 | |
---|
128 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
129 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
130 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
131 | |
---|
132 | Tbef = ztla(ind1, ind2) * zpspsk(ind1, ind2) |
---|
133 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
134 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
135 | qsatbef = MIN(0.5, qsatbef) |
---|
136 | zcor = 1. / (1. - retv * qsatbef) |
---|
137 | qsatbef = qsatbef * zcor |
---|
138 | zqsatth(ind1, ind2) = qsatbef |
---|
139 | |
---|
140 | alth = (0.622 * Lv * zqsatth(ind1, ind2)) / (rdd * ztla(ind1, ind2)**2) |
---|
141 | ath = 1. / (1. + (alth * Lv / cppd)) |
---|
142 | sth = ath * (zqta(ind1, ind2) - zqsatth(ind1, ind2)) |
---|
143 | |
---|
144 | |
---|
145 | |
---|
146 | !------------------------------------------------------------------------------ |
---|
147 | ! Calcul des ?cart-types pour s |
---|
148 | !------------------------------------------------------------------------------ |
---|
149 | |
---|
150 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
151 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) |
---|
152 | ! if (paprs(ind1,ind2).gt.90000) THEN |
---|
153 | ! ratqs(ind1,ind2)=0.002 |
---|
154 | ! else |
---|
155 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
156 | ! endif |
---|
157 | sigma1s = (1.1**0.5) * (fraca(ind1, ind2)**0.6) / (1 - fraca(ind1, ind2)) * ((sth - senv)**2)**0.5 + 0.002 * po(ind1) |
---|
158 | sigma2s = 0.11 * ((sth - senv)**2)**0.5 / (fraca(ind1, ind2) + 0.01)**0.4 + 0.002 * zqta(ind1, ind2) |
---|
159 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
160 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
161 | |
---|
162 | !------------------------------------------------------------------------------ |
---|
163 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
164 | !------------------------------------------------------------------------------ |
---|
165 | sqrt2pi = sqrt(2. * pi) |
---|
166 | xth = sth / (sqrt(2.) * sigma2s) |
---|
167 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
168 | cth(ind1, ind2) = 0.5 * (1. + 1. * erf(xth)) |
---|
169 | cenv(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
170 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
171 | |
---|
172 | qlth(ind1, ind2) = sigma2s * ((exp(-1. * xth**2) / sqrt2pi) + xth * sqrt(2.) * cth(ind1, ind2)) |
---|
173 | qlenv(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1, ind2)) |
---|
174 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
175 | |
---|
176 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
177 | IF (ctot(ind1, ind2)<1.e-10) THEN |
---|
178 | ctot(ind1, ind2) = 0. |
---|
179 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
180 | |
---|
181 | else |
---|
182 | |
---|
183 | ctot(ind1, ind2) = ctot(ind1, ind2) |
---|
184 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqs(ind1) |
---|
185 | |
---|
186 | endif |
---|
187 | |
---|
188 | |
---|
189 | ! PRINT*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
190 | |
---|
191 | else ! gaussienne environnement seule |
---|
192 | |
---|
193 | zqenv(ind1) = po(ind1) |
---|
194 | Tbef = t(ind1, ind2) |
---|
195 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
196 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
197 | qsatbef = MIN(0.5, qsatbef) |
---|
198 | zcor = 1. / (1. - retv * qsatbef) |
---|
199 | qsatbef = qsatbef * zcor |
---|
200 | zqsatenv(ind1, ind2) = qsatbef |
---|
201 | |
---|
202 | |
---|
203 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
204 | zthl(ind1, ind2) = t(ind1, ind2) * (101325 / paprs(ind1, ind2))**(rdd / cppd) |
---|
205 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
206 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
207 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
208 | |
---|
209 | sigma1s = ratqs(ind1, ind2) * zqenv(ind1) |
---|
210 | |
---|
211 | sqrt2pi = sqrt(2. * pi) |
---|
212 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
213 | ctot(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
214 | qltot(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1, ind2)) |
---|
215 | |
---|
216 | IF (ctot(ind1, ind2)<1.e-3) THEN |
---|
217 | ctot(ind1, ind2) = 0. |
---|
218 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
219 | |
---|
220 | else |
---|
221 | |
---|
222 | ctot(ind1, ind2) = ctot(ind1, ind2) |
---|
223 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqsatenv(ind1, ind2) |
---|
224 | |
---|
225 | endif |
---|
226 | |
---|
227 | endif |
---|
228 | enddo |
---|
229 | |
---|
230 | RETURN |
---|
231 | ! end |
---|
232 | END SUBROUTINE cloudth |
---|
233 | |
---|
234 | |
---|
235 | !=========================================================================== |
---|
236 | SUBROUTINE cloudth_vert(ngrid, klev, ind2, & |
---|
237 | ztv, po, zqta, fraca, & |
---|
238 | qcloud, ctot, zpspsk, paprs, pplay, ztla, zthl, & |
---|
239 | ratqs, zqs, t) |
---|
240 | |
---|
241 | !=========================================================================== |
---|
242 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
243 | ! Date : 25 Mai 2010 |
---|
244 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
245 | !=========================================================================== |
---|
246 | |
---|
247 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert, vert_alpha |
---|
248 | USE lmdz_yoethf |
---|
249 | |
---|
250 | USE lmdz_yomcst |
---|
251 | |
---|
252 | IMPLICIT NONE |
---|
253 | INCLUDE "FCTTRE.h" |
---|
254 | |
---|
255 | INTEGER itap, ind1, ind2 |
---|
256 | INTEGER ngrid, klev, klon, l, ig |
---|
257 | |
---|
258 | REAL ztv(ngrid, klev) |
---|
259 | REAL po(ngrid) |
---|
260 | REAL zqenv(ngrid) |
---|
261 | REAL zqta(ngrid, klev) |
---|
262 | |
---|
263 | REAL fraca(ngrid, klev + 1) |
---|
264 | REAL zpspsk(ngrid, klev) |
---|
265 | REAL paprs(ngrid, klev + 1) |
---|
266 | REAL pplay(ngrid, klev) |
---|
267 | REAL ztla(ngrid, klev) |
---|
268 | REAL zthl(ngrid, klev) |
---|
269 | |
---|
270 | REAL zqsatth(ngrid, klev) |
---|
271 | REAL zqsatenv(ngrid, klev) |
---|
272 | |
---|
273 | REAL sigma1(ngrid, klev) |
---|
274 | REAL sigma2(ngrid, klev) |
---|
275 | REAL qlth(ngrid, klev) |
---|
276 | REAL qlenv(ngrid, klev) |
---|
277 | REAL qltot(ngrid, klev) |
---|
278 | REAL cth(ngrid, klev) |
---|
279 | REAL cenv(ngrid, klev) |
---|
280 | REAL ctot(ngrid, klev) |
---|
281 | REAL rneb(ngrid, klev) |
---|
282 | REAL t(ngrid, klev) |
---|
283 | REAL qsatmmussig1, qsatmmussig2, sqrt2pi, pi |
---|
284 | REAL rdd, cppd, Lv, sqrt2, sqrtpi |
---|
285 | REAL alth, alenv, ath, aenv |
---|
286 | REAL sth, senv, sigma1s, sigma2s, xth, xenv |
---|
287 | REAL xth1, xth2, xenv1, xenv2, deltasth, deltasenv |
---|
288 | REAL IntJ, IntI1, IntI2, IntI3, coeffqlenv, coeffqlth |
---|
289 | REAL Tbef, zdelta, qsatbef, zcor |
---|
290 | REAL qlbef |
---|
291 | REAL ratqs(ngrid, klev) ! determine la largeur de distribution de vapeur |
---|
292 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
293 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
294 | |
---|
295 | REAL zpdf_sig(ngrid), zpdf_k(ngrid), zpdf_delta(ngrid) |
---|
296 | REAL zpdf_a(ngrid), zpdf_b(ngrid), zpdf_e1(ngrid), zpdf_e2(ngrid) |
---|
297 | REAL zqs(ngrid), qcloud(ngrid) |
---|
298 | REAL erf |
---|
299 | |
---|
300 | !------------------------------------------------------------------------------ |
---|
301 | ! Initialisation des variables r?elles |
---|
302 | !------------------------------------------------------------------------------ |
---|
303 | sigma1(:, :) = 0. |
---|
304 | sigma2(:, :) = 0. |
---|
305 | qlth(:, :) = 0. |
---|
306 | qlenv(:, :) = 0. |
---|
307 | qltot(:, :) = 0. |
---|
308 | rneb(:, :) = 0. |
---|
309 | qcloud(:) = 0. |
---|
310 | cth(:, :) = 0. |
---|
311 | cenv(:, :) = 0. |
---|
312 | ctot(:, :) = 0. |
---|
313 | qsatmmussig1 = 0. |
---|
314 | qsatmmussig2 = 0. |
---|
315 | rdd = 287.04 |
---|
316 | cppd = 1005.7 |
---|
317 | pi = 3.14159 |
---|
318 | Lv = 2.5e6 |
---|
319 | sqrt2pi = sqrt(2. * pi) |
---|
320 | sqrt2 = sqrt(2.) |
---|
321 | sqrtpi = sqrt(pi) |
---|
322 | |
---|
323 | !------------------------------------------------------------------------------- |
---|
324 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
325 | !------------------------------------------------------------------------------- |
---|
326 | DO ind1 = 1, ngrid |
---|
327 | |
---|
328 | IF ((ztv(ind1, 1)>ztv(ind1, 2)).AND.(fraca(ind1, ind2)>1.e-10)) THEN |
---|
329 | zqenv(ind1) = (po(ind1) - fraca(ind1, ind2) * zqta(ind1, ind2)) / (1. - fraca(ind1, ind2)) |
---|
330 | |
---|
331 | |
---|
332 | ! zqenv(ind1)=po(ind1) |
---|
333 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
334 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
335 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
336 | qsatbef = MIN(0.5, qsatbef) |
---|
337 | zcor = 1. / (1. - retv * qsatbef) |
---|
338 | qsatbef = qsatbef * zcor |
---|
339 | zqsatenv(ind1, ind2) = qsatbef |
---|
340 | |
---|
341 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
342 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
343 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
344 | |
---|
345 | Tbef = ztla(ind1, ind2) * zpspsk(ind1, ind2) |
---|
346 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
347 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
348 | qsatbef = MIN(0.5, qsatbef) |
---|
349 | zcor = 1. / (1. - retv * qsatbef) |
---|
350 | qsatbef = qsatbef * zcor |
---|
351 | zqsatth(ind1, ind2) = qsatbef |
---|
352 | |
---|
353 | alth = (0.622 * Lv * zqsatth(ind1, ind2)) / (rdd * ztla(ind1, ind2)**2) |
---|
354 | ath = 1. / (1. + (alth * Lv / cppd)) |
---|
355 | sth = ath * (zqta(ind1, ind2) - zqsatth(ind1, ind2)) |
---|
356 | |
---|
357 | |
---|
358 | |
---|
359 | !------------------------------------------------------------------------------ |
---|
360 | ! Calcul des ?cart-types pour s |
---|
361 | !------------------------------------------------------------------------------ |
---|
362 | |
---|
363 | sigma1s = (0.92**0.5) * (fraca(ind1, ind2)**0.5) / (1 - fraca(ind1, ind2)) * ((sth - senv)**2)**0.5 + ratqs(ind1, ind2) * po(ind1) |
---|
364 | sigma2s = 0.09 * ((sth - senv)**2)**0.5 / (fraca(ind1, ind2) + 0.02)**0.5 + 0.002 * zqta(ind1, ind2) |
---|
365 | ! if (paprs(ind1,ind2).gt.90000) THEN |
---|
366 | ! ratqs(ind1,ind2)=0.002 |
---|
367 | ! else |
---|
368 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
369 | ! endif |
---|
370 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
371 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
372 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
373 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
374 | |
---|
375 | !------------------------------------------------------------------------------ |
---|
376 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
377 | !------------------------------------------------------------------------------ |
---|
378 | sqrt2pi = sqrt(2. * pi) |
---|
379 | xth = sth / (sqrt(2.) * sigma2s) |
---|
380 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
381 | cth(ind1, ind2) = 0.5 * (1. + 1. * erf(xth)) |
---|
382 | cenv(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
383 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
384 | |
---|
385 | qlth(ind1, ind2) = sigma2s * ((exp(-1. * xth**2) / sqrt2pi) + xth * sqrt(2.) * cth(ind1, ind2)) |
---|
386 | qlenv(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1, ind2)) |
---|
387 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
388 | |
---|
389 | IF (iflag_cloudth_vert == 1) THEN |
---|
390 | !------------------------------------------------------------------------------- |
---|
391 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs |
---|
392 | !------------------------------------------------------------------------------- |
---|
393 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
394 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
395 | deltasenv = aenv * ratqs(ind1, ind2) * zqsatenv(ind1, ind2) |
---|
396 | deltasth = ath * ratqs(ind1, ind2) * zqsatth(ind1, ind2) |
---|
397 | ! deltasenv=aenv*0.01*po(ind1) |
---|
398 | ! deltasth=ath*0.01*zqta(ind1,ind2) |
---|
399 | xenv1 = (senv - deltasenv) / (sqrt(2.) * sigma1s) |
---|
400 | xenv2 = (senv + deltasenv) / (sqrt(2.) * sigma1s) |
---|
401 | xth1 = (sth - deltasth) / (sqrt(2.) * sigma2s) |
---|
402 | xth2 = (sth + deltasth) / (sqrt(2.) * sigma2s) |
---|
403 | coeffqlenv = (sigma1s)**2 / (2 * sqrtpi * deltasenv) |
