[2333] | 1 | module ACAMA_GWD_rando_m |
---|
| 2 | |
---|
| 3 | implicit none |
---|
| 4 | |
---|
| 5 | contains |
---|
| 6 | |
---|
| 7 | SUBROUTINE ACAMA_GWD_rando(DTIME, pp, plat, tt, uu, vv, rot, & |
---|
| 8 | zustr, zvstr, d_u, d_v,east_gwstress,west_gwstress) |
---|
| 9 | |
---|
| 10 | ! Parametrization of the momentum flux deposition due to a discrete |
---|
| 11 | ! number of gravity waves. |
---|
| 12 | ! Author: F. Lott, A. de la Camara |
---|
| 13 | ! July, 24th, 2014 |
---|
| 14 | ! Gaussian distribution of the source, source is vorticity squared |
---|
| 15 | ! Reference: de la Camara and Lott (GRL, 2015, vol 42, 2071-2078 ) |
---|
| 16 | ! Lott et al (JAS, 2010, vol 67, page 157-170) |
---|
| 17 | ! Lott et al (JAS, 2012, vol 69, page 2134-2151) |
---|
| 18 | |
---|
| 19 | ! ONLINE: |
---|
| 20 | use dimphy, only: klon, klev |
---|
| 21 | use assert_m, only: assert |
---|
| 22 | include "YOMCST.h" |
---|
| 23 | include "clesphys.h" |
---|
| 24 | ! OFFLINE: |
---|
| 25 | ! include "dimensions.h" |
---|
| 26 | ! include "dimphy.h" |
---|
| 27 | !END DIFFERENCE |
---|
| 28 | include "YOEGWD.h" |
---|
| 29 | |
---|
| 30 | ! 0. DECLARATIONS: |
---|
| 31 | |
---|
| 32 | ! 0.1 INPUTS |
---|
| 33 | REAL, intent(in)::DTIME ! Time step of the Physics |
---|
| 34 | REAL, intent(in):: PP(:, :) ! (KLON, KLEV) Pressure at full levels |
---|
| 35 | REAL, intent(in):: ROT(:,:) ! Relative vorticity |
---|
| 36 | REAL, intent(in):: TT(:, :) ! (KLON, KLEV) Temp at full levels |
---|
| 37 | REAL, intent(in):: UU(:, :) ! (KLON, KLEV) Zonal wind at full levels |
---|
| 38 | REAL, intent(in):: VV(:, :) ! (KLON, KLEV) Merid wind at full levels |
---|
| 39 | REAL, intent(in):: PLAT(:) ! (KLON) LATITUDE |
---|
| 40 | |
---|
| 41 | ! 0.2 OUTPUTS |
---|
| 42 | REAL, intent(out):: zustr(:), zvstr(:) ! (KLON) Surface Stresses |
---|
| 43 | |
---|
| 44 | REAL, intent(inout):: d_u(:, :), d_v(:, :) |
---|
| 45 | REAL, intent(inout):: east_gwstress(:, :) ! Profile of eastward stress |
---|
| 46 | REAL, intent(inout):: west_gwstress(:, :) ! Profile of westward stress |
---|
| 47 | ! (KLON, KLEV) tendencies on winds |
---|
| 48 | |
---|
| 49 | ! O.3 INTERNAL ARRAYS |
---|
| 50 | REAL BVLOW(klon) ! LOW LEVEL BV FREQUENCY |
---|
| 51 | REAL ROTBA(KLON),CORIO(KLON) ! BAROTROPIC REL. VORTICITY AND PLANETARY |
---|
| 52 | REAL UZ(KLON, KLEV + 1) |
---|
| 53 | |
---|
| 54 | INTEGER II, JJ, LL |
---|
| 55 | |
---|
| 56 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
---|
| 57 | |
---|
| 58 | REAL DELTAT |
---|
| 59 | |
---|
| 60 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
---|
| 61 | |
---|
| 62 | INTEGER, PARAMETER:: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO |
---|
| 63 | INTEGER JK, JP, JO, JW |
---|