---|
404 | coeffqlth = (sigma2s)**2 / (2 * sqrtpi * deltasth) |
---|
405 | |
---|
406 | cth(ind1, ind2) = 0.5 * (1. + 1. * erf(xth2)) |
---|
407 | cenv(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv2)) |
---|
408 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
409 | |
---|
410 | IntJ = sigma1s * (exp(-1. * xenv1**2) / sqrt2pi) + 0.5 * senv * (1 + erf(xenv1)) |
---|
411 | IntI1 = coeffqlenv * 0.5 * (0.5 * sqrtpi * (erf(xenv2) - erf(xenv1)) + xenv1 * exp(-1. * xenv1**2) - xenv2 * exp(-1. * xenv2**2)) |
---|
412 | IntI2 = coeffqlenv * xenv2 * (exp(-1. * xenv2**2) - exp(-1. * xenv1**2)) |
---|
413 | IntI3 = coeffqlenv * 0.5 * sqrtpi * xenv2**2 * (erf(xenv2) - erf(xenv1)) |
---|
414 | |
---|
415 | qlenv(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
416 | ! qlenv(ind1,ind2)=IntJ |
---|
417 | ! PRINT*, qlenv(ind1,ind2),'VERIF EAU' |
---|
418 | |
---|
419 | IntJ = sigma2s * (exp(-1. * xth1**2) / sqrt2pi) + 0.5 * sth * (1 + erf(xth1)) |
---|
420 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) |
---|
421 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) |
---|
422 | IntI1 = coeffqlth * 0.5 * (0.5 * sqrtpi * (erf(xth2) - erf(xth1)) + xth1 * exp(-1. * xth1**2) - xth2 * exp(-1. * xth2**2)) |
---|
423 | IntI2 = coeffqlth * xth2 * (exp(-1. * xth2**2) - exp(-1. * xth1**2)) |
---|
424 | IntI3 = coeffqlth * 0.5 * sqrtpi * xth2**2 * (erf(xth2) - erf(xth1)) |
---|
425 | qlth(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
426 | ! qlth(ind1,ind2)=IntJ |
---|
427 | ! PRINT*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
428 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
429 | |
---|
430 | ELSE IF (iflag_cloudth_vert == 2) THEN |
---|
431 | |
---|
432 | !------------------------------------------------------------------------------- |
---|
433 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s |
---|
434 | !------------------------------------------------------------------------------- |
---|
435 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
436 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
437 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
438 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
439 | deltasenv = aenv * vert_alpha * sigma1s |
---|
440 | deltasth = ath * vert_alpha * sigma2s |
---|
441 | |
---|
442 | xenv1 = -(senv + deltasenv) / (sqrt(2.) * sigma1s) |
---|
443 | xenv2 = -(senv - deltasenv) / (sqrt(2.) * sigma1s) |
---|
444 | xth1 = -(sth + deltasth) / (sqrt(2.) * sigma2s) |
---|
445 | xth2 = -(sth - deltasth) / (sqrt(2.) * sigma2s) |
---|
446 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
447 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
448 | |
---|
449 | cth(ind1, ind2) = 0.5 * (1. - 1. * erf(xth1)) |
---|
450 | cenv(ind1, ind2) = 0.5 * (1. - 1. * erf(xenv1)) |
---|
451 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
452 | |
---|
453 | IntJ = 0.5 * senv * (1 - erf(xenv2)) + (sigma1s / sqrt2pi) * exp(-1. * xenv2**2) |
---|
454 | IntI1 = (((senv + deltasenv)**2 + (sigma1s)**2) / (8 * deltasenv)) * (erf(xenv2) - erf(xenv1)) |
---|
455 | IntI2 = (sigma1s**2 / (4 * deltasenv * sqrtpi)) * (xenv1 * exp(-1. * xenv1**2) - xenv2 * exp(-1. * xenv2**2)) |
---|
456 | IntI3 = ((sqrt2 * sigma1s * (senv + deltasenv)) / (4 * sqrtpi * deltasenv)) * (exp(-1. * xenv1**2) - exp(-1. * xenv2**2)) |
---|
457 | |
---|
458 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
459 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
460 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
461 | |
---|
462 | qlenv(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
463 | ! qlenv(ind1,ind2)=IntJ |
---|
464 | ! PRINT*, qlenv(ind1,ind2),'VERIF EAU' |
---|
465 | |
---|
466 | IntJ = 0.5 * sth * (1 - erf(xth2)) + (sigma2s / sqrt2pi) * exp(-1. * xth2**2) |
---|
467 | IntI1 = (((sth + deltasth)**2 + (sigma2s)**2) / (8 * deltasth)) * (erf(xth2) - erf(xth1)) |
---|
468 | IntI2 = (sigma2s**2 / (4 * deltasth * sqrtpi)) * (xth1 * exp(-1. * xth1**2) - xth2 * exp(-1. * xth2**2)) |
---|
469 | IntI3 = ((sqrt2 * sigma2s * (sth + deltasth)) / (4 * sqrtpi * deltasth)) * (exp(-1. * xth1**2) - exp(-1. * xth2**2)) |
---|
470 | |
---|
471 | qlth(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
472 | ! qlth(ind1,ind2)=IntJ |
---|
473 | ! PRINT*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
474 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
475 | |
---|
476 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
---|
477 | |
---|
478 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
479 | |
---|
480 | IF (cenv(ind1, ind2)<1.e-10.OR.cth(ind1, ind2)<1.e-10) THEN |
---|
481 | ctot(ind1, ind2) = 0. |
---|
482 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
483 | |
---|
484 | else |
---|
485 | |
---|
486 | ctot(ind1, ind2) = ctot(ind1, ind2) |
---|
487 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqs(ind1) |
---|
488 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
489 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
490 | |
---|
491 | endif |
---|
492 | |
---|
493 | |
---|
494 | |
---|
495 | ! PRINT*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
496 | |
---|
497 | else ! gaussienne environnement seule |
---|
498 | |
---|
499 | zqenv(ind1) = po(ind1) |
---|
500 | Tbef = t(ind1, ind2) |
---|
501 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
502 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
503 | qsatbef = MIN(0.5, qsatbef) |
---|
504 | zcor = 1. / (1. - retv * qsatbef) |
---|
505 | qsatbef = qsatbef * zcor |
---|
506 | zqsatenv(ind1, ind2) = qsatbef |
---|
507 | |
---|
508 | |
---|
509 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
510 | zthl(ind1, ind2) = t(ind1, ind2) * (101325 / paprs(ind1, ind2))**(rdd / cppd) |
---|
511 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
512 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
513 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
514 | |
---|
515 | sigma1s = ratqs(ind1, ind2) * zqenv(ind1) |
---|
516 | |
---|
517 | sqrt2pi = sqrt(2. * pi) |
---|
518 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
519 | ctot(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
520 | qltot(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1, ind2)) |
---|
521 | |
---|
522 | IF (ctot(ind1, ind2)<1.e-3) THEN |
---|
523 | ctot(ind1, ind2) = 0. |
---|
524 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
525 | |
---|
526 | else |
---|
527 | |
---|
528 | ctot(ind1, ind2) = ctot(ind1, ind2) |
---|
529 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqsatenv(ind1, ind2) |
---|
530 | |
---|
531 | endif |
---|
532 | |
---|
533 | endif |
---|
534 | enddo |
---|
535 | |
---|
536 | RETURN |
---|
537 | ! end |
---|
538 | END SUBROUTINE cloudth_vert |
---|
539 | |
---|
540 | |
---|
541 | SUBROUTINE cloudth_v3(ngrid, klev, ind2, & |
---|
542 | ztv, po, zqta, fraca, & |
---|
543 | qcloud, ctot, ctot_vol, zpspsk, paprs, pplay, ztla, zthl, & |
---|
544 | ratqs, sigma_qtherm,zqs, t, & |
---|
545 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
546 | |
---|
547 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert |
---|
548 | USE lmdz_yoethf |
---|
549 | |
---|
550 | USE lmdz_yomcst |
---|
551 | |
---|
552 | IMPLICIT NONE |
---|
553 | INCLUDE "FCTTRE.h" |
---|
554 | |
---|
555 | |
---|
556 | !=========================================================================== |
---|
557 | ! Author : Arnaud Octavio Jam (LMD/CNRS) |
---|
558 | ! Date : 25 Mai 2010 |
---|
559 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
560 | !=========================================================================== |
---|
561 | |
---|
562 | INTEGER, INTENT(IN) :: ind2 |
---|
563 | INTEGER, INTENT(IN) :: ngrid, klev |
---|
564 | |
---|
565 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: ztv |
---|
566 | REAL, DIMENSION(ngrid), INTENT(IN) :: po |
---|
567 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: zqta |
---|
568 | REAL, DIMENSION(ngrid, klev + 1), INTENT(IN) :: fraca |
---|
569 | REAL, DIMENSION(ngrid), INTENT(OUT) :: qcloud |
---|
570 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: ctot |
---|
571 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: ctot_vol |
---|
572 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: zpspsk |
---|
573 | REAL, DIMENSION(ngrid, klev + 1), INTENT(IN) :: paprs |
---|
574 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: pplay |
---|
575 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: ztla |
---|
576 | REAL, DIMENSION(ngrid, klev), INTENT(INOUT) :: zthl |
---|
577 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: ratqs, sigma_qtherm |
---|
578 | REAL, DIMENSION(ngrid), INTENT(IN) :: zqs |
---|
579 | REAL, DIMENSION(ngrid, klev), INTENT(IN) :: t |
---|
580 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv |
---|
581 | |
---|
582 | REAL zqenv(ngrid) |
---|
583 | REAL zqsatth(ngrid, klev) |
---|
584 | REAL zqsatenv(ngrid, klev) |
---|
585 | |
---|
586 | REAL sigma1(ngrid, klev) |
---|
587 | REAL sigma2(ngrid, klev) |
---|
588 | REAL qlth(ngrid, klev) |
---|
589 | REAL qlenv(ngrid, klev) |
---|
590 | REAL qltot(ngrid, klev) |
---|
591 | REAL cth(ngrid, klev) |
---|
592 | REAL cenv(ngrid, klev) |
---|
593 | REAL cth_vol(ngrid, klev) |
---|
594 | REAL cenv_vol(ngrid, klev) |
---|
595 | REAL rneb(ngrid, klev) |
---|
596 | REAL qsatmmussig1, qsatmmussig2, sqrt2pi, sqrt2, sqrtpi, pi |
---|
597 | REAL rdd, cppd, Lv |
---|
598 | REAL alth, alenv, ath, aenv |
---|
599 | REAL sth, senv, sigma1s, sigma2s, xth, xenv, exp_xenv1, exp_xenv2, exp_xth1, exp_xth2 |
---|
600 | REAL inverse_rho, beta, a_Brooks, b_Brooks, A_Maj_Brooks, Dx_Brooks, f_Brooks |
---|
601 | REAL Tbef, zdelta, qsatbef, zcor |
---|
602 | REAL qlbef |
---|
603 | REAL zpdf_sig(ngrid), zpdf_k(ngrid), zpdf_delta(ngrid) |
---|
604 | REAL zpdf_a(ngrid), zpdf_b(ngrid), zpdf_e1(ngrid), zpdf_e2(ngrid) |
---|
605 | REAL erf |
---|
606 | |
---|
607 | INTEGER :: ind1, l, ig |
---|
608 | |
---|
609 | IF (iflag_cloudth_vert>=1) THEN |
---|
610 | CALL cloudth_vert_v3(ngrid, klev, ind2, & |
---|
611 | ztv, po, zqta, fraca, & |
---|
612 | qcloud, ctot, ctot_vol, zpspsk, paprs, pplay, ztla, zthl, & |
---|
613 | ratqs, sigma_qtherm, zqs, t, & |
---|
614 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
615 | RETURN |
---|
616 | ENDIF |
---|
617 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
618 | |
---|
619 | |
---|
620 | !------------------------------------------------------------------------------- |
---|
621 | ! Initialisation des variables r?elles |
---|
622 | !------------------------------------------------------------------------------- |
---|
623 | sigma1(:, :) = 0. |
---|
624 | sigma2(:, :) = 0. |
---|
625 | qlth(:, :) = 0. |
---|
626 | qlenv(:, :) = 0. |
---|
627 | qltot(:, :) = 0. |
---|
628 | rneb(:, :) = 0. |
---|
629 | qcloud(:) = 0. |
---|
630 | cth(:, :) = 0. |
---|
631 | cenv(:, :) = 0. |
---|
632 | ctot(:, :) = 0. |
---|
633 | cth_vol(:, :) = 0. |
---|
634 | cenv_vol(:, :) = 0. |
---|
635 | ctot_vol(:, :) = 0. |
---|
636 | qsatmmussig1 = 0. |
---|
637 | qsatmmussig2 = 0. |
---|
638 | rdd = 287.04 |
---|
639 | cppd = 1005.7 |
---|
640 | pi = 3.14159 |
---|
641 | Lv = 2.5e6 |
---|
642 | sqrt2pi = sqrt(2. * pi) |
---|
643 | sqrt2 = sqrt(2.) |
---|
644 | sqrtpi = sqrt(pi) |
---|
645 | |
---|
646 | |
---|
647 | !------------------------------------------------------------------------------- |
---|
648 | ! Cloud fraction in the thermals and standard deviation of the PDFs |
---|
649 | !------------------------------------------------------------------------------- |
---|
650 | DO ind1 = 1, ngrid |
---|
651 | |
---|
652 | IF ((ztv(ind1, 1)>ztv(ind1, 2)).AND.(fraca(ind1, ind2)>1.e-10)) THEN |
---|
653 | zqenv(ind1) = (po(ind1) - fraca(ind1, ind2) * zqta(ind1, ind2)) / (1. - fraca(ind1, ind2)) |
---|
654 | |
---|
655 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
656 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
657 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
658 | qsatbef = MIN(0.5, qsatbef) |
---|
659 | zcor = 1. / (1. - retv * qsatbef) |
---|
660 | qsatbef = qsatbef * zcor |
---|
661 | zqsatenv(ind1, ind2) = qsatbef |
---|
662 | |
---|
663 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) !qsl, p84 |
---|
664 | aenv = 1. / (1. + (alenv * Lv / cppd)) !al, p84 |
---|
665 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) !s, p84 |
---|
666 | |
---|
667 | !po = qt de l'environnement ET des thermique |
---|
668 | !zqenv = qt environnement |