| 64 | INTEGER, PARAMETER:: NA = 5 !number of realizations to get the phase speed |
---|
| 65 | REAL KMIN, KMAX ! Min and Max horizontal wavenumbers |
---|
| 66 | REAL CMIN, CMAX ! Min and Max absolute ph. vel. |
---|
| 67 | REAL CPHA ! absolute PHASE VELOCITY frequency |
---|
| 68 | REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude |
---|
| 69 | REAL ZP(NW, KLON) ! Horizontal wavenumber angle |
---|
| 70 | REAL ZO(NW, KLON) ! Absolute frequency ! |
---|
| 71 | |
---|
| 72 | ! Waves Intr. freq. at the 1/2 lev surrounding the full level |
---|
| 73 | REAL ZOM(NW, KLON), ZOP(NW, KLON) |
---|
| 74 | |
---|
| 75 | ! Wave EP-fluxes at the 2 semi levels surrounding the full level |
---|
| 76 | REAL WWM(NW, KLON), WWP(NW, KLON) |
---|
| 77 | |
---|
| 78 | REAL RUW0(NW, KLON) ! Fluxes at launching level |
---|
| 79 | |
---|
| 80 | REAL RUWP(NW, KLON), RVWP(NW, KLON) |
---|
| 81 | ! Fluxes X and Y for each waves at 1/2 Levels |
---|
| 82 | |
---|
| 83 | INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude |
---|
| 84 | |
---|
| 85 | REAL XLAUNCH ! Controle the launching altitude |
---|
| 86 | REAL XTROP ! SORT of Tropopause altitude |
---|
| 87 | REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels |
---|
| 88 | REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels |
---|
| 89 | |
---|
| 90 | REAL PRMAX ! Maximum value of PREC, and for which our linear formula |
---|
| 91 | ! for GWs parameterisation apply |
---|
| 92 | |
---|
| 93 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
---|
| 94 | |
---|
| 95 | REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ |
---|
| 96 | REAL CORSEC ! SECURITY FOR INTRINSIC CORIOLIS |
---|
| 97 | REAL RUWFRT,SATFRT |
---|
| 98 | |
---|
| 99 | ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE |
---|
| 100 | |
---|
| 101 | REAL H0 ! Characteristic Height of the atmosphere |
---|
| 102 | REAL DZ ! Characteristic depth of the source! |
---|
| 103 | REAL PR, TR ! Reference Pressure and Temperature |
---|
| 104 | |
---|
| 105 | REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude |
---|
| 106 | |
---|
| 107 | REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels |
---|
| 108 | REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels |
---|
| 109 | REAL PSEC ! Security to avoid division by 0 pressure |
---|
| 110 | REAL PHM1(KLON, KLEV + 1) ! 1/Press at 1/2 levels |
---|
| 111 | REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels |
---|
| 112 | REAL BVSEC ! Security to avoid negative BVF |
---|
| 113 | |
---|
| 114 | !----------------------------------------------------------------- |
---|
| 115 | |
---|
| 116 | ! 1. INITIALISATIONS |
---|
| 117 | |
---|
| 118 | ! 1.1 Basic parameter |
---|
| 119 | |
---|
| 120 | ! Are provided from elsewhere (latent heat of vaporization, dry |
---|
| 121 | ! gaz constant for air, gravity constant, heat capacity of dry air |
---|
| 122 | ! at constant pressure, earth rotation rate, pi). |
---|
| 123 | |
---|
| 124 | ! 1.2 Tuning parameters of V14 |
---|
| 125 | |
---|
| 126 | ! Values for linear in rot (recommended): |
---|
| 127 | ! RUWFRT=0.005 ! As RUWMAX but for frontal waves |
---|
| 128 | ! SATFRT=1.00 ! As SAT but for frontal waves |
---|
| 129 | ! Values when rot^2 is used |
---|
| 130 | ! RUWFRT=0.02 ! As RUWMAX but for frontal waves |
---|
| 131 | ! SATFRT=1.00 ! As SAT but for frontal waves |
---|
| 132 | ! CMAX = 30. ! Characteristic phase speed |
---|
| 133 | ! Values when rot^2*EXP(-pi*sqrt(J)) is used |
---|
[2357] | 134 | ! RUWFRT=2.5 ! As RUWMAX but for frontal waves ~ N0*F0/4*DZ |
---|
| 135 | ! SATFRT=0.60 ! As SAT but for frontal waves |
---|
| 136 | RUWFRT=gwd_front_ruwmax |
---|
| 137 | SATFRT=gwd_front_sat |
---|
[2665] | 138 | CMAX = 50. ! Characteristic phase speed |
---|
[2333] | 139 | ! Phase speed test |
---|
| 140 | ! RUWFRT=0.01 |
---|
| 141 | ! CMAX = 50. ! Characteristic phase speed (TEST) |
---|
| 142 | ! Values when rot^2 and exp(-m^2*dz^2) are used |
---|
| 143 | ! RUWFRT=0.03 ! As RUWMAX but for frontal waves |
---|
| 144 | ! SATFRT=1.00 ! As SAT but for frontal waves |
---|
| 145 | ! CRUCIAL PARAMETERS FOR THE WIND FILTERING |
---|
| 146 | XLAUNCH=0.95 ! Parameter that control launching altitude |
---|
[2665] | 147 | RDISS = 0.5 ! Diffusion parameter |
---|
[2333] | 148 | |
---|
| 149 | ! maximum of rain for which our theory applies (in kg/m^2/s) |
---|
| 150 | |
---|
| 151 | DZ = 1000. ! Characteristic depth of the source |
---|
| 152 | XTROP=0.2 ! Parameter that control tropopause altitude |
---|
| 153 | DELTAT=24.*3600. ! Time scale of the waves (first introduced in 9b) |
---|
| 154 | ! DELTAT=DTIME ! No AR-1 Accumulation, OR OFFLINE |
---|
| 155 | |
---|
| 156 | KMIN = 2.E-5 |
---|
| 157 | ! minimum horizontal wavenumber (inverse of the subgrid scale resolution) |
---|
| 158 | |
---|
| 159 | KMAX = 1.E-3 ! Max horizontal wavenumber |
---|
| 160 | CMIN = 1. ! Min phase velocity |
---|
| 161 | |
---|
| 162 | TR = 240. ! Reference Temperature |
---|
| 163 | PR = 101300. ! Reference pressure |
---|
| 164 | H0 = RD * TR / RG ! Characteristic vertical scale height |
---|
| 165 | |
---|
| 166 | BVSEC = 5.E-3 ! Security to avoid negative BVF |
---|
| 167 | PSEC = 1.E-6 ! Security to avoid division by 0 pressure |
---|
| 168 | ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ |
---|
| 169 | CORSEC = ROMEGA*2.*SIN(2.*RPI/180.)! Security for CORIO |
---|
| 170 | |
---|
| 171 | ! ONLINE |
---|
| 172 | call assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), & |
---|
| 173 | size(vv, 1), size(rot,1), size(zustr), size(zvstr), size(d_u, 1), & |