---|
669 | !zqsatenv = qsat environnement |
---|
670 | !zthl = Tl environnement |
---|
671 | |
---|
672 | Tbef = ztla(ind1, ind2) * zpspsk(ind1, ind2) |
---|
673 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
674 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
675 | qsatbef = MIN(0.5, qsatbef) |
---|
676 | zcor = 1. / (1. - retv * qsatbef) |
---|
677 | qsatbef = qsatbef * zcor |
---|
678 | zqsatth(ind1, ind2) = qsatbef |
---|
679 | |
---|
680 | alth = (0.622 * Lv * zqsatth(ind1, ind2)) / (rdd * ztla(ind1, ind2)**2) !qsl, p84 |
---|
681 | ath = 1. / (1. + (alth * Lv / cppd)) !al, p84 |
---|
682 | sth = ath * (zqta(ind1, ind2) - zqsatth(ind1, ind2)) !s, p84 |
---|
683 | |
---|
684 | !zqta = qt thermals |
---|
685 | !zqsatth = qsat thermals |
---|
686 | !ztla = Tl thermals |
---|
687 | |
---|
688 | !------------------------------------------------------------------------------ |
---|
689 | ! s standard deviations |
---|
690 | !------------------------------------------------------------------------------ |
---|
691 | |
---|
692 | ! tests |
---|
693 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
694 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) |
---|
695 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
696 | ! final option |
---|
697 | sigma1s = (1.1**0.5) * (fraca(ind1, ind2)**0.6) / (1 - fraca(ind1, ind2)) * ((sth - senv)**2)**0.5 + ratqs(ind1, ind2) * po(ind1) |
---|
698 | sigma2s = 0.11 * ((sth - senv)**2)**0.5 / (fraca(ind1, ind2) + 0.01)**0.4 + 0.002 * zqta(ind1, ind2) |
---|
699 | |
---|
700 | !------------------------------------------------------------------------------ |
---|
701 | ! Condensed water and cloud cover |
---|
702 | !------------------------------------------------------------------------------ |
---|
703 | xth = sth / (sqrt2 * sigma2s) |
---|
704 | xenv = senv / (sqrt2 * sigma1s) |
---|
705 | cth(ind1, ind2) = 0.5 * (1. + 1. * erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
706 | cenv(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
707 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
708 | ctot_vol(ind1, ind2) = ctot(ind1, ind2) |
---|
709 | |
---|
710 | qlth(ind1, ind2) = sigma2s * ((exp(-1. * xth**2) / sqrt2pi) + xth * sqrt2 * cth(ind1, ind2)) |
---|
711 | qlenv(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt2 * cenv(ind1, ind2)) |
---|
712 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
713 | |
---|
714 | IF (ctot(ind1, ind2)<1.e-10) THEN |
---|
715 | ctot(ind1, ind2) = 0. |
---|
716 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
717 | else |
---|
718 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqs(ind1) |
---|
719 | endif |
---|
720 | |
---|
721 | else ! Environnement only, follow the if l.110 |
---|
722 | |
---|
723 | zqenv(ind1) = po(ind1) |
---|
724 | Tbef = t(ind1, ind2) |
---|
725 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
726 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
727 | qsatbef = MIN(0.5, qsatbef) |
---|
728 | zcor = 1. / (1. - retv * qsatbef) |
---|
729 | qsatbef = qsatbef * zcor |
---|
730 | zqsatenv(ind1, ind2) = qsatbef |
---|
731 | |
---|
732 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
733 | zthl(ind1, ind2) = t(ind1, ind2) * (101325 / paprs(ind1, ind2))**(rdd / cppd) |
---|
734 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
735 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
736 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
737 | |
---|
738 | sigma1s = ratqs(ind1, ind2) * zqenv(ind1) |
---|
739 | |
---|
740 | xenv = senv / (sqrt2 * sigma1s) |
---|
741 | ctot(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
742 | ctot_vol(ind1, ind2) = ctot(ind1, ind2) |
---|
743 | qltot(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt2 * cenv(ind1, ind2)) |
---|
744 | |
---|
745 | IF (ctot(ind1, ind2)<1.e-3) THEN |
---|
746 | ctot(ind1, ind2) = 0. |
---|
747 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
748 | else |
---|
749 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqsatenv(ind1, ind2) |
---|
750 | endif |
---|
751 | |
---|
752 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 |
---|
753 | enddo ! from the loop on ngrid l.108 |
---|
754 | RETURN |
---|
755 | ! end |
---|
756 | END SUBROUTINE cloudth_v3 |
---|
757 | |
---|
758 | |
---|
759 | !=========================================================================== |
---|
760 | SUBROUTINE cloudth_vert_v3(ngrid, klev, ind2, & |
---|
761 | ztv, po, zqta, fraca, & |
---|
762 | qcloud, ctot, ctot_vol, zpspsk, paprs, pplay, ztla, zthl, & |
---|
763 | ratqs, sigma_qtherm, zqs, t, & |
---|
764 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
765 | |
---|
766 | !=========================================================================== |
---|
767 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
768 | ! Date : 25 Mai 2010 |
---|
769 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
770 | !=========================================================================== |
---|
771 | |
---|
772 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert, iflag_ratqs |
---|
773 | USE lmdz_cloudth_ini, ONLY: vert_alpha, vert_alpha_th, sigma1s_factor, sigma1s_power, sigma2s_factor, sigma2s_power, cloudth_ratqsmin, iflag_cloudth_vert_noratqs |
---|
774 | USE lmdz_yoethf |
---|
775 | |
---|
776 | USE lmdz_yomcst |
---|
777 | |
---|
778 | IMPLICIT NONE |
---|
779 | INCLUDE "FCTTRE.h" |
---|
780 | |
---|
781 | INTEGER itap, ind1, ind2 |
---|
782 | INTEGER ngrid, klev, klon, l, ig |
---|
783 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv |
---|
784 | |
---|
785 | REAL ztv(ngrid, klev) |
---|
786 | REAL po(ngrid) |
---|
787 | REAL zqenv(ngrid) |
---|
788 | REAL zqta(ngrid, klev) |
---|
789 | |
---|
790 | REAL fraca(ngrid, klev + 1) |
---|
791 | REAL zpspsk(ngrid, klev) |
---|
792 | REAL paprs(ngrid, klev + 1) |
---|
793 | REAL pplay(ngrid, klev) |
---|
794 | REAL ztla(ngrid, klev) |
---|
795 | REAL zthl(ngrid, klev) |
---|
796 | |
---|
797 | REAL zqsatth(ngrid, klev) |
---|
798 | REAL zqsatenv(ngrid, klev) |
---|
799 | |
---|
800 | REAL sigma1(ngrid, klev) |
---|
801 | REAL sigma2(ngrid, klev) |
---|
802 | REAL qlth(ngrid, klev) |
---|
803 | REAL qlenv(ngrid, klev) |
---|
804 | REAL qltot(ngrid, klev) |
---|
805 | REAL cth(ngrid, klev) |
---|
806 | REAL cenv(ngrid, klev) |
---|
807 | REAL ctot(ngrid, klev) |
---|
808 | REAL cth_vol(ngrid, klev) |
---|
809 | REAL cenv_vol(ngrid, klev) |
---|
810 | REAL ctot_vol(ngrid, klev) |
---|
811 | REAL rneb(ngrid, klev) |
---|
812 | REAL t(ngrid, klev) |
---|
813 | REAL qsatmmussig1, qsatmmussig2, sqrtpi, sqrt2, sqrt2pi, pi |
---|
814 | REAL rdd, cppd, Lv |
---|
815 | REAL alth, alenv, ath, aenv |
---|
816 | REAL sth, senv, sigma1s, sigma2s, sigma1s_fraca, sigma1s_ratqs |
---|
817 | REAL inverse_rho, beta, a_Brooks, b_Brooks, A_Maj_Brooks, Dx_Brooks, f_Brooks |
---|
818 | REAL xth, xenv, exp_xenv1, exp_xenv2, exp_xth1, exp_xth2 |
---|
819 | REAL xth1, xth2, xenv1, xenv2, deltasth, deltasenv |
---|
820 | REAL IntJ, IntI1, IntI2, IntI3, IntJ_CF, IntI1_CF, IntI3_CF, coeffqlenv, coeffqlth |
---|
821 | REAL Tbef, zdelta, qsatbef, zcor |
---|
822 | REAL qlbef |
---|
823 | REAL ratqs(ngrid, klev), sigma_qtherm(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
824 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
825 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
826 | |
---|
827 | REAL zpdf_sig(ngrid), zpdf_k(ngrid), zpdf_delta(ngrid) |
---|
828 | REAL zpdf_a(ngrid), zpdf_b(ngrid), zpdf_e1(ngrid), zpdf_e2(ngrid) |
---|
829 | REAL zqs(ngrid), qcloud(ngrid) |
---|
830 | REAL erf |
---|
831 | |
---|
832 | REAL rhodz(ngrid, klev) |
---|
833 | REAL zrho(ngrid, klev) |
---|
834 | REAL dz(ngrid, klev) |
---|
835 | |
---|
836 | DO ind1 = 1, ngrid |
---|
837 | !Layer calculation |
---|
838 | rhodz(ind1, ind2) = (paprs(ind1, ind2) - paprs(ind1, ind2 + 1)) / rg !kg/m2 |
---|
839 | zrho(ind1, ind2) = pplay(ind1, ind2) / t(ind1, ind2) / rd !kg/m3 |
---|
840 | dz(ind1, ind2) = rhodz(ind1, ind2) / zrho(ind1, ind2) !m : epaisseur de la couche en metre |
---|
841 | END DO |
---|
842 | |
---|
843 | !------------------------------------------------------------------------------ |
---|
844 | ! Initialize |
---|
845 | !------------------------------------------------------------------------------ |
---|
846 | |
---|
847 | sigma1(:, :) = 0. |
---|
848 | sigma2(:, :) = 0. |
---|
849 | qlth(:, :) = 0. |
---|
850 | qlenv(:, :) = 0. |
---|
851 | qltot(:, :) = 0. |
---|
852 | rneb(:, :) = 0. |
---|
853 | qcloud(:) = 0. |
---|
854 | cth(:, :) = 0. |
---|
855 | cenv(:, :) = 0. |
---|
856 | ctot(:, :) = 0. |
---|
857 | cth_vol(:, :) = 0. |
---|
858 | cenv_vol(:, :) = 0. |
---|
859 | ctot_vol(:, :) = 0. |
---|
860 | qsatmmussig1 = 0. |
---|
861 | qsatmmussig2 = 0. |
---|
862 | rdd = 287.04 |
---|
863 | cppd = 1005.7 |
---|
864 | pi = 3.14159 |
---|
865 | Lv = 2.5e6 |
---|
866 | sqrt2pi = sqrt(2. * pi) |
---|
867 | sqrt2 = sqrt(2.) |
---|
868 | sqrtpi = sqrt(pi) |
---|
869 | |
---|
870 | |
---|
871 | |
---|
872 | !------------------------------------------------------------------------------- |
---|
873 | ! Calcul de la fraction du thermique et des ecart-types des distributions |
---|
874 | !------------------------------------------------------------------------------- |
---|
875 | DO ind1 = 1, ngrid |
---|
876 | |
---|
877 | IF ((ztv(ind1, 1)>ztv(ind1, 2)).AND.(fraca(ind1, ind2)>1.e-10)) then !Thermal and environnement |
---|
878 | |
---|
879 | zqenv(ind1) = (po(ind1) - fraca(ind1, ind2) * zqta(ind1, ind2)) / (1. - fraca(ind1, ind2)) !qt = a*qtth + (1-a)*qtenv |
---|
880 | |
---|
881 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
882 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
883 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
884 | qsatbef = MIN(0.5, qsatbef) |
---|
885 | zcor = 1. / (1. - retv * qsatbef) |
---|
886 | qsatbef = qsatbef * zcor |
---|
887 | zqsatenv(ind1, ind2) = qsatbef |
---|
888 | |
---|
889 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) !qsl, p84 |
---|
890 | aenv = 1. / (1. + (alenv * Lv / cppd)) !al, p84 |
---|
891 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) !s, p84 |
---|
892 | |
---|
893 | !zqenv = qt environnement |
---|
894 | !zqsatenv = qsat environnement |
---|
895 | !zthl = Tl environnement |
---|
896 | |
---|
897 | Tbef = ztla(ind1, ind2) * zpspsk(ind1, ind2) |
---|
898 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
899 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
900 | qsatbef = MIN(0.5, qsatbef) |
---|
901 | zcor = 1. / (1. - retv * qsatbef) |
---|
902 | qsatbef = qsatbef * zcor |
---|
903 | zqsatth(ind1, ind2) = qsatbef |
---|
904 | |
---|
905 | alth = (0.622 * Lv * zqsatth(ind1, ind2)) / (rdd * ztla(ind1, ind2)**2) !qsl, p84 |
---|
906 | ath = 1. / (1. + (alth * Lv / cppd)) !al, p84 |
---|
907 | sth = ath * (zqta(ind1, ind2) - zqsatth(ind1, ind2)) !s, p84 |
---|
908 | |
---|
909 | |
---|
910 | !zqta = qt thermals |
---|
911 | !zqsatth = qsat thermals |
---|
912 | !ztla = Tl thermals |
---|
913 | !------------------------------------------------------------------------------ |
---|
914 | ! s standard deviation |
---|
915 | !------------------------------------------------------------------------------ |
---|
916 | |
---|
917 | sigma1s_fraca = (sigma1s_factor**0.5) * (fraca(ind1, ind2)**sigma1s_power) / & |
---|
918 | (1 - fraca(ind1, ind2)) * ((sth - senv)**2)**0.5 |
---|
919 | ! sigma1s_fraca = (1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
920 | IF (cloudth_ratqsmin>0.) THEN |
---|
921 | sigma1s_ratqs = cloudth_ratqsmin * po(ind1) |
---|
922 | ELSE |
---|
923 | sigma1s_ratqs = ratqs(ind1, ind2) * po(ind1) |
---|
924 | ENDIF |
---|
925 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
926 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
---|
927 | IF (iflag_ratqs==10.or.iflag_ratqs==11) THEN |
---|
928 | sigma1s = ratqs(ind1, ind2) * po(ind1) * aenv |
---|
929 | IF (iflag_ratqs==10.and.sigma_qtherm(ind1, ind2) /= 0) then |
---|
930 | sigma2s = sigma_qtherm(ind1, ind2)*ath |
---|
931 | ENDIF |
---|
932 | ENDIF |
---|
933 | ! tests |
---|
934 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
935 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) |
---|
936 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
937 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
938 | ! if (paprs(ind1,ind2).gt.90000) THEN |
---|
939 | ! ratqs(ind1,ind2)=0.002 |
---|
940 | ! else |
---|
941 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
942 | ! endif |
---|
943 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
944 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
945 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
946 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
947 | |
---|
948 | IF (iflag_cloudth_vert == 1) THEN |
---|
949 | !------------------------------------------------------------------------------- |
---|
950 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs |
---|
951 | !------------------------------------------------------------------------------- |
---|
952 | |
---|
953 | deltasenv = aenv * ratqs(ind1, ind2) * zqsatenv(ind1, ind2) |
---|
954 | deltasth = ath * ratqs(ind1, ind2) * zqsatth(ind1, ind2) |
---|
955 | |
---|
956 | xenv1 = (senv - deltasenv) / (sqrt(2.) * sigma1s) |
---|
957 | xenv2 = (senv + deltasenv) / (sqrt(2.) * sigma1s) |
---|
958 | xth1 = (sth - deltasth) / (sqrt(2.) * sigma2s) |
---|
959 | xth2 = (sth + deltasth) / (sqrt(2.) * sigma2s) |
---|
960 | coeffqlenv = (sigma1s)**2 / (2 * sqrtpi * deltasenv) |
---|
961 | coeffqlth = (sigma2s)**2 / (2 * sqrtpi * deltasth) |
---|
962 | |
---|
963 | cth(ind1, ind2) = 0.5 * (1. + 1. * erf(xth2)) |
---|
964 | cenv(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv2)) |
---|
965 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
966 | |
---|
967 | ! Environment |
---|
968 | IntJ = sigma1s * (exp(-1. * xenv1**2) / sqrt2pi) + 0.5 * senv * (1 + erf(xenv1)) |
---|
969 | IntI1 = coeffqlenv * 0.5 * (0.5 * sqrtpi * (erf(xenv2) - erf(xenv1)) + xenv1 * exp(-1. * xenv1**2) - xenv2 * exp(-1. * xenv2**2)) |
---|
970 | IntI2 = coeffqlenv * xenv2 * (exp(-1. * xenv2**2) - exp(-1. * xenv1**2)) |
---|
971 | IntI3 = coeffqlenv * 0.5 * sqrtpi * xenv2**2 * (erf(xenv2) - erf(xenv1)) |
---|
972 | |
---|
973 | qlenv(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
974 | |
---|
975 | ! Thermal |
---|
976 | IntJ = sigma2s * (exp(-1. * xth1**2) / sqrt2pi) + 0.5 * sth * (1 + erf(xth1)) |
---|
977 | IntI1 = coeffqlth * 0.5 * (0.5 * sqrtpi * (erf(xth2) - erf(xth1)) + xth1 * exp(-1. * xth1**2) - xth2 * exp(-1. * xth2**2)) |
---|
978 | IntI2 = coeffqlth * xth2 * (exp(-1. * xth2**2) - exp(-1. * xth1**2)) |
---|
979 | IntI3 = coeffqlth * 0.5 * sqrtpi * xth2**2 * (erf(xth2) - erf(xth1)) |
---|
980 | qlth(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
981 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
982 | |
---|
983 | ELSE IF (iflag_cloudth_vert >= 3) THEN |
---|
984 | IF (iflag_cloudth_vert < 5) THEN |
---|
985 | !------------------------------------------------------------------------------- |
---|
986 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
---|
987 | !------------------------------------------------------------------------------- |
---|
988 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
989 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
990 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
991 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
992 | IF (iflag_cloudth_vert == 3) THEN |
---|
993 | deltasenv = aenv * vert_alpha * sigma1s |
---|
994 | deltasth = ath * vert_alpha_th * sigma2s |
---|
995 | ELSE IF (iflag_cloudth_vert == 4) THEN |
---|
996 | IF (iflag_cloudth_vert_noratqs == 1) THEN |
---|
997 | deltasenv = vert_alpha * max(sigma1s_fraca, 1e-10) |
---|
998 | deltasth = vert_alpha_th * sigma2s |
---|
999 | ELSE |
---|
1000 | deltasenv = vert_alpha * sigma1s |
---|
1001 | deltasth = vert_alpha_th * sigma2s |
---|
1002 | ENDIF |
---|
1003 | ENDIF |
---|
1004 | |
---|
1005 | xenv1 = -(senv + deltasenv) / (sqrt(2.) * sigma1s) |
---|
1006 | xenv2 = -(senv - deltasenv) / (sqrt(2.) * sigma1s) |
---|
1007 | exp_xenv1 = exp(-1. * xenv1**2) |
---|
1008 | exp_xenv2 = exp(-1. * xenv2**2) |
---|
1009 | xth1 = -(sth + deltasth) / (sqrt(2.) * sigma2s) |
---|
1010 | xth2 = -(sth - deltasth) / (sqrt(2.) * sigma2s) |
---|
1011 | exp_xth1 = exp(-1. * xth1**2) |
---|
1012 | exp_xth2 = exp(-1. * xth2**2) |
---|
1013 | |
---|
1014 | !CF_surfacique |
---|
1015 | cth(ind1, ind2) = 0.5 * (1. - 1. * erf(xth1)) |
---|
1016 | cenv(ind1, ind2) = 0.5 * (1. - 1. * erf(xenv1)) |
---|
1017 | ctot(ind1, ind2) = fraca(ind1, ind2) * cth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv(ind1, ind2) |
---|
1018 | |
---|
1019 | |
---|
1020 | !CF_volumique & eau condense |
---|
1021 | !environnement |
---|
1022 | IntJ = 0.5 * senv * (1 - erf(xenv2)) + (sigma1s / sqrt2pi) * exp_xenv2 |
---|
1023 | IntJ_CF = 0.5 * (1. - 1. * erf(xenv2)) |
---|
1024 | IF (deltasenv < 1.e-10) THEN |
---|
1025 | qlenv(ind1, ind2) = IntJ |
---|
1026 | cenv_vol(ind1, ind2) = IntJ_CF |
---|
1027 | else |
---|
1028 | IntI1 = (((senv + deltasenv)**2 + (sigma1s)**2) / (8 * deltasenv)) * (erf(xenv2) - erf(xenv1)) |
---|
1029 | IntI2 = (sigma1s**2 / (4 * deltasenv * sqrtpi)) * (xenv1 * exp_xenv1 - xenv2 * exp_xenv2) |
---|
1030 | IntI3 = ((sqrt2 * sigma1s * (senv + deltasenv)) / (4 * sqrtpi * deltasenv)) * (exp_xenv1 - exp_xenv2) |
---|
1031 | IntI1_CF = ((senv + deltasenv) * (erf(xenv2) - erf(xenv1))) / (4 * deltasenv) |
---|
1032 | IntI3_CF = (sqrt2 * sigma1s * (exp_xenv1 - exp_xenv2)) / (4 * sqrtpi * deltasenv) |
---|
1033 | qlenv(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
1034 | cenv_vol(ind1, ind2) = IntJ_CF + IntI1_CF + IntI3_CF |
---|
1035 | endif |
---|
1036 | |
---|
1037 | !thermique |
---|
1038 | IntJ = 0.5 * sth * (1 - erf(xth2)) + (sigma2s / sqrt2pi) * exp_xth2 |
---|
1039 | IntJ_CF = 0.5 * (1. - 1. * erf(xth2)) |
---|
1040 | IF (deltasth < 1.e-10) THEN |
---|
1041 | qlth(ind1, ind2) = IntJ |
---|
1042 | cth_vol(ind1, ind2) = IntJ_CF |
---|
1043 | else |
---|
1044 | IntI1 = (((sth + deltasth)**2 + (sigma2s)**2) / (8 * deltasth)) * (erf(xth2) - erf(xth1)) |
---|
1045 | IntI2 = (sigma2s**2 / (4 * deltasth * sqrtpi)) * (xth1 * exp_xth1 - xth2 * exp_xth2) |
---|
1046 | IntI3 = ((sqrt2 * sigma2s * (sth + deltasth)) / (4 * sqrtpi * deltasth)) * (exp_xth1 - exp_xth2) |
---|
1047 | IntI1_CF = ((sth + deltasth) * (erf(xth2) - erf(xth1))) / (4 * deltasth) |
---|
1048 | IntI3_CF = (sqrt2 * sigma2s * (exp_xth1 - exp_xth2)) / (4 * sqrtpi * deltasth) |
---|
1049 | qlth(ind1, ind2) = IntJ + IntI1 + IntI2 + IntI3 |
---|
1050 | cth_vol(ind1, ind2) = IntJ_CF + IntI1_CF + IntI3_CF |
---|
1051 | endif |
---|
1052 | |
---|
1053 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
1054 | ctot_vol(ind1, ind2) = fraca(ind1, ind2) * cth_vol(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv_vol(ind1, ind2) |
---|
1055 | |
---|
1056 | ELSE IF (iflag_cloudth_vert == 5) THEN |
---|
1057 | sigma1s = (0.71794 + 0.000498239 * dz(ind1, ind2)) * (fraca(ind1, ind2)**0.5) & |
---|
1058 | / (1 - fraca(ind1, ind2)) * (((sth - senv)**2)**0.5) & |
---|
1059 | + ratqs(ind1, ind2) * po(ind1) !Environment |
---|
1060 | sigma2s = (0.03218 + 0.000092655 * dz(ind1, ind2)) / ((fraca(ind1, ind2) + 0.02)**0.5) * (((sth - senv)**2)**0.5) + 0.002 * zqta(ind1, ind2) !Thermals |
---|
1061 | !sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
1062 | !sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
1063 | xth = sth / (sqrt(2.) * sigma2s) |
---|
1064 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
1065 | |
---|
1066 | !Volumique |
---|
1067 | cth_vol(ind1, ind2) = 0.5 * (1. + 1. * erf(xth)) |
---|
1068 | cenv_vol(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
1069 | ctot_vol(ind1, ind2) = fraca(ind1, ind2) * cth_vol(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv_vol(ind1, ind2) |
---|
1070 | !PRINT *,'jeanjean_CV=',ctot_vol(ind1,ind2) |
---|
1071 | |
---|
1072 | qlth(ind1, ind2) = sigma2s * ((exp(-1. * xth**2) / sqrt2pi) + xth * sqrt(2.) * cth_vol(ind1, ind2)) |
---|
1073 | qlenv(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv_vol(ind1, ind2)) |
---|
1074 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
1075 | |
---|
1076 | !Surfacique |
---|
1077 | !Neggers |
---|
1078 | !beta=0.0044 |
---|
1079 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
1080 | !PRINT *,'jeanjean : beta=',beta |
---|
1081 | !cth(ind1,ind2)=cth_vol(ind1,ind2)*inverse_rho |
---|
1082 | !cenv(ind1,ind2)=cenv_vol(ind1,ind2)*inverse_rho |
---|
1083 | !ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1084 | |
---|
1085 | !Brooks |
---|
1086 | a_Brooks = 0.6694 |
---|
1087 | b_Brooks = 0.1882 |
---|
1088 | A_Maj_Brooks = 0.1635 !-- sans shear |
---|
1089 | !A_Maj_Brooks=0.17 !-- ARM LES |
---|
1090 | !A_Maj_Brooks=0.18 !-- RICO LES |
---|
1091 | !A_Maj_Brooks=0.19 !-- BOMEX LES |
---|
1092 | Dx_Brooks = 200000. |
---|
1093 | f_Brooks = A_Maj_Brooks * (dz(ind1, ind2)**(a_Brooks)) * (Dx_Brooks**(-b_Brooks)) |
---|
1094 | !PRINT *,'jeanjean_f=',f_Brooks |
---|
1095 | |
---|
1096 | cth(ind1, ind2) = 1. / (1. + exp(-1. * f_Brooks) * ((1. / max(1.e-15, min(cth_vol(ind1, ind2), 1.))) - 1.)) |
---|
1097 | cenv(ind1, ind2) = 1. / (1. + exp(-1. * f_Brooks) * ((1. / max(1.e-15, min(cenv_vol(ind1, ind2), 1.))) - 1.)) |
---|
1098 | ctot(ind1, ind2) = 1. / (1. + exp(-1. * f_Brooks) * ((1. / max(1.e-15, min(ctot_vol(ind1, ind2), 1.))) - 1.)) |
---|
1099 | !PRINT *,'JJ_ctot_1',ctot(ind1,ind2) |
---|
1100 | |
---|
1101 | ENDIF ! of if (iflag_cloudth_vert<5) |
---|
1102 | ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4) |
---|
1103 | |
---|
1104 | ! if (ctot(ind1,ind2).lt.1.e-10) THEN |
---|
1105 | IF (cenv(ind1, ind2)<1.e-10.OR.cth(ind1, ind2)<1.e-10) THEN |
---|
1106 | ctot(ind1, ind2) = 0. |
---|
1107 | ctot_vol(ind1, ind2) = 0. |
---|
1108 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
1109 | |
---|
1110 | else |
---|
1111 | |
---|
1112 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqs(ind1) |
---|
1113 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
1114 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
1115 | |
---|
1116 | endif |
---|
1117 | |
---|
1118 | else ! gaussienne environnement seule |
---|
1119 | |
---|
1120 | zqenv(ind1) = po(ind1) |
---|
1121 | Tbef = t(ind1, ind2) |
---|
1122 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
1123 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
1124 | qsatbef = MIN(0.5, qsatbef) |
---|
1125 | zcor = 1. / (1. - retv * qsatbef) |
---|
1126 | qsatbef = qsatbef * zcor |
---|
1127 | zqsatenv(ind1, ind2) = qsatbef |
---|
1128 | |
---|
1129 | |
---|
1130 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
1131 | zthl(ind1, ind2) = t(ind1, ind2) * (101325 / paprs(ind1, ind2))**(rdd / cppd) |
---|
1132 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) |
---|
1133 | aenv = 1. / (1. + (alenv * Lv / cppd)) |
---|
1134 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) |
---|
1135 | sth = 0. |
---|
1136 | |
---|
1137 | sigma1s = ratqs(ind1, ind2) * zqenv(ind1) |
---|
1138 | sigma2s = 0. |
---|
1139 | |
---|
1140 | sqrt2pi = sqrt(2. * pi) |
---|
1141 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
1142 | ctot(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
1143 | ctot_vol(ind1, ind2) = ctot(ind1, ind2) |
---|
1144 | qltot(ind1, ind2) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1, ind2)) |
---|
1145 | |
---|
1146 | IF (ctot(ind1, ind2)<1.e-3) THEN |
---|
1147 | ctot(ind1, ind2) = 0. |
---|
1148 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
1149 | |
---|
1150 | else |
---|
1151 | |
---|
1152 | ! ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
1153 | qcloud(ind1) = qltot(ind1, ind2) / ctot(ind1, ind2) + zqsatenv(ind1, ind2) |
---|
1154 | |
---|
1155 | endif |
---|
1156 | |
---|
1157 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 |
---|
1158 | ! Outputs used to check the PDFs |
---|
1159 | cloudth_senv(ind1, ind2) = senv |
---|
1160 | cloudth_sth(ind1, ind2) = sth |
---|
1161 | cloudth_sigmaenv(ind1, ind2) = sigma1s |
---|
1162 | cloudth_sigmath(ind1, ind2) = sigma2s |
---|
1163 | |
---|
1164 | enddo ! from the loop on ngrid l.333 |
---|
1165 | RETURN |
---|
1166 | ! end |
---|
1167 | END SUBROUTINE cloudth_vert_v3 |
---|
1168 | |
---|
1169 | SUBROUTINE cloudth_v6(ngrid, klev, ind2, & |
---|
1170 | ztv, po, zqta, fraca, & |
---|
1171 | qcloud, ctot_surf, ctot_vol, zpspsk, paprs, pplay, ztla, zthl, & |
---|
1172 | ratqs, zqs, T, & |
---|
1173 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
1174 | |
---|
1175 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert |
---|
1176 | USE lmdz_yoethf |
---|
1177 | |
---|
1178 | USE lmdz_yomcst |
---|
1179 | |
---|
1180 | IMPLICIT NONE |
---|
1181 | INCLUDE "FCTTRE.h" |
---|
1182 | |
---|
1183 | !Domain variables |
---|
1184 | INTEGER ngrid !indice Max lat-lon |
---|
1185 | INTEGER klev !indice Max alt |