---|
| 174 | size(d_v, 1), & |
---|
| 175 | size(east_gwstress,1), size(west_gwstress,1) /), & |
---|
| 176 | "ACAMA_GWD_RANDO klon") |
---|
| 177 | call assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), & |
---|
| 178 | size(vv, 2), size(d_u, 2), size(d_v, 2), & |
---|
| 179 | size(east_gwstress,2), size(west_gwstress,2) /), & |
---|
| 180 | "ACAMA_GWD_RANDO klev") |
---|
| 181 | ! END ONLINE |
---|
| 182 | |
---|
| 183 | IF(DELTAT < DTIME)THEN |
---|
| 184 | PRINT *, 'flott_gwd_rando: deltat < dtime!' |
---|
| 185 | STOP 1 |
---|
| 186 | ENDIF |
---|
| 187 | |
---|
| 188 | IF (KLEV < NW) THEN |
---|
| 189 | PRINT *, 'flott_gwd_rando: you will have problem with random numbers' |
---|
| 190 | STOP 1 |
---|
| 191 | ENDIF |
---|
| 192 | |
---|
| 193 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
---|
| 194 | |
---|
| 195 | ! Pressure and Inv of pressure |
---|
| 196 | DO LL = 2, KLEV |
---|
| 197 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
---|
| 198 | PHM1(:, LL) = 1. / PH(:, LL) |
---|
| 199 | end DO |
---|
| 200 | |
---|
| 201 | PH(:, KLEV + 1) = 0. |
---|
| 202 | PHM1(:, KLEV + 1) = 1. / PSEC |
---|
| 203 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
---|
| 204 | |
---|
| 205 | ! Launching altitude |
---|
| 206 | |
---|
| 207 | LAUNCH=0 |
---|
| 208 | LTROP =0 |
---|
| 209 | DO LL = 1, KLEV |
---|
| 210 | IF (PH(KLON / 2, LL) / PH(KLON / 2, 1) > XLAUNCH) LAUNCH = LL |
---|
| 211 | ENDDO |
---|
| 212 | DO LL = 1, KLEV |
---|
| 213 | IF (PH(KLON / 2, LL) / PH(KLON / 2, 1) > XTROP) LTROP = LL |
---|
| 214 | ENDDO |
---|
| 215 | |
---|
| 216 | ! PRINT *,'LAUNCH IN ACAMARA:',LAUNCH |
---|
| 217 | |
---|
| 218 | ! Log pressure vert. coordinate |
---|
| 219 | DO LL = 1, KLEV + 1 |
---|
| 220 | ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
---|
| 221 | end DO |
---|
| 222 | |
---|
| 223 | ! BV frequency |
---|
| 224 | DO LL = 2, KLEV |
---|
| 225 | ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS) |
---|
| 226 | UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) & |
---|
| 227 | * RD**2 / RCPD / H0**2 + (TT(:, LL) & |
---|
| 228 | - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0 |
---|
| 229 | end DO |
---|
| 230 | BVLOW = 0.5 * (TT(:, LTROP )+ TT(:, LAUNCH)) & |
---|
| 231 | * RD**2 / RCPD / H0**2 + (TT(:, LTROP ) & |
---|
| 232 | - TT(:, LAUNCH))/(ZH(:, LTROP )- ZH(:, LAUNCH)) * RD / H0 |
---|
| 233 | |
---|
| 234 | UH(:, 1) = UH(:, 2) |
---|
| 235 | UH(:, KLEV + 1) = UH(:, KLEV) |
---|
| 236 | BV(:, 1) = UH(:, 2) |
---|
| 237 | BV(:, KLEV + 1) = UH(:, KLEV) |
---|
| 238 | ! SMOOTHING THE BV HELPS |
---|
| 239 | DO LL = 2, KLEV |
---|
| 240 | BV(:, LL)=(UH(:, LL+1)+2.*UH(:, LL)+UH(:, LL-1))/4. |
---|
| 241 | end DO |
---|
| 242 | |
---|
| 243 | BV=MAX(SQRT(MAX(BV, 0.)), BVSEC) |