---|
1186 | REAL, DIMENSION(ngrid, klev), INTENT(OUT) :: cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv |
---|
1187 | INTEGER ind1 !indice in [1:ngrid] |
---|
1188 | INTEGER ind2 !indice in [1:klev] |
---|
1189 | !thermal plume fraction |
---|
1190 | REAL fraca(ngrid, klev + 1) !thermal plumes fraction in the gridbox |
---|
1191 | !temperatures |
---|
1192 | REAL T(ngrid, klev) !temperature |
---|
1193 | REAL zpspsk(ngrid, klev) !factor (p/p0)**kappa (used for potential variables) |
---|
1194 | REAL ztv(ngrid, klev) !potential temperature (voir thermcell_env.F90) |
---|
1195 | REAL ztla(ngrid, klev) !liquid temperature in the thermals (Tl_th) |
---|
1196 | REAL zthl(ngrid, klev) !liquid temperature in the environment (Tl_env) |
---|
1197 | !pressure |
---|
1198 | REAL paprs(ngrid, klev + 1) !pressure at the interface of levels |
---|
1199 | REAL pplay(ngrid, klev) !pressure at the middle of the level |
---|
1200 | !humidity |
---|
1201 | REAL ratqs(ngrid, klev) !width of the total water subgrid-scale distribution |
---|
1202 | REAL po(ngrid) !total water (qt) |
---|
1203 | REAL zqenv(ngrid) !total water in the environment (qt_env) |
---|
1204 | REAL zqta(ngrid, klev) !total water in the thermals (qt_th) |
---|
1205 | REAL zqsatth(ngrid, klev) !water saturation level in the thermals (q_sat_th) |
---|
1206 | REAL zqsatenv(ngrid, klev) !water saturation level in the environment (q_sat_env) |
---|
1207 | REAL qlth(ngrid, klev) !condensed water in the thermals |
---|
1208 | REAL qlenv(ngrid, klev) !condensed water in the environment |
---|
1209 | REAL qltot(ngrid, klev) !condensed water in the gridbox |
---|
1210 | !cloud fractions |
---|
1211 | REAL cth_vol(ngrid, klev) !cloud fraction by volume in the thermals |
---|
1212 | REAL cenv_vol(ngrid, klev) !cloud fraction by volume in the environment |
---|
1213 | REAL ctot_vol(ngrid, klev) !cloud fraction by volume in the gridbox |
---|
1214 | REAL cth_surf(ngrid, klev) !cloud fraction by surface in the thermals |
---|
1215 | REAL cenv_surf(ngrid, klev) !cloud fraction by surface in the environment |
---|
1216 | REAL ctot_surf(ngrid, klev) !cloud fraction by surface in the gridbox |
---|
1217 | !PDF of saturation deficit variables |
---|
1218 | REAL rdd, cppd, Lv |
---|
1219 | REAL Tbef, zdelta, qsatbef, zcor |
---|
1220 | REAL alth, alenv, ath, aenv |
---|
1221 | REAL sth, senv !saturation deficits in the thermals and environment |
---|
1222 | REAL sigma_env, sigma_th !standard deviations of the biGaussian PDF |
---|
1223 | !cloud fraction variables |
---|
1224 | REAL xth, xenv |
---|
1225 | REAL inverse_rho, beta !Neggers et al. (2011) method |
---|
1226 | REAL a_Brooks, b_Brooks, A_Maj_Brooks, Dx_Brooks, f_Brooks !Brooks et al. (2005) method |
---|
1227 | !Incloud total water variables |
---|
1228 | REAL zqs(ngrid) !q_sat |
---|
1229 | REAL qcloud(ngrid) !eau totale dans le nuage |
---|
1230 | !Some arithmetic variables |
---|
1231 | REAL erf, pi, sqrt2, sqrt2pi |
---|
1232 | !Depth of the layer |
---|
1233 | REAL dz(ngrid, klev) !epaisseur de la couche en metre |
---|
1234 | REAL rhodz(ngrid, klev) |
---|
1235 | REAL zrho(ngrid, klev) |
---|
1236 | DO ind1 = 1, ngrid |
---|
1237 | rhodz(ind1, ind2) = (paprs(ind1, ind2) - paprs(ind1, ind2 + 1)) / rg ![kg/m2] |
---|
1238 | zrho(ind1, ind2) = pplay(ind1, ind2) / T(ind1, ind2) / rd ![kg/m3] |
---|
1239 | dz(ind1, ind2) = rhodz(ind1, ind2) / zrho(ind1, ind2) ![m] |
---|
1240 | END DO |
---|
1241 | |
---|
1242 | !------------------------------------------------------------------------------ |
---|
1243 | ! Initialization |
---|
1244 | !------------------------------------------------------------------------------ |
---|
1245 | qlth(:, :) = 0. |
---|
1246 | qlenv(:, :) = 0. |
---|
1247 | qltot(:, :) = 0. |
---|
1248 | cth_vol(:, :) = 0. |
---|
1249 | cenv_vol(:, :) = 0. |
---|
1250 | ctot_vol(:, :) = 0. |
---|
1251 | cth_surf(:, :) = 0. |
---|
1252 | cenv_surf(:, :) = 0. |
---|
1253 | ctot_surf(:, :) = 0. |
---|
1254 | qcloud(:) = 0. |
---|
1255 | rdd = 287.04 |
---|
1256 | cppd = 1005.7 |
---|
1257 | pi = 3.14159 |
---|
1258 | Lv = 2.5e6 |
---|
1259 | sqrt2 = sqrt(2.) |
---|
1260 | sqrt2pi = sqrt(2. * pi) |
---|
1261 | |
---|
1262 | DO ind1 = 1, ngrid |
---|
1263 | !------------------------------------------------------------------------------- |
---|
1264 | !Both thermal and environment in the gridbox |
---|
1265 | !------------------------------------------------------------------------------- |
---|
1266 | IF ((ztv(ind1, 1)>ztv(ind1, 2)).AND.(fraca(ind1, ind2)>1.e-10)) THEN |
---|
1267 | !-------------------------------------------- |
---|
1268 | !calcul de qsat_env |
---|
1269 | !-------------------------------------------- |
---|
1270 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
1271 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
1272 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
1273 | qsatbef = MIN(0.5, qsatbef) |
---|
1274 | zcor = 1. / (1. - retv * qsatbef) |
---|
1275 | qsatbef = qsatbef * zcor |
---|
1276 | zqsatenv(ind1, ind2) = qsatbef |
---|
1277 | !-------------------------------------------- |
---|
1278 | !calcul de s_env |
---|
1279 | !-------------------------------------------- |
---|
1280 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) !qsl, p84 these Arnaud Jam |
---|
1281 | aenv = 1. / (1. + (alenv * Lv / cppd)) !al, p84 these Arnaud Jam |
---|
1282 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) !s, p84 these Arnaud Jam |
---|
1283 | !-------------------------------------------- |
---|
1284 | !calcul de qsat_th |
---|
1285 | !-------------------------------------------- |
---|
1286 | Tbef = ztla(ind1, ind2) * zpspsk(ind1, ind2) |
---|
1287 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
1288 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
1289 | qsatbef = MIN(0.5, qsatbef) |
---|
1290 | zcor = 1. / (1. - retv * qsatbef) |
---|
1291 | qsatbef = qsatbef * zcor |
---|
1292 | zqsatth(ind1, ind2) = qsatbef |
---|
1293 | !-------------------------------------------- |
---|
1294 | !calcul de s_th |
---|
1295 | !-------------------------------------------- |
---|
1296 | alth = (0.622 * Lv * zqsatth(ind1, ind2)) / (rdd * ztla(ind1, ind2)**2) !qsl, p84 these Arnaud Jam |
---|
1297 | ath = 1. / (1. + (alth * Lv / cppd)) !al, p84 these Arnaud Jam |
---|
1298 | sth = ath * (zqta(ind1, ind2) - zqsatth(ind1, ind2)) !s, p84 these Arnaud Jam |
---|
1299 | !-------------------------------------------- |
---|
1300 | !calcul standard deviations bi-Gaussian PDF |
---|
1301 | !-------------------------------------------- |
---|
1302 | sigma_th = (0.03218 + 0.000092655 * dz(ind1, ind2)) / ((fraca(ind1, ind2) + 0.01)**0.5) * (((sth - senv)**2)**0.5) + 0.002 * zqta(ind1, ind2) |
---|
1303 | sigma_env = (0.71794 + 0.000498239 * dz(ind1, ind2)) * (fraca(ind1, ind2)**0.5) & |
---|
1304 | / (1 - fraca(ind1, ind2)) * (((sth - senv)**2)**0.5) & |
---|
1305 | + ratqs(ind1, ind2) * po(ind1) |
---|
1306 | xth = sth / (sqrt2 * sigma_th) |
---|
1307 | xenv = senv / (sqrt2 * sigma_env) |
---|
1308 | !-------------------------------------------- |
---|
1309 | !Cloud fraction by volume CF_vol |
---|
1310 | !-------------------------------------------- |
---|
1311 | cth_vol(ind1, ind2) = 0.5 * (1. + 1. * erf(xth)) |
---|
1312 | cenv_vol(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
1313 | ctot_vol(ind1, ind2) = fraca(ind1, ind2) * cth_vol(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * cenv_vol(ind1, ind2) |
---|
1314 | !-------------------------------------------- |
---|
1315 | !Condensed water qc |
---|
1316 | !-------------------------------------------- |
---|
1317 | qlth(ind1, ind2) = sigma_th * ((exp(-1. * xth**2) / sqrt2pi) + xth * sqrt2 * cth_vol(ind1, ind2)) |
---|
1318 | qlenv(ind1, ind2) = sigma_env * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt2 * cenv_vol(ind1, ind2)) |
---|
1319 | qltot(ind1, ind2) = fraca(ind1, ind2) * qlth(ind1, ind2) + (1. - 1. * fraca(ind1, ind2)) * qlenv(ind1, ind2) |
---|
1320 | !-------------------------------------------- |
---|
1321 | !Cloud fraction by surface CF_surf |
---|
1322 | !-------------------------------------------- |
---|
1323 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
1324 | !beta=0.0044 (Jouhaud et al.2018) |
---|
1325 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
1326 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
1327 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
1328 | a_Brooks = 0.6694 |
---|
1329 | b_Brooks = 0.1882 |
---|
1330 | A_Maj_Brooks = 0.1635 !-- sans dependence au cisaillement de vent |
---|
1331 | Dx_Brooks = 200000. !-- si l'on considere des mailles de 200km de cote |
---|
1332 | f_Brooks = A_Maj_Brooks * (dz(ind1, ind2)**(a_Brooks)) * (Dx_Brooks**(-b_Brooks)) |
---|
1333 | ctot_surf(ind1, ind2) = 1. / (1. + exp(-1. * f_Brooks) * ((1. / max(1.e-15, min(ctot_vol(ind1, ind2), 1.))) - 1.)) |
---|
1334 | !-------------------------------------------- |
---|
1335 | !Incloud Condensed water qcloud |
---|
1336 | !-------------------------------------------- |
---|
1337 | IF (ctot_surf(ind1, ind2) < 1.e-10) THEN |
---|
1338 | ctot_vol(ind1, ind2) = 0. |
---|
1339 | ctot_surf(ind1, ind2) = 0. |
---|
1340 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
1341 | else |
---|
1342 | qcloud(ind1) = qltot(ind1, ind2) / ctot_vol(ind1, ind2) + zqs(ind1) |
---|
1343 | endif |
---|
1344 | |
---|
1345 | |
---|
1346 | |
---|
1347 | !------------------------------------------------------------------------------- |
---|
1348 | !Environment only in the gridbox |
---|
1349 | !------------------------------------------------------------------------------- |
---|
1350 | ELSE |
---|
1351 | !-------------------------------------------- |
---|
1352 | !calcul de qsat_env |
---|
1353 | !-------------------------------------------- |
---|
1354 | Tbef = zthl(ind1, ind2) * zpspsk(ind1, ind2) |
---|
1355 | zdelta = MAX(0., SIGN(1., RTT - Tbef)) |
---|
1356 | qsatbef = R2ES * FOEEW(Tbef, zdelta) / paprs(ind1, ind2) |
---|
1357 | qsatbef = MIN(0.5, qsatbef) |
---|
1358 | zcor = 1. / (1. - retv * qsatbef) |
---|
1359 | qsatbef = qsatbef * zcor |
---|
1360 | zqsatenv(ind1, ind2) = qsatbef |
---|
1361 | !-------------------------------------------- |
---|
1362 | !calcul de s_env |
---|
1363 | !-------------------------------------------- |
---|
1364 | alenv = (0.622 * Lv * zqsatenv(ind1, ind2)) / (rdd * zthl(ind1, ind2)**2) !qsl, p84 these Arnaud Jam |
---|
1365 | aenv = 1. / (1. + (alenv * Lv / cppd)) !al, p84 these Arnaud Jam |
---|
1366 | senv = aenv * (po(ind1) - zqsatenv(ind1, ind2)) !s, p84 these Arnaud Jam |
---|
1367 | !-------------------------------------------- |
---|
1368 | !calcul standard deviations Gaussian PDF |
---|
1369 | !-------------------------------------------- |
---|
1370 | zqenv(ind1) = po(ind1) |
---|
1371 | sigma_env = ratqs(ind1, ind2) * zqenv(ind1) |
---|
1372 | xenv = senv / (sqrt2 * sigma_env) |
---|
1373 | !-------------------------------------------- |
---|
1374 | !Cloud fraction by volume CF_vol |
---|
1375 | !-------------------------------------------- |
---|
1376 | ctot_vol(ind1, ind2) = 0.5 * (1. + 1. * erf(xenv)) |
---|
1377 | !-------------------------------------------- |
---|
1378 | !Condensed water qc |
---|
1379 | !-------------------------------------------- |
---|
1380 | qltot(ind1, ind2) = sigma_env * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt2 * ctot_vol(ind1, ind2)) |
---|
1381 | !-------------------------------------------- |
---|
1382 | !Cloud fraction by surface CF_surf |
---|
1383 | !-------------------------------------------- |
---|
1384 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
1385 | !beta=0.0044 (Jouhaud et al.2018) |
---|
1386 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
1387 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
1388 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
1389 | a_Brooks = 0.6694 |
---|
1390 | b_Brooks = 0.1882 |
---|
1391 | A_Maj_Brooks = 0.1635 !-- sans dependence au shear |
---|
1392 | Dx_Brooks = 200000. |
---|
1393 | f_Brooks = A_Maj_Brooks * (dz(ind1, ind2)**(a_Brooks)) * (Dx_Brooks**(-b_Brooks)) |
---|
1394 | ctot_surf(ind1, ind2) = 1. / (1. + exp(-1. * f_Brooks) * ((1. / max(1.e-15, min(ctot_vol(ind1, ind2), 1.))) - 1.)) |
---|
1395 | !-------------------------------------------- |
---|
1396 | !Incloud Condensed water qcloud |
---|
1397 | !-------------------------------------------- |
---|
1398 | IF (ctot_surf(ind1, ind2) < 1.e-8) THEN |
---|
1399 | ctot_vol(ind1, ind2) = 0. |
---|
1400 | ctot_surf(ind1, ind2) = 0. |
---|
1401 | qcloud(ind1) = zqsatenv(ind1, ind2) |
---|
1402 | else |
---|
1403 | qcloud(ind1) = qltot(ind1, ind2) / ctot_vol(ind1, ind2) + zqsatenv(ind1, ind2) |
---|
1404 | endif |
---|
1405 | |
---|
1406 | END IF ! From the separation (thermal/envrionnement) et (environnement only) |
---|
1407 | |
---|
1408 | ! Outputs used to check the PDFs |
---|
1409 | cloudth_senv(ind1, ind2) = senv |
---|
1410 | cloudth_sth(ind1, ind2) = sth |
---|
1411 | cloudth_sigmaenv(ind1, ind2) = sigma_env |
---|
1412 | cloudth_sigmath(ind1, ind2) = sigma_th |
---|
1413 | |
---|
1414 | END DO ! From the loop on ngrid |
---|
1415 | |
---|
1416 | END SUBROUTINE cloudth_v6 |
---|
1417 | |
---|
1418 | |
---|
1419 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1420 | SUBROUTINE cloudth_mpc(klon, klev, ind2, mpc_bl_points, & |
---|
1421 | & temp, qt, qt_th, frac_th, zpspsk, paprsup, paprsdn, play, thetal_th, & |
---|
1422 | & ratqs, qcloud, qincloud, icefrac, ctot, ctot_vol, & |
---|
1423 | & cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
1424 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1425 | ! Author : Etienne Vignon (LMDZ/CNRS) |
---|
1426 | ! Date: April 2024 |
---|
1427 | ! Date: Adapted from cloudth_vert_v3 in 2023 by Arnaud Otavio Jam |
---|
1428 | ! IMPORTANT NOTE: we assume iflag_cloudth_vert=7 |
---|
1429 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1430 | |
---|
1431 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert, iflag_ratqs |
---|
1432 | USE lmdz_cloudth_ini, ONLY: C_mpc, Ni, C_cap, Ei, d_top, vert_alpha, vert_alpha_th, sigma1s_factor, sigma1s_power, sigma2s_factor, sigma2s_power, cloudth_ratqsmin, iflag_cloudth_vert_noratqs |
---|
1433 | USE lmdz_lscp_tools, only: CALC_QSAT_ECMWF |
---|
1434 | USE lmdz_lscp_ini, only: RTT, RG, RPI, RD, RCPD, RLVTT, RLSTT, temp_nowater, min_frac_th_cld, min_neb_th |
---|
1435 | |
---|
1436 | IMPLICIT NONE |
---|
1437 | |
---|
1438 | |
---|
1439 | !------------------------------------------------------------------------------ |
---|
1440 | ! Declaration |
---|
1441 | !------------------------------------------------------------------------------ |
---|
1442 | |
---|
1443 | ! INPUT/OUTPUT |
---|
1444 | |
---|
1445 | INTEGER, INTENT(IN) :: klon, klev, ind2 |
---|
1446 | |
---|
1447 | REAL, DIMENSION(klon), INTENT(IN) :: temp ! Temperature (liquid temperature) in the mesh [K] : has seen evap of precip |
---|
1448 | REAL, DIMENSION(klon), INTENT(IN) :: qt ! total water specific humidity in the mesh [kg/kg]: has seen evap of precip |
---|
1449 | REAL, DIMENSION(klon), INTENT(IN) :: qt_th ! total water specific humidity in thermals [kg/kg]: has not seen evap of precip |
---|
1450 | REAL, DIMENSION(klon), INTENT(IN) :: thetal_th ! Liquid potential temperature in thermals [K]: has not seen the evap of precip |
---|
1451 | REAL, DIMENSION(klon), INTENT(IN) :: frac_th ! Fraction of the mesh covered by thermals [0-1] |
---|
1452 | REAL, DIMENSION(klon), INTENT(IN) :: zpspsk ! Exner potential |
---|
1453 | REAL, DIMENSION(klon), INTENT(IN) :: paprsup ! Pressure at top layer interface [Pa] |
---|
1454 | REAL, DIMENSION(klon), INTENT(IN) :: paprsdn ! Pressure at bottom layer interface [Pa] |
---|
1455 | REAL, DIMENSION(klon), INTENT(IN) :: play ! Pressure of layers [Pa] |
---|
1456 | REAL, DIMENSION(klon), INTENT(IN) :: ratqs ! Parameter that determines the width of the total water distrib. |
---|
1457 | |
---|
1458 | INTEGER, DIMENSION(klon, klev), INTENT(INOUT) :: mpc_bl_points ! grid points with convective (thermals) mixed phase clouds |
---|
1459 | |
---|
1460 | REAL, DIMENSION(klon), INTENT(OUT) :: ctot ! Cloud fraction [0-1] |
---|
1461 | REAL, DIMENSION(klon), INTENT(OUT) :: ctot_vol ! Volume cloud fraction [0-1] |
---|
1462 | REAL, DIMENSION(klon), INTENT(OUT) :: qcloud ! In cloud total water content [kg/kg] |
---|
1463 | REAL, DIMENSION(klon), INTENT(OUT) :: qincloud ! In cloud condensed water content [kg/kg] |
---|
1464 | REAL, DIMENSION(klon), INTENT(OUT) :: icefrac ! Fraction of ice in clouds [0-1] |
---|
1465 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sth ! mean saturation deficit in thermals |
---|
1466 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_senv ! mean saturation deficit in environment |
---|
1467 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmath ! std of saturation deficit in thermals |
---|
1468 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmaenv ! std of saturation deficit in environment |
---|
1469 | |
---|
1470 | |
---|
1471 | ! LOCAL VARIABLES |
---|
1472 | |
---|
1473 | INTEGER itap, ind1, l, ig, iter, k |
---|
1474 | INTEGER iflag_topthermals, niter |
---|
1475 | |
---|
1476 | REAL qcth(klon) |
---|
1477 | REAL qcenv(klon) |
---|
1478 | REAL qctot(klon) |
---|
1479 | REAL cth(klon) |
---|
1480 | REAL cenv(klon) |
---|
1481 | REAL cth_vol(klon) |
---|
1482 | REAL cenv_vol(klon) |
---|
1483 | REAL qt_env(klon), thetal_env(klon) |
---|
1484 | REAL icefracenv(klon), icefracth(klon) |
---|
1485 | REAL sqrtpi, sqrt2, sqrt2pi |
---|
1486 | REAL alth, alenv, ath, aenv |
---|
1487 | REAL sth, senv, sigma1s, sigma2s, sigma1s_fraca, sigma1s_ratqs |
---|
1488 | REAL inverse_rho, beta, a_Brooks, b_Brooks, A_Maj_Brooks, Dx_Brooks, f_Brooks |
---|
1489 | REAL xth, xenv, exp_xenv1, exp_xenv2, exp_xth1, exp_xth2 |
---|
1490 | REAL xth1, xth2, xenv1, xenv2, deltasth, deltasenv |
---|
1491 | REAL IntJ, IntI1, IntI2, IntI3, IntJ_CF, IntI1_CF, IntI3_CF, coeffqlenv, coeffqlth |
---|
1492 | REAL zdelta, qsatbef, zcor |
---|
1493 | REAL Tbefth(klon), Tbefenv(klon), zrho(klon), rhoth(klon) |
---|
1494 | REAL qlbef |
---|
1495 | REAL dqsatenv(klon), dqsatth(klon) |
---|
1496 | REAL erf |
---|
1497 | REAL zpdf_sig(klon), zpdf_k(klon), zpdf_delta(klon) |
---|
1498 | REAL zpdf_a(klon), zpdf_b(klon), zpdf_e1(klon), zpdf_e2(klon) |
---|
1499 | REAL rhodz(klon) |
---|
1500 | REAL rho(klon) |
---|
1501 | REAL dz(klon) |
---|
1502 | REAL qslenv(klon), qslth(klon), qsienv(klon), qsith(klon) |
---|
1503 | REAL alenvl, aenvl |
---|
1504 | REAL sthi, sthl, sthil, althl, athl, althi, athi, sthlc, deltasthc, sigma2sc |
---|
1505 | REAL senvi, senvl, qbase, sbase, qliqth, qiceth |
---|
1506 | REAL qmax, ttarget, stmp, cout, coutref, fraci |
---|
1507 | REAL maxi, mini, pas |
---|
1508 | |
---|
1509 | ! Modifty the saturation deficit PDF in thermals |
---|
1510 | ! in the presence of ice crystals |
---|
1511 | CHARACTER (len = 80) :: abort_message |
---|
1512 | CHARACTER (len = 20) :: routname = 'cloudth_mpc' |
---|
1513 | |
---|
1514 | |
---|
1515 | !------------------------------------------------------------------------------ |
---|
1516 | ! Initialisation |
---|
1517 | !------------------------------------------------------------------------------ |
---|
1518 | |
---|
1519 | |
---|
1520 | ! Few initial checksS |
---|
1521 | |
---|
1522 | DO k = 1, klev |
---|
1523 | DO ind1 = 1, klon |
---|
1524 | rhodz(ind1) = (paprsdn(ind1) - paprsup(ind1)) / rg !kg/m2 |
---|
1525 | zrho(ind1) = play(ind1) / temp(ind1) / rd !kg/m3 |
---|
1526 | dz(ind1) = rhodz(ind1) / zrho(ind1) !m : epaisseur de la couche en metre |
---|
1527 | END DO |
---|
1528 | END DO |
---|
1529 | |
---|
1530 | icefracth(:) = 0. |
---|
1531 | icefracenv(:) = 0. |
---|
1532 | sqrt2pi = sqrt(2. * rpi) |
---|
1533 | sqrt2 = sqrt(2.) |
---|
1534 | sqrtpi = sqrt(rpi) |
---|
1535 | icefrac(:) = 0. |
---|
1536 | |
---|
1537 | !------------------------------------------------------------------------------- |
---|
1538 | ! Identify grid points with potential mixed-phase conditions |
---|
1539 | !------------------------------------------------------------------------------- |
---|
1540 | |
---|
1541 | DO ind1 = 1, klon |
---|
1542 | IF ((temp(ind1) < RTT) .AND. (temp(ind1) > temp_nowater) & |
---|
1543 | .AND. (ind2<=klev - 2) & |
---|
1544 | .AND. (frac_th(ind1)>min_frac_th_cld)) THEN |
---|
1545 | mpc_bl_points(ind1, ind2) = 1 |
---|
1546 | ELSE |
---|
1547 | mpc_bl_points(ind1, ind2) = 0 |
---|
1548 | ENDIF |
---|
1549 | ENDDO |
---|
1550 | |
---|
1551 | |
---|
1552 | !------------------------------------------------------------------------------- |
---|
1553 | ! Thermal fraction calculation and standard deviation of the distribution |
---|
1554 | !------------------------------------------------------------------------------- |
---|
1555 | |
---|
1556 | ! initialisations and calculation of temperature, humidity and saturation specific humidity |
---|
1557 | |
---|
1558 | DO ind1 = 1, klon |
---|
1559 | |
---|
1560 | rhodz(ind1) = (paprsdn(ind1) - paprsup(ind1)) / rg ! kg/m2 |
---|
1561 | rho(ind1) = play(ind1) / temp(ind1) / rd ! kg/m3 |
---|
1562 | dz(ind1) = rhodz(ind1) / rho(ind1) ! m : epaisseur de la couche en metre |
---|
1563 | Tbefenv(ind1) = temp(ind1) |
---|
1564 | thetal_env(ind1) = Tbefenv(ind1) / zpspsk(ind1) |
---|
1565 | Tbefth(ind1) = thetal_th(ind1) * zpspsk(ind1) |
---|
1566 | rhoth(ind1) = play(ind1) / Tbefth(ind1) / RD |
---|
1567 | qt_env(ind1) = (qt(ind1) - frac_th(ind1) * qt_th(ind1)) / (1. - frac_th(ind1)) !qt = a*qtth + (1-a)*qtenv |
---|
1568 | |
---|
1569 | ENDDO |
---|
1570 | |
---|
1571 | ! Calculation of saturation specific humidity |
---|
1572 | CALL CALC_QSAT_ECMWF(klon, Tbefenv, qt_env, play, RTT, 1, .FALSE., qslenv, dqsatenv) |
---|
1573 | CALL CALC_QSAT_ECMWF(klon, Tbefenv, qt_env, play, RTT, 2, .FALSE., qsienv, dqsatenv) |
---|
1574 | CALL CALC_QSAT_ECMWF(klon, Tbefth, qt_th, play, RTT, 1, .FALSE., qslth, dqsatth) |
---|
1575 | |
---|
1576 | DO ind1 = 1, klon |
---|
1577 | |
---|
1578 | IF (frac_th(ind1)>min_frac_th_cld) THEN !Thermal and environnement |
---|
1579 | |
---|
1580 | ! unlike in the other cloudth routine, |
---|
1581 | ! We consider distributions of the saturation deficit WRT liquid |
---|
1582 | ! at positive AND negative celcius temperature |
---|
1583 | ! subsequently, cloud fraction corresponds to the part of the pdf corresponding |
---|
1584 | ! to superstauration with respect to liquid WHATEVER the temperature |
---|
1585 | |
---|
1586 | ! Environment: |
---|
1587 | |
---|
1588 | alenv = (0.622 * RLVTT * qslenv(ind1)) / (rd * thetal_env(ind1)**2) |
---|
1589 | aenv = 1. / (1. + (alenv * RLVTT / rcpd)) |
---|
1590 | senv = aenv * (qt_env(ind1) - qslenv(ind1)) |
---|
1591 | |
---|
1592 | |
---|
1593 | ! Thermals: |
---|
1594 | |
---|
1595 | alth = (0.622 * RLVTT * qslth(ind1)) / (rd * thetal_th(ind1)**2) |
---|
1596 | ath = 1. / (1. + (alth * RLVTT / rcpd)) |
---|
1597 | sth = ath * (qt_th(ind1) - qslth(ind1)) |
---|
1598 | |
---|
1599 | |
---|
1600 | ! IF (mpc_bl_points(ind1,ind2) .EQ. 0) THEN ! No BL MPC |
---|
1601 | |
---|
1602 | |
---|
1603 | ! Standard deviation of the distributions |
---|
1604 | |
---|
1605 | sigma1s_fraca = (sigma1s_factor**0.5) * (frac_th(ind1)**sigma1s_power) / & |
---|
1606 | (1 - frac_th(ind1)) * ((sth - senv)**2)**0.5 |
---|
1607 | |
---|
1608 | IF (cloudth_ratqsmin>0.) THEN |
---|
1609 | sigma1s_ratqs = cloudth_ratqsmin * qt(ind1) |
---|
1610 | ELSE |
---|
1611 | sigma1s_ratqs = ratqs(ind1) * qt(ind1) |
---|
1612 | ENDIF |
---|
1613 | |
---|
1614 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
1615 | IF (iflag_ratqs==11) THEN |
---|
1616 | sigma1s = ratqs(ind1) * qt(ind1) * aenv |
---|
1617 | ENDIF |
---|
1618 | sigma2s = (sigma2s_factor * (((sth - senv)**2)**0.5) / ((frac_th(ind1) + 0.02)**sigma2s_power)) + 0.002 * qt_th(ind1) |
---|
1619 | |
---|
1620 | deltasenv = aenv * vert_alpha * sigma1s |
---|
1621 | deltasth = ath * vert_alpha_th * sigma2s |
---|
1622 | |
---|
1623 | xenv1 = -(senv + deltasenv) / (sqrt(2.) * sigma1s) |
---|
1624 | xenv2 = -(senv - deltasenv) / (sqrt(2.) * sigma1s) |
---|
1625 | exp_xenv1 = exp(-1. * xenv1**2) |
---|
1626 | exp_xenv2 = exp(-1. * xenv2**2) |
---|
1627 | xth1 = -(sth + deltasth) / (sqrt(2.) * sigma2s) |
---|
1628 | xth2 = -(sth - deltasth) / (sqrt(2.) * sigma2s) |
---|
1629 | exp_xth1 = exp(-1. * xth1**2) |
---|
1630 | exp_xth2 = exp(-1. * xth2**2) |
---|
1631 | |
---|
1632 | !surface CF |
---|
1633 | |
---|
1634 | cth(ind1) = 0.5 * (1. - 1. * erf(xth1)) |
---|
1635 | cenv(ind1) = 0.5 * (1. - 1. * erf(xenv1)) |
---|
1636 | ctot(ind1) = frac_th(ind1) * cth(ind1) + (1. - 1. * frac_th(ind1)) * cenv(ind1) |
---|
1637 | |
---|
1638 | |
---|
1639 | !volume CF, condensed water and ice fraction |
---|
1640 | |
---|
1641 | !environnement |
---|
1642 | |
---|
1643 | IntJ = 0.5 * senv * (1 - erf(xenv2)) + (sigma1s / sqrt2pi) * exp_xenv2 |
---|