---|
| 244 | BVLOW=MAX(SQRT(MAX(BVLOW, 0.)), BVSEC) |
---|
| 245 | |
---|
| 246 | ! WINDS |
---|
| 247 | DO LL = 2, KLEV |
---|
| 248 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
---|
| 249 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
---|
| 250 | UZ(:, LL) = ABS((SQRT(UU(:, LL)**2+VV(:, LL)**2) & |
---|
| 251 | - SQRT(UU(:,LL-1)**2+VV(:, LL-1)**2)) & |
---|
| 252 | /(ZH(:, LL)-ZH(:, LL-1)) ) |
---|
| 253 | end DO |
---|
| 254 | UH(:, 1) = 0. |
---|
| 255 | VH(:, 1) = 0. |
---|
| 256 | UH(:, KLEV + 1) = UU(:, KLEV) |
---|
| 257 | VH(:, KLEV + 1) = VV(:, KLEV) |
---|
| 258 | |
---|
| 259 | UZ(:, 1) = UZ(:, 2) |
---|
| 260 | UZ(:, KLEV + 1) = UZ(:, KLEV) |
---|
| 261 | UZ(:, :) = MAX(UZ(:,:), PSEC) |
---|
| 262 | |
---|
| 263 | ! BAROTROPIC VORTICITY AND INTEGRATED CORIOLIS PARAMETER |
---|
| 264 | |
---|
| 265 | CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),CORSEC) |
---|
| 266 | ROTBA(:)=0. |
---|
| 267 | DO LL = 1,KLEV-1 |
---|
| 268 | !ROTBA(:) = ROTBA(:) + (ROT(:,LL)+ROT(:,LL+1))/2./RG*(PP(:,LL)-PP(:,LL+1)) |
---|
| 269 | ! Introducing the complete formula (exp of Richardson number): |
---|
| 270 | ROTBA(:) = ROTBA(:) + & |
---|
| 271 | !((ROT(:,LL)+ROT(:,LL+1))/2.)**2 & |
---|
| 272 | (CORIO(:)*TANH(ABS(ROT(:,LL)+ROT(:,LL+1))/2./CORIO(:)))**2 & |
---|
| 273 | /RG*(PP(:,LL)-PP(:,LL+1)) & |
---|
| 274 | * EXP(-RPI*BV(:,LL+1)/UZ(:,LL+1)) & |
---|
| 275 | ! * DZ*BV(:,LL+1)/4./ABS(CORIO(:)) |
---|
| 276 | * DZ*BV(:,LL+1)/4./1.E-4 ! Changes after 1991 |
---|
| 277 | !ARRET |
---|
| 278 | ENDDO |
---|
| 279 | ! PRINT *,'MAX ROTBA:',MAXVAL(ROTBA) |
---|
| 280 | ! ROTBA(:)=(1.*ROTBA(:) & ! Testing zone |
---|
| 281 | ! +0.15*CORIO(:)**2 & |
---|
| 282 | ! /(COS(PLAT(:)*RPI/180.)+0.02) & |
---|
| 283 | ! )*DZ*0.01/0.0001/4. ! & ! Testing zone |
---|
| 284 | ! MODIF GWD4 AFTER 1985 |
---|
| 285 | ! *(1.25+SIN(PLAT(:)*RPI/180.))/(1.05+SIN(PLAT(:)*RPI/180.))/1.25 |
---|
| 286 | ! *1./(COS(PLAT(:)*RPI/180.)+0.02) |
---|
| 287 | ! CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),ZOISEC)/RG*PP(:,1) |
---|
| 288 | |
---|
| 289 | ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE |
---|
| 290 | |
---|
| 291 | ! The mod functions of weird arguments are used to produce the |
---|
| 292 | ! waves characteristics in an almost stochastic way |
---|
| 293 | |
---|
| 294 | JW = 0 |
---|
| 295 | DO JP = 1, NP |
---|
| 296 | DO JK = 1, NK |
---|
| 297 | DO JO = 1, NO |
---|
| 298 | JW = JW + 1 |
---|
| 299 | ! Angle |
---|
| 300 | DO II = 1, KLON |
---|
| 301 | ! Angle (0 or PI so far) |
---|
| 302 | ! ZP(JW, II) = (SIGN(1., 0.5 - MOD(TT(II, JW) * 10., 1.)) + 1.) & |
---|
| 303 | ! * RPI / 2. |
---|
| 304 | ! Angle between 0 and pi |
---|
| 305 | ZP(JW, II) = MOD(TT(II, JW) * 10., 1.) * RPI |
---|
| 306 | ! TEST WITH POSITIVE WAVES ONLY (Part I/II) |
---|
| 307 | ! ZP(JW, II) = 0. |
---|
| 308 | ! Horizontal wavenumber amplitude |
---|
| 309 | ZK(JW, II) = KMIN + (KMAX - KMIN) * MOD(TT(II, JW) * 100., 1.) |
---|
| 310 | ! Horizontal phase speed |
---|
| 311 | CPHA = 0. |
---|
| 312 | DO JJ = 1, NA |
---|
| 313 | CPHA = CPHA + & |
---|
| 314 | CMAX*2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.) |
---|
| 315 | END DO |
---|
| 316 | IF (CPHA.LT.0.) THEN |
---|
| 317 | CPHA = -1.*CPHA |
---|
| 318 | ZP(JW,II) = ZP(JW,II) + RPI |
---|
| 319 | ! TEST WITH POSITIVE WAVES ONLY (Part II/II) |
---|
| 320 | ! ZP(JW, II) = 0. |
---|
| 321 | ENDIF |
---|
| 322 | CPHA = CPHA + CMIN !we dont allow |c|<1m/s |
---|
| 323 | ! Absolute frequency is imposed |
---|
| 324 | ZO(JW, II) = CPHA * ZK(JW, II) |
---|
| 325 | ! Intrinsic frequency is imposed |
---|
| 326 | ZO(JW, II) = ZO(JW, II) & |
---|
| 327 | + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & |
---|
| 328 | + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) |
---|
| 329 | ! Momentum flux at launch lev |
---|
| 330 | ! LAUNCHED RANDOM WAVES WITH LOG-NORMAL AMPLITUDE |
---|
| 331 | ! RIGHT IN THE SH (GWD4 after 1990) |
---|
| 332 | RUW0(JW, II) = 0. |
---|
| 333 | DO JJ = 1, NA |
---|
| 334 | RUW0(JW, II) = RUW0(JW,II) + & |
---|
| 335 | 2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.) |
---|
| 336 | END DO |
---|
| 337 | RUW0(JW, II) = RUWFRT & |
---|
| 338 | * EXP(RUW0(JW,II))/1250. & ! 2 mpa at south pole |
---|
| 339 | *((1.05+SIN(PLAT(II)*RPI/180.))/(1.01+SIN(PLAT(II)*RPI/180.))-2.05/2.01) |
---|
| 340 | ! RUW0(JW, II) = RUWFRT |
---|
| 341 | ENDDO |
---|
| 342 | end DO |
---|
| 343 | end DO |
---|
| 344 | end DO |
---|
| 345 | |
---|
| 346 | ! 4. COMPUTE THE FLUXES |
---|
| 347 | |
---|
| 348 | ! 4.0 |
---|
| 349 | |
---|
| 350 | ! 4.1 Vertical velocity at launching altitude to ensure |
---|
| 351 | ! the correct value to the imposed fluxes. |
---|
| 352 | |
---|
| 353 | DO JW = 1, NW |
---|
| 354 | |
---|
| 355 | ! Evaluate intrinsic frequency at launching altitude: |
---|
| 356 | ZOP(JW, :) = ZO(JW, :) & |
---|
| 357 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
---|
| 358 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
---|
| 359 | |
---|
| 360 | ! VERSION WITH FRONTAL SOURCES |
---|
| 361 | |
---|
| 362 | ! Momentum flux at launch level imposed by vorticity sources |
---|
| 363 | |
---|
| 364 | ! tanh limitation for values above CORIO (inertial instability). |
---|
| 365 | ! WWP(JW, :) = RUW0(JW, :) & |
---|
| 366 | WWP(JW, :) = RUWFRT & |
---|
| 367 | ! * (CORIO(:)*TANH(ROTBA(:)/CORIO(:)))**2 & |
---|
| 368 | ! * ABS((CORIO(:)*TANH(ROTBA(:)/CORIO(:)))*CORIO(:)) & |
---|
| 369 | ! CONSTANT FLUX |
---|
| 370 | ! * (CORIO(:)*CORIO(:)) & |