1644 | IntJ_CF = 0.5 * (1. - 1. * erf(xenv2)) |
---|
1645 | |
---|
1646 | IF (deltasenv < 1.e-10) THEN |
---|
1647 | qcenv(ind1) = IntJ |
---|
1648 | cenv_vol(ind1) = IntJ_CF |
---|
1649 | ELSE |
---|
1650 | IntI1 = (((senv + deltasenv)**2 + (sigma1s)**2) / (8 * deltasenv)) * (erf(xenv2) - erf(xenv1)) |
---|
1651 | IntI2 = (sigma1s**2 / (4 * deltasenv * sqrtpi)) * (xenv1 * exp_xenv1 - xenv2 * exp_xenv2) |
---|
1652 | IntI3 = ((sqrt2 * sigma1s * (senv + deltasenv)) / (4 * sqrtpi * deltasenv)) * (exp_xenv1 - exp_xenv2) |
---|
1653 | IntI1_CF = ((senv + deltasenv) * (erf(xenv2) - erf(xenv1))) / (4 * deltasenv) |
---|
1654 | IntI3_CF = (sqrt2 * sigma1s * (exp_xenv1 - exp_xenv2)) / (4 * sqrtpi * deltasenv) |
---|
1655 | qcenv(ind1) = IntJ + IntI1 + IntI2 + IntI3 |
---|
1656 | cenv_vol(ind1) = IntJ_CF + IntI1_CF + IntI3_CF |
---|
1657 | IF (Tbefenv(ind1) < temp_nowater) THEN |
---|
1658 | ! freeze all droplets in cirrus temperature regime |
---|
1659 | icefracenv(ind1) = 1. |
---|
1660 | ENDIF |
---|
1661 | ENDIF |
---|
1662 | |
---|
1663 | |
---|
1664 | |
---|
1665 | !thermals |
---|
1666 | |
---|
1667 | IntJ = 0.5 * sth * (1 - erf(xth2)) + (sigma2s / sqrt2pi) * exp_xth2 |
---|
1668 | IntJ_CF = 0.5 * (1. - 1. * erf(xth2)) |
---|
1669 | |
---|
1670 | IF (deltasth < 1.e-10) THEN |
---|
1671 | qcth(ind1) = IntJ |
---|
1672 | cth_vol(ind1) = IntJ_CF |
---|
1673 | ELSE |
---|
1674 | IntI1 = (((sth + deltasth)**2 + (sigma2s)**2) / (8 * deltasth)) * (erf(xth2) - erf(xth1)) |
---|
1675 | IntI2 = (sigma2s**2 / (4 * deltasth * sqrtpi)) * (xth1 * exp_xth1 - xth2 * exp_xth2) |
---|
1676 | IntI3 = ((sqrt2 * sigma2s * (sth + deltasth)) / (4 * sqrtpi * deltasth)) * (exp_xth1 - exp_xth2) |
---|
1677 | IntI1_CF = ((sth + deltasth) * (erf(xth2) - erf(xth1))) / (4 * deltasth) |
---|
1678 | IntI3_CF = (sqrt2 * sigma2s * (exp_xth1 - exp_xth2)) / (4 * sqrtpi * deltasth) |
---|
1679 | qcth(ind1) = IntJ + IntI1 + IntI2 + IntI3 |
---|
1680 | cth_vol(ind1) = IntJ_CF + IntI1_CF + IntI3_CF |
---|
1681 | IF (Tbefth(ind1) < temp_nowater) THEN |
---|
1682 | ! freeze all droplets in cirrus temperature regime |
---|
1683 | icefracth(ind1) = 1. |
---|
1684 | ENDIF |
---|
1685 | |
---|
1686 | ENDIF |
---|
1687 | |
---|
1688 | qctot(ind1) = frac_th(ind1) * qcth(ind1) + (1. - 1. * frac_th(ind1)) * qcenv(ind1) |
---|
1689 | ctot_vol(ind1) = frac_th(ind1) * cth_vol(ind1) + (1. - 1. * frac_th(ind1)) * cenv_vol(ind1) |
---|
1690 | |
---|
1691 | IF (cenv(ind1)<min_neb_th.AND.cth(ind1)<min_neb_th) THEN |
---|
1692 | ctot(ind1) = 0. |
---|
1693 | ctot_vol(ind1) = 0. |
---|
1694 | qcloud(ind1) = qslenv(ind1) |
---|
1695 | qincloud(ind1) = 0. |
---|
1696 | icefrac(ind1) = 0. |
---|
1697 | ELSE |
---|
1698 | qcloud(ind1) = qctot(ind1) / ctot(ind1) + qslenv(ind1) |
---|
1699 | qincloud(ind1) = qctot(ind1) / ctot(ind1) |
---|
1700 | IF (qctot(ind1) > 0) THEN |
---|
1701 | icefrac(ind1) = (frac_th(ind1) * qcth(ind1) * icefracth(ind1) + (1. - 1. * frac_th(ind1)) * qcenv(ind1) * icefracenv(ind1)) / qctot(ind1) |
---|
1702 | icefrac(ind1) = max(min(1., icefrac(ind1)), 0.) |
---|
1703 | ENDIF |
---|
1704 | ENDIF |
---|
1705 | |
---|
1706 | |
---|
1707 | ! ELSE ! mpc_bl_points>0 |
---|
1708 | |
---|
1709 | ELSE ! gaussian for environment only |
---|
1710 | |
---|
1711 | alenv = (0.622 * RLVTT * qslenv(ind1)) / (rd * thetal_env(ind1)**2) |
---|
1712 | aenv = 1. / (1. + (alenv * RLVTT / rcpd)) |
---|
1713 | senv = aenv * (qt_env(ind1) - qslenv(ind1)) |
---|
1714 | sth = 0. |
---|
1715 | sigma1s = ratqs(ind1) * qt_env(ind1) |
---|
1716 | sigma2s = 0. |
---|
1717 | |
---|
1718 | xenv = senv / (sqrt(2.) * sigma1s) |
---|
1719 | cenv(ind1) = 0.5 * (1. - 1. * erf(xenv)) |
---|
1720 | ctot(ind1) = 0.5 * (1. + 1. * erf(xenv)) |
---|
1721 | ctot_vol(ind1) = ctot(ind1) |
---|
1722 | qctot(ind1) = sigma1s * ((exp(-1. * xenv**2) / sqrt2pi) + xenv * sqrt(2.) * cenv(ind1)) |
---|
1723 | |
---|
1724 | IF (ctot(ind1)<min_neb_th) THEN |
---|
1725 | ctot(ind1) = 0. |
---|
1726 | qcloud(ind1) = qslenv(ind1) |
---|
1727 | qincloud(ind1) = 0. |
---|
1728 | ELSE |
---|
1729 | qcloud(ind1) = qctot(ind1) / ctot(ind1) + qslenv(ind1) |
---|
1730 | qincloud(ind1) = MAX(qctot(ind1) / ctot(ind1), 0.) |
---|
1731 | ENDIF |
---|
1732 | |
---|
1733 | ENDIF ! From the separation (thermal/envrionnement) and (environnement only,) l.335 et l.492 |
---|
1734 | |
---|
1735 | ! Outputs used to check the PDFs |
---|
1736 | cloudth_senv(ind1) = senv |
---|
1737 | cloudth_sth(ind1) = sth |
---|
1738 | cloudth_sigmaenv(ind1) = sigma1s |
---|
1739 | cloudth_sigmath(ind1) = sigma2s |
---|
1740 | |
---|
1741 | ENDDO !loop on klon |
---|
1742 | |
---|
1743 | END SUBROUTINE cloudth_mpc |
---|
1744 | |
---|
1745 | |
---|
1746 | ! ELSE ! mpc_bl_points>0 |
---|
1747 | |
---|
1748 | ! ! Treat boundary layer mixed phase clouds |
---|
1749 | |
---|
1750 | ! ! thermals |
---|
1751 | ! !========= |
---|
1752 | |
---|
1753 | ! ! ice phase |
---|
1754 | ! !........... |
---|
1755 | |
---|
1756 | ! qiceth=0. |
---|
1757 | ! deltazlev_mpc=dz(ind1,:) |
---|
1758 | ! temp_mpc=ztla(ind1,:)*zpspsk(ind1,:) |
---|
1759 | ! pres_mpc=pplay(ind1,:) |
---|
1760 | ! fraca_mpc=fraca(ind1,:) |
---|
1761 | ! snowf_mpc=snowflux(ind1,:) |
---|
1762 | ! iflag_topthermals=0 |
---|
1763 | ! IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 0)) THEN |
---|
1764 | ! iflag_topthermals = 1 |
---|
1765 | ! ELSE IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 1) & |
---|
1766 | ! .AND. (mpc_bl_points(ind1,ind2+2) .EQ. 0) ) THEN |
---|
1767 | ! iflag_topthermals = 2 |
---|
1768 | ! ELSE |
---|
1769 | ! iflag_topthermals = 0 |
---|
1770 | ! ENDIF |
---|
1771 | |
---|
1772 | ! CALL ICE_MPC_BL_CLOUDS(ind1,ind2,klev,Ni,Ei,C_cap,d_top,iflag_topthermals,temp_mpc,pres_mpc,zqta(ind1,:), & |
---|
1773 | ! qsith(ind1,:),qlth(ind1,:),deltazlev_mpc,wiceth(ind1,:),fraca_mpc,qith(ind1,:)) |
---|
1774 | |
---|
1775 | ! ! qmax calculation |
---|
1776 | ! sigma2s=(sigma2s_factor*((MAX((sthl-senvl),0.)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
---|
1777 | ! deltasth=athl*vert_alpha_th*sigma2s |
---|
1778 | ! xth1=-(sthl+deltasth)/(sqrt(2.)*sigma2s) |
---|
1779 | ! xth2=-(sthl-deltasth)/(sqrt(2.)*sigma2s) |
---|
1780 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
1781 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
1782 | ! IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
1783 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
1784 | ! IntI1=(((sthl+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
1785 | ! IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
1786 | ! IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
1787 | ! IntI1_CF=((sthl+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
1788 | ! IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
1789 | ! qmax=MAX(IntJ+IntI1+IntI2+IntI3,0.) |
---|
1790 | |
---|
1791 | |
---|
1792 | ! ! Liquid phase |
---|
1793 | ! !................ |
---|
1794 | ! ! We account for the effect of ice crystals in thermals on sthl |
---|
1795 | ! ! and on the width of the distribution |
---|
1796 | |
---|
1797 | ! sthlc=sthl*1./(1.+C_mpc*qith(ind1,ind2)) & |
---|
1798 | ! + (1.-1./(1.+C_mpc*qith(ind1,ind2))) * athl*(qsith(ind1,ind2)-qslth(ind1)) |
---|
1799 | |
---|
1800 | ! sigma2sc=(sigma2s_factor*((MAX((sthlc-senvl),0.)**2)**0.5) & |
---|
1801 | ! /((fraca(ind1,ind2)+0.02)**sigma2s_power)) & |
---|
1802 | ! +0.002*zqta(ind1,ind2) |
---|
1803 | ! deltasthc=athl*vert_alpha_th*sigma2sc |
---|
1804 | |
---|
1805 | |
---|
1806 | ! xth1=-(sthlc+deltasthc)/(sqrt(2.)*sigma2sc) |
---|
1807 | ! xth2=-(sthlc-deltasthc)/(sqrt(2.)*sigma2sc) |
---|
1808 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
1809 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
1810 | ! IntJ=0.5*sthlc*(1-erf(xth2))+(sigma2sc/sqrt2pi)*exp_xth2 |
---|
1811 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
1812 | ! IntI1=(((sthlc+deltasthc)**2+(sigma2sc)**2)/(8*deltasthc))*(erf(xth2)-erf(xth1)) |
---|
1813 | ! IntI2=(sigma2sc**2/(4*deltasthc*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
1814 | ! IntI3=((sqrt2*sigma2sc*(sthlc+deltasthc))/(4*sqrtpi*deltasthc))*(exp_xth1-exp_xth2) |
---|
1815 | ! IntI1_CF=((sthlc+deltasthc)*(erf(xth2)-erf(xth1)))/(4*deltasthc) |
---|
1816 | ! IntI3_CF=(sqrt2*sigma2sc*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasthc) |
---|
1817 | ! qliqth=IntJ+IntI1+IntI2+IntI3 |
---|
1818 | |
---|
1819 | ! qlth(ind1,ind2)=MAX(0.,qliqth) |
---|
1820 | |
---|
1821 | ! ! Condensed water |
---|
1822 | |
---|
1823 | ! qcth(ind1,ind2)=qlth(ind1,ind2)+qith(ind1,ind2) |
---|
1824 | |
---|
1825 | |
---|
1826 | ! ! consistency with subgrid distribution |
---|
1827 | |
---|
1828 | ! IF ((qcth(ind1,ind2) .GT. qmax) .AND. (qcth(ind1,ind2) .GT. 0)) THEN |
---|
1829 | ! fraci=qith(ind1,ind2)/qcth(ind1,ind2) |
---|
1830 | ! qcth(ind1,ind2)=qmax |
---|
1831 | ! qith(ind1,ind2)=fraci*qmax |
---|
1832 | ! qlth(ind1,ind2)=(1.-fraci)*qmax |
---|
1833 | ! ENDIF |
---|
1834 | |
---|
1835 | ! ! Cloud Fraction |
---|
1836 | ! !............... |
---|
1837 | ! ! calculation of qbase which is the value of the water vapor within mixed phase clouds |
---|
1838 | ! ! such that the total water in cloud = qbase+qliqth+qiceth |
---|
1839 | ! ! sbase is the value of s such that int_sbase^\intfy s ds = cloud fraction |
---|
1840 | ! ! sbase and qbase calculation (note that sbase is wrt liq so negative) |
---|
1841 | ! ! look for an approximate solution with iteration |
---|
1842 | |
---|
1843 | ! ttarget=qcth(ind1,ind2) |
---|
1844 | ! mini= athl*(qsith(ind1,ind2)-qslth(ind1)) |
---|
1845 | ! maxi= 0. !athl*(3.*sqrt(sigma2s)) |
---|
1846 | ! niter=20 |
---|
1847 | ! pas=(maxi-mini)/niter |
---|
1848 | ! stmp=mini |
---|
1849 | ! sbase=stmp |
---|
1850 | ! coutref=1.E6 |
---|
1851 | ! DO iter=1,niter |
---|
1852 | ! cout=ABS(sigma2s/SQRT(2.*RPI)*EXP(-((sthl-stmp)/sigma2s)**2)+(sthl-stmp)/SQRT(2.)*(1.-erf(-(sthl-stmp)/sigma2s)) & |
---|
1853 | ! + stmp/2.*(1.-erf(-(sthl-stmp)/sigma2s)) -ttarget) |
---|
1854 | ! IF (cout .LT. coutref) THEN |
---|
1855 | ! sbase=stmp |
---|
1856 | ! coutref=cout |
---|
1857 | ! ELSE |
---|
1858 | ! stmp=stmp+pas |
---|
1859 | ! ENDIF |
---|
1860 | ! ENDDO |
---|
1861 | ! qbase=MAX(0., sbase/athl+qslth(ind1)) |
---|
1862 | |
---|
1863 | ! ! surface cloud fraction in thermals |
---|
1864 | ! cth(ind1,ind2)=0.5*(1.-erf((sbase-sthl)/sqrt(2.)/sigma2s)) |
---|
1865 | ! cth(ind1,ind2)=MIN(MAX(cth(ind1,ind2),0.),1.) |
---|
1866 | |
---|
1867 | |
---|
1868 | ! !volume cloud fraction in thermals |
---|
1869 | ! !to be checked |
---|
1870 | ! xth1=-(sthl+deltasth-sbase)/(sqrt(2.)*sigma2s) |
---|
1871 | ! xth2=-(sthl-deltasth-sbase)/(sqrt(2.)*sigma2s) |
---|
1872 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
1873 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
1874 | |
---|
1875 | ! IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
1876 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
1877 | |
---|
1878 | ! IF (deltasth .LT. 1.e-10) THEN |
---|
1879 | ! cth_vol(ind1,ind2)=IntJ_CF |
---|
1880 | ! ELSE |
---|
1881 | ! IntI1=(((sthl+deltasth-sbase)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
1882 | ! IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
1883 | ! IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
1884 | ! IntI1_CF=((sthl-sbase+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
1885 | ! IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
1886 | ! cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
1887 | ! ENDIF |
---|
1888 | ! cth_vol(ind1,ind2)=MIN(MAX(0.,cth_vol(ind1,ind2)),1.) |
---|
1889 | |
---|
1890 | |
---|
1891 | |
---|
1892 | ! ! Environment |
---|
1893 | ! !============= |
---|
1894 | ! ! In the environment/downdrafts, ONLY liquid clouds |
---|
1895 | ! ! See Shupe et al. 2008, JAS |
---|
1896 | |
---|
1897 | ! ! standard deviation of the distribution in the environment |
---|
1898 | ! sth=sthl |
---|
1899 | ! senv=senvl |
---|
1900 | ! sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
---|
1901 | ! & (1-fraca(ind1,ind2))*(MAX((sth-senv),0.)**2)**0.5 |
---|
1902 | ! ! for mixed phase clouds, there is no contribution from large scale ratqs to the distribution |
---|
1903 | ! ! in the environement |
---|
1904 | |
---|
1905 | ! sigma1s_ratqs=1E-10 |
---|
1906 | ! IF (cloudth_ratqsmin>0.) THEN |
---|
1907 | ! sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
---|
1908 | ! ENDIF |
---|
1909 | |
---|
1910 | ! sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
1911 | ! IF (iflag_ratqs.EQ.11) THEN |
---|
1912 | ! sigma1s = ratqs(ind1,ind2)*po(ind1)*aenv |
---|
1913 | ! ENDIF |
---|
1914 | ! IF (iflag_ratqs.EQ.11) THEN |
---|
1915 | ! sigma1s = ratqs(ind1,ind2)*po(ind1)*aenvl |
---|
1916 | ! ENDIF |
---|
1917 | ! deltasenv=aenvl*vert_alpha*sigma1s |
---|
1918 | ! xenv1=-(senvl+deltasenv)/(sqrt(2.)*sigma1s) |
---|
1919 | ! xenv2=-(senvl-deltasenv)/(sqrt(2.)*sigma1s) |
---|
1920 | ! exp_xenv1 = exp(-1.*xenv1**2) |
---|
1921 | ! exp_xenv2 = exp(-1.*xenv2**2) |
---|
1922 | |
---|
1923 | ! !surface CF |
---|
1924 | ! cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
1925 | |
---|
1926 | ! !volume CF and condensed water |
---|
1927 | ! IntJ=0.5*senvl*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
1928 | ! IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
1929 | |
---|
1930 | ! IF (deltasenv .LT. 1.e-10) THEN |
---|
1931 | ! qcenv(ind1,ind2)=IntJ |
---|
1932 | ! cenv_vol(ind1,ind2)=IntJ_CF |
---|
1933 | ! ELSE |
---|
1934 | ! IntI1=(((senvl+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
1935 | ! IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
1936 | ! IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
1937 | ! IntI1_CF=((senvl+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
1938 | ! IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
1939 | ! qcenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 ! only liquid water in environment |
---|
1940 | ! cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
1941 | ! ENDIF |
---|
1942 | |
---|
1943 | ! qcenv(ind1,ind2)=MAX(qcenv(ind1,ind2),0.) |
---|
1944 | ! cenv_vol(ind1,ind2)=MIN(MAX(cenv_vol(ind1,ind2),0.),1.) |
---|
1945 | |
---|
1946 | |
---|
1947 | |
---|
1948 | ! ! Thermals + environment |
---|
1949 | ! ! ======================= |
---|
1950 | ! ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1951 | ! qctot(ind1,ind2)=fraca(ind1,ind2)*qcth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2) |
---|
1952 | ! ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
1953 | ! IF (qcth(ind1,ind2) .GT. 0) THEN |
---|
1954 | ! icefrac(ind1,ind2)=fraca(ind1,ind2)*qith(ind1,ind2) & |
---|
1955 | ! /(fraca(ind1,ind2)*qcth(ind1,ind2) & |
---|
1956 | ! +(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2)) |
---|
1957 | ! icefrac(ind1,ind2)=MAX(MIN(1.,icefrac(ind1,ind2)),0.) |
---|
1958 | ! ELSE |
---|
1959 | ! icefrac(ind1,ind2)=0. |
---|
1960 | ! ENDIF |
---|
1961 | |
---|
1962 | ! IF (cenv(ind1,ind2).LT.1.e-10.OR.cth(ind1,ind2).LT.1.e-10) THEN |
---|
1963 | ! ctot(ind1,ind2)=0. |
---|
1964 | ! ctot_vol(ind1,ind2)=0. |
---|
1965 | ! qincloud(ind1)=0. |
---|
1966 | ! qcloud(ind1)=zqsatenv(ind1) |
---|
1967 | ! ELSE |
---|
1968 | ! qcloud(ind1)=fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)+qbase) & |
---|
1969 | ! +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)+qslenv(ind1)) |
---|
1970 | ! qincloud(ind1)=MAX(fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)) & |
---|
1971 | ! +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)),0.) |
---|
1972 | ! ENDIF |
---|
1973 | |
---|
1974 | ! ENDIF ! mpc_bl_points |
---|
1975 | |
---|
1976 | |
---|
1977 | |
---|
1978 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1979 | SUBROUTINE ICE_MPC_BL_CLOUDS(ind1, ind2, klev, Ni, Ei, C_cap, d_top, iflag_topthermals, temp, pres, qth, qsith, qlth, deltazlev, vith, fraca, qith) |
---|
1980 | |
---|
1981 | ! parameterization of ice for boundary |
---|
1982 | ! layer mixed-phase clouds assuming a stationary system |
---|
1983 | |
---|
1984 | ! Note that vapor deposition on ice crystals and riming of liquid droplets |
---|
1985 | ! depend on the ice number concentration Ni |
---|
1986 | ! One could assume that Ni depends on qi, e.g., Ni=beta*(qi*rho)**xi |
---|
1987 | ! and use values from Hong et al. 2004, MWR for instance |
---|
1988 | ! One may also estimate Ni as a function of T, as in Meyers 1922 or Fletcher 1962 |
---|
1989 | ! One could also think of a more complex expression of Ni; |
---|
1990 | ! function of qi, T, the concentration in aerosols or INP .. |
---|
1991 | ! Here we prefer fixing Ni to a tuning parameter |
---|
1992 | ! By default we take 2.0L-1=2.0e3m-3, median value from measured vertical profiles near Svalbard |
---|
1993 | ! in Mioche et al. 2017 |
---|
1994 | |
---|
1995 | |
---|
1996 | ! References: |
---|
1997 | !------------ |
---|
1998 | ! This parameterization is thoroughly described in Vignon et al. |
---|
1999 | |
---|
2000 | ! More specifically |
---|
2001 | ! for the Water vapor deposition process: |
---|
2002 | |
---|
2003 | ! Rotstayn, L. D., 1997: A physically based scheme for the treat- |
---|
2004 | ! ment of stratiform cloudfs and precipitation in large-scale |
---|
2005 | ! models. I: Description and evaluation of the microphysical |
---|
2006 | ! processes. Quart. J. Roy. Meteor. Soc., 123, 1227–1282. |
---|
2007 | |
---|
2008 | ! Morrison, H., and A. Gettelman, 2008: A new two-moment bulk |
---|
2009 | ! stratiform cloud microphysics scheme in the NCAR Com- |
---|
2010 | ! munity Atmosphere Model (CAM3). Part I: Description and |
---|
2011 | ! numerical tests. J. Climate, 21, 3642–3659 |
---|
2012 | |
---|
2013 | ! for the Riming process: |
---|
2014 | |
---|
2015 | ! Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and micro- |
---|
2016 | ! scale structure and organization of clouds and precipitation in |
---|
2017 | ! midlatitude cyclones. VII: A model for the ‘‘seeder-feeder’’ |
---|
2018 | ! process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206 |
---|
2019 | |
---|
2020 | ! Thompson, G., R. M. Rasmussen, and K. Manning, 004: Explicit |
---|
2021 | ! forecasts of winter precipitation using an improved bulk |
---|
2022 | ! microphysics scheme. Part I: Description and sensitivityThompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit |
---|
2023 | ! forecasts of winter precipitation using an improved bulk |
---|
2024 | ! microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542 |
---|
2025 | |
---|
2026 | ! For the formation of clouds by thermals: |
---|
2027 | |
---|
2028 | ! Rio, C., & Hourdin, F. (2008). A thermal plume model for the convective boundary layer : Representation of cumulus clouds. Journal of |
---|
2029 | ! the Atmospheric Sciences, 65, 407–425. |
---|
2030 | |
---|
2031 | ! Jam, A., Hourdin, F., Rio, C., & Couvreux, F. (2013). Resolved versus parametrized boundary-layer plumes. Part III: Derivation of a |
---|
2032 | ! statistical scheme for cumulus clouds. Boundary-layer Meteorology, 147, 421–441. https://doi.org/10.1007/s10546-012-9789-3 |
---|
2033 | |
---|
2034 | |
---|
2035 | |
---|
2036 | ! Contact: Etienne Vignon, etienne.vignon@lmd.ipsl.fr |
---|
2037 | !============================================================================= |
---|
2038 | |
---|
2039 | USE phys_state_var_mod, ONLY: fm_therm, detr_therm, entr_therm |
---|
2040 | USE lmdz_yomcst |
---|
2041 | |
---|
2042 | IMPLICIT NONE |
---|
2043 | |
---|
2044 | INTEGER, INTENT(IN) :: ind1, ind2, klev ! horizontal and vertical indices and dimensions |
---|
2045 | INTEGER, INTENT(IN) :: iflag_topthermals ! uppermost layer of thermals ? |
---|
2046 | REAL, INTENT(IN) :: Ni ! ice number concentration [m-3] |
---|
2047 | REAL, INTENT(IN) :: Ei ! ice-droplet collision efficiency |
---|
2048 | REAL, INTENT(IN) :: C_cap ! ice crystal capacitance |
---|
2049 | REAL, INTENT(IN) :: d_top ! cloud-top ice crystal mixing parameter |
---|
2050 | REAL, DIMENSION(klev), INTENT(IN) :: temp ! temperature [K] within thermals |
---|
2051 | REAL, DIMENSION(klev), INTENT(IN) :: pres ! pressure [Pa] |
---|
2052 | REAL, DIMENSION(klev), INTENT(IN) :: qth ! mean specific water content in thermals [kg/kg] |
---|
2053 | REAL, DIMENSION(klev), INTENT(IN) :: qsith ! saturation specific humidity wrt ice in thermals [kg/kg] |
---|
2054 | REAL, DIMENSION(klev), INTENT(IN) :: qlth ! condensed liquid water in thermals, approximated value [kg/kg] |
---|
2055 | REAL, DIMENSION(klev), INTENT(IN) :: deltazlev ! layer thickness [m] |
---|
2056 | REAL, DIMENSION(klev), INTENT(IN) :: vith ! ice crystal fall velocity [m/s] |
---|
2057 | REAL, DIMENSION(klev + 1), INTENT(IN) :: fraca ! fraction of the mesh covered by thermals |
---|
2058 | REAL, DIMENSION(klev), INTENT(INOUT) :: qith ! condensed ice water , thermals [kg/kg] |
---|
2059 | |
---|
2060 | INTEGER ind2p1, ind2p2 |
---|
2061 | REAL rho(klev) |
---|
2062 | REAL unsurtaudet, unsurtaustardep, unsurtaurim |
---|
2063 | REAL qi, AA, BB, Ka, Dv, rhoi |
---|
2064 | REAL p0, t0, fp1, fp2 |
---|
2065 | REAL alpha, flux_term |
---|
2066 | REAL det_term, precip_term, rim_term, dep_term |
---|
2067 | |
---|
2068 | ind2p1 = ind2 + 1 |
---|
2069 | ind2p2 = ind2 + 2 |
---|
2070 | |
---|
2071 | rho = pres / temp / RD ! air density kg/m3 |
---|
2072 | |
---|
2073 | Ka = 2.4e-2 ! thermal conductivity of the air, SI |
---|
2074 | p0 = 101325.0 ! ref pressure |
---|
2075 | T0 = 273.15 ! ref temp |
---|
2076 | rhoi = 500.0 ! cloud ice density following Reisner et al. 1998 |
---|
2077 | alpha = 700. ! fallvelocity param |
---|
2078 | |
---|
2079 | IF (iflag_topthermals > 0) THEN ! uppermost thermals levels |
---|
2080 | |
---|
2081 | Dv = 0.0001 * 0.211 * (p0 / pres(ind2)) * ((temp(ind2) / T0)**1.94) ! water vapor diffusivity in air, SI |
---|
2082 | |
---|
2083 | ! Detrainment term: |
---|
2084 | |
---|
2085 | unsurtaudet = detr_therm(ind1, ind2) / rho(ind2) / deltazlev(ind2) |
---|
2086 | |
---|
2087 | |
---|
2088 | ! Deposition term |
---|
2089 | AA = RLSTT / Ka / temp(ind2) * (RLSTT / RV / temp(ind2) - 1.) |
---|
2090 | BB = 1. / (rho(ind2) * Dv * qsith(ind2)) |
---|
2091 | unsurtaustardep = C_cap * (Ni**0.66) * (qth(ind2) - qsith(ind2)) / qsith(ind2) & |
---|
2092 | * 4. * RPI / (AA + BB) * (6. * rho(ind2) / rhoi / RPI / Gamma(4.))**(0.33) |
---|
2093 | |
---|
2094 | ! Riming term neglected at this level |
---|
2095 | !unsurtaurim=rho(ind2)*alpha*3./rhoi/2.*Ei*qlth(ind2)*((p0/pres(ind2))**0.4) |
---|
2096 | |
---|
2097 | qi = fraca(ind2) * unsurtaustardep / MAX((d_top * unsurtaudet), 1E-12) |
---|
2098 | qi = MAX(qi, 0.)**(3. / 2.) |
---|
2099 | |
---|
2100 | ELSE ! other levels, estimate qi(k) from variables at k+1 and k+2 |
---|
2101 | |
---|
2102 | Dv = 0.0001 * 0.211 * (p0 / pres(ind2p1)) * ((temp(ind2p1) / T0)**1.94) ! water vapor diffusivity in air, SI |
---|
2103 | |
---|
2104 | ! Detrainment term: |
---|
2105 | |
---|
2106 | unsurtaudet = detr_therm(ind1, ind2p1) / rho(ind2p1) / deltazlev(ind2p1) |
---|
2107 | det_term = -unsurtaudet * qith(ind2p1) * rho(ind2p1) |
---|
2108 | |
---|
2109 | |
---|
2110 | ! Deposition term |
---|
2111 | |
---|
2112 | AA = RLSTT / Ka / temp(ind2p1) * (RLSTT / RV / temp(ind2p1) - 1.) |
---|
2113 | BB = 1. / (rho(ind2p1) * Dv * qsith(ind2p1)) |
---|
2114 | unsurtaustardep = C_cap * (Ni**0.66) * (qth(ind2p1) - qsith(ind2p1)) & |
---|
2115 | / qsith(ind2p1) * 4. * RPI / (AA + BB) & |
---|
2116 | * (6. * rho(ind2p1) / rhoi / RPI / Gamma(4.))**(0.33) |
---|
2117 | dep_term = rho(ind2p1) * fraca(ind2p1) * (qith(ind2p1)**0.33) * unsurtaustardep |
---|
2118 | |
---|
2119 | ! Riming term |
---|
2120 | |
---|
2121 | unsurtaurim = rho(ind2p1) * alpha * 3. / rhoi / 2. * Ei * qlth(ind2p1) * ((p0 / pres(ind2p1))**0.4) |
---|
2122 | rim_term = rho(ind2p1) * fraca(ind2p1) * qith(ind2p1) * unsurtaurim |
---|
2123 | |
---|
2124 | ! Precip term |
---|
2125 | |
---|
2126 | ! We assume that there is no solid precipitation outside thermals |
---|
2127 | ! so the precipitation flux within thermals is equal to the precipitation flux |
---|
2128 | ! at mesh-scale divided by thermals fraction |
---|
2129 | |
---|
2130 | fp2 = 0. |
---|
2131 | fp1 = 0. |
---|
2132 | IF (fraca(ind2p1) > 0.) THEN |
---|
2133 | fp2 = -qith(ind2p2) * rho(ind2p2) * vith(ind2p2) * fraca(ind2p2)! flux defined positive upward |
---|
2134 | fp1 = -qith(ind2p1) * rho(ind2p1) * vith(ind2p1) * fraca(ind2p1) |
---|
2135 | ENDIF |
---|
2136 | |
---|
2137 | precip_term = -1. / deltazlev(ind2p1) * (fp2 - fp1) |
---|
2138 | |
---|
2139 | ! Calculation in a top-to-bottom loop |
---|
2140 | |
---|
2141 | IF (fm_therm(ind1, ind2p1) > 0.) THEN |
---|
2142 | qi = 1. / fm_therm(ind1, ind2p1) * & |
---|
2143 | (deltazlev(ind2p1) * (-rim_term - dep_term - det_term - precip_term) + & |
---|
2144 | fm_therm(ind1, ind2p2) * (qith(ind2p1))) |
---|
2145 | END IF |
---|
2146 | |
---|
2147 | ENDIF ! top thermals |
---|
2148 | |
---|
2149 | qith(ind2) = MAX(0., qi) |
---|
2150 | |
---|
2151 | END SUBROUTINE ICE_MPC_BL_CLOUDS |
---|
2152 | |
---|
2153 | END MODULE lmdz_cloudth |
---|