---|
| 371 | ! MODERATION BY THE DEPTH OF THE SOURCE (DZ HERE) |
---|
| 372 | ! *EXP(-BVLOW(:)**2/MAX(ABS(ZOP(JW, :)),ZOISEC)**2 & |
---|
| 373 | ! *ZK(JW, :)**2*DZ**2) & |
---|
| 374 | ! COMPLETE FORMULA: |
---|
| 375 | !* CORIO(:)**2*TANH(ROTBA(:)/CORIO(:)**2) & |
---|
| 376 | * ROTBA(:) & |
---|
| 377 | ! RESTORE DIMENSION OF A FLUX |
---|
| 378 | ! *RD*TR/PR |
---|
[2665] | 379 | ! *1. + RUW0(JW, :) |
---|
| 380 | *1. |
---|
[2333] | 381 | |
---|
| 382 | ! Factor related to the characteristics of the waves: NONE |
---|
| 383 | |
---|
| 384 | ! Moderation by the depth of the source (dz here): NONE |
---|
| 385 | |
---|
| 386 | ! Put the stress in the right direction: |
---|
| 387 | |
---|
| 388 | RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :) |
---|
| 389 | RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :) |
---|
| 390 | |
---|
| 391 | end DO |
---|
| 392 | |
---|
| 393 | ! 4.2 Uniform values below the launching altitude |
---|
| 394 | |
---|
| 395 | DO LL = 1, LAUNCH |
---|
| 396 | RUW(:, LL) = 0 |
---|
| 397 | RVW(:, LL) = 0 |
---|
| 398 | DO JW = 1, NW |
---|
| 399 | RUW(:, LL) = RUW(:, LL) + RUWP(JW, :) |
---|
| 400 | RVW(:, LL) = RVW(:, LL) + RVWP(JW, :) |
---|
| 401 | end DO |
---|
| 402 | end DO |
---|
| 403 | |
---|
| 404 | ! 4.3 Loop over altitudes, with passage from one level to the next |
---|
| 405 | ! done by i) conserving the EP flux, ii) dissipating a little, |
---|
| 406 | ! iii) testing critical levels, and vi) testing the breaking. |
---|
| 407 | |
---|
| 408 | DO LL = LAUNCH, KLEV - 1 |
---|
| 409 | ! Warning: all the physics is here (passage from one level |
---|
| 410 | ! to the next) |
---|
| 411 | DO JW = 1, NW |
---|
| 412 | ZOM(JW, :) = ZOP(JW, :) |
---|
| 413 | WWM(JW, :) = WWP(JW, :) |
---|
| 414 | ! Intrinsic Frequency |
---|
| 415 | ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LL + 1) & |
---|
| 416 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LL + 1) |
---|
| 417 | |
---|
| 418 | ! No breaking (Eq.6) |
---|
| 419 | ! Dissipation (Eq. 8) |
---|
[2665] | 420 | WWP(JW, :) = WWM(JW, :) * EXP(- 4. * RDISS * PR / (PH(:, LL + 1) & |
---|
[2333] | 421 | + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
---|
| 422 | / MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 & |
---|
| 423 | * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))) |
---|
| 424 | |
---|
| 425 | ! Critical levels (forced to zero if intrinsic frequency changes sign) |
---|
| 426 | ! Saturation (Eq. 12) |
---|
| 427 | WWP(JW, :) = min(WWP(JW, :), MAX(0., & |
---|
| 428 | SIGN(1., ZOP(JW, :) * ZOM(JW, :))) * ABS(ZOP(JW, :))**3 & |
---|
| 429 | ! / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * SATFRT**2 * KMIN**2 & |
---|
| 430 | / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * KMIN**2 & |
---|
| 431 | ! *(SATFRT*(2.5+1.5*TANH((ZH(:,LL+1)/H0-8.)/2.)))**2 & |
---|
| 432 | *SATFRT**2 & |
---|
| 433 | / ZK(JW, :)**4) |
---|
| 434 | end DO |
---|
| 435 | |
---|
| 436 | ! Evaluate EP-flux from Eq. 7 and give the right orientation to |
---|
| 437 | ! the stress |
---|
| 438 | |
---|
| 439 | DO JW = 1, NW |
---|
| 440 | RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :) |
---|
| 441 | RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :) |
---|
| 442 | end DO |
---|
| 443 | |
---|
| 444 | RUW(:, LL + 1) = 0. |
---|
| 445 | RVW(:, LL + 1) = 0. |
---|
| 446 | |
---|
| 447 | DO JW = 1, NW |
---|
| 448 | RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :) |
---|
| 449 | RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :) |
---|
| 450 | EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LL)+MAX(0.,RUWP(JW,:))/FLOAT(NW) |
---|
| 451 | WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LL)+MIN(0.,RUWP(JW,:))/FLOAT(NW) |
---|
| 452 | end DO |
---|
| 453 | end DO |
---|
| 454 | |
---|
| 455 | ! 5 CALCUL DES TENDANCES: |
---|
| 456 | |
---|
| 457 | ! 5.1 Rectification des flux au sommet et dans les basses couches |
---|
| 458 | |
---|
| 459 | RUW(:, KLEV + 1) = 0. |
---|
| 460 | RVW(:, KLEV + 1) = 0. |
---|
| 461 | RUW(:, 1) = RUW(:, LAUNCH) |
---|
| 462 | RVW(:, 1) = RVW(:, LAUNCH) |
---|
| 463 | DO LL = 1, LAUNCH |
---|
| 464 | RUW(:, LL) = RUW(:, LAUNCH+1) |
---|
| 465 | RVW(:, LL) = RVW(:, LAUNCH+1) |
---|
| 466 | EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LAUNCH) |
---|
| 467 | WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LAUNCH) |
---|
| 468 | end DO |
---|
| 469 | |
---|
| 470 | ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
---|
| 471 | DO LL = 1, KLEV |
---|
| 472 | D_U(:, LL) = (1.-DTIME/DELTAT) * D_U(:, LL) + DTIME/DELTAT/REAL(NW) * & |
---|
| 473 | RG * (RUW(:, LL + 1) - RUW(:, LL)) & |
---|
| 474 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
| 475 | ! NO AR1 FOR MERIDIONAL TENDENCIES |
---|
| 476 | ! D_V(:, LL) = (1.-DTIME/DELTAT) * D_V(:, LL) + DTIME/DELTAT/REAL(NW) * & |
---|
| 477 | D_V(:, LL) = 1./REAL(NW) * & |
---|
| 478 | RG * (RVW(:, LL + 1) - RVW(:, LL)) & |
---|
| 479 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
| 480 | ENDDO |
---|
| 481 | |
---|
| 482 | ! Cosmetic: evaluation of the cumulated stress |
---|
| 483 | ZUSTR = 0. |
---|
| 484 | ZVSTR = 0. |
---|
| 485 | DO LL = 1, KLEV |
---|
| 486 | ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
---|
| 487 | ! ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
---|
| 488 | ENDDO |
---|
| 489 | ! COSMETICS TO VISUALIZE ROTBA |
---|
| 490 | ZVSTR = ROTBA |
---|
| 491 | |
---|
| 492 | END SUBROUTINE ACAMA_GWD_RANDO |
---|
| 493 | |
---|
| 494 | end module ACAMA_GWD_rando_m |
---|