1 | ! $Id: newmicro.F 1723 2013-02-04 13:25:36Z nfevrier $ |
---|
2 | |
---|
3 | |
---|
4 | ! |
---|
5 | SUBROUTINE newmicro (ok_cdnc, bl95_b0, bl95_b1, |
---|
6 | . paprs, pplay, |
---|
7 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
8 | . pch, pcl, pcm, pct, pctlwp, |
---|
9 | . xflwp, xfiwp, xflwc, xfiwc, |
---|
10 | . mass_solu_aero, mass_solu_aero_pi, |
---|
11 | . pcldtaupi, re, fl, reliq, reice) |
---|
12 | c |
---|
13 | USE dimphy |
---|
14 | USE phys_local_var_mod, only: scdnc,cldncl,reffclwtop,lcc, |
---|
15 | . reffclws,reffclwc,cldnvi,lcc3d, |
---|
16 | . lcc3dcon,lcc3dstra |
---|
17 | USE phys_state_var_mod, only: rnebcon,clwcon |
---|
18 | IMPLICIT none |
---|
19 | c====================================================================== |
---|
20 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
21 | c O. Boucher (LMD/CNRS) mise a jour en 201212 |
---|
22 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
23 | c====================================================================== |
---|
24 | c Arguments: |
---|
25 | c ok_cdnc-input-L-flag pour calculer les rayons a partir des aerosols |
---|
26 | c |
---|
27 | c t-------input-R-temperature |
---|
28 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere dans la partie nuageuse (kg/kg) |
---|
29 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
30 | c mass_solu_aero-----input-R-total mass concentration for all soluble aerosols[ug/m^3] |
---|
31 | c mass_solu_aero_pi--input-R-ditto, pre-industrial value |
---|
32 | c |
---|
33 | c bl95_b0-input-R-a PARAMETER, may be varied for tests (s-sea, l-land) |
---|
34 | c bl95_b1-input-R-a PARAMETER, may be varied for tests ( -"- ) |
---|
35 | c |
---|
36 | c re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
37 | c fl------output-R-Denominator to re, introduced to avoid problems in |
---|
38 | c the averaging of the output. fl is the fraction of liquid |
---|
39 | c water clouds within a grid cell |
---|
40 | c |
---|
41 | c pcltau--output-R-epaisseur optique des nuages |
---|
42 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
43 | c pcldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
44 | c |
---|
45 | c pcl-output-R-2D low-level cloud cover |
---|
46 | c pcm-output-R-2D mid-level cloud cover |
---|
47 | c pch-output-R-2D high-level cloud cover |
---|
48 | c pct-output-R-2D total cloud cover |
---|
49 | c====================================================================== |
---|
50 | C |
---|
51 | #include "YOMCST.h" |
---|
52 | #include "nuage.h" |
---|
53 | #include "radepsi.h" |
---|
54 | #include "radopt.h" |
---|
55 | |
---|
56 | c choix de l'hypothese de recouvrememnt nuageuse |
---|
57 | LOGICAL RANDOM, MAXIMUM_RANDOM, MAXIMUM |
---|
58 | PARAMETER (RANDOM=.FALSE., MAXIMUM_RANDOM=.TRUE., MAXIMUM=.FALSE.) |
---|
59 | c |
---|
60 | LOGICAL, SAVE :: FIRST=.TRUE. |
---|
61 | !$OMP THREADPRIVATE(FIRST) |
---|
62 | INTEGER flag_max |
---|
63 | c |
---|
64 | c threshold PARAMETERs |
---|
65 | REAL thres_tau,thres_neb |
---|
66 | PARAMETER (thres_tau=0.3, thres_neb=0.001) |
---|
67 | c |
---|
68 | REAL phase3d(klon, klev) |
---|
69 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) |
---|
70 | c |
---|
71 | REAL paprs(klon,klev+1) |
---|
72 | REAL pplay(klon,klev) |
---|
73 | REAL t(klon,klev) |
---|
74 | REAL pclc(klon,klev) |
---|
75 | REAL pqlwp(klon,klev) |
---|
76 | REAL pcltau(klon,klev) |
---|
77 | REAL pclemi(klon,klev) |
---|
78 | REAL pcldtaupi(klon, klev) |
---|
79 | c |
---|
80 | REAL pct(klon) |
---|
81 | REAL pcl(klon) |
---|
82 | REAL pcm(klon) |
---|
83 | REAL pch(klon) |
---|
84 | REAL pctlwp(klon) |
---|
85 | c |
---|
86 | LOGICAL lo |
---|
87 | c |
---|
88 | !!Abderr modif JL mail du 19.01.2011 18:31 |
---|
89 | ! REAL cetahb, cetamb |
---|
90 | ! PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
91 | ! Remplacer |
---|
92 | ! cetahb*paprs(i,1) par prmhc |
---|
93 | ! cetamb*paprs(i,1) par prlmc |
---|
94 | REAL prmhc ! Pressure between medium and high level cloud in Pa |
---|
95 | REAL prlmc ! Pressure between low and medium level cloud in Pa |
---|
96 | PARAMETER (prmhc = 440.*100., prlmc = 680.*100.) |
---|
97 | C |
---|
98 | INTEGER i, k |
---|
99 | REAL xflwp(klon), xfiwp(klon) |
---|
100 | REAL xflwc(klon,klev), xfiwc(klon,klev) |
---|
101 | c |
---|
102 | REAL radius |
---|
103 | c |
---|
104 | REAL coef_froi, coef_chau |
---|
105 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
106 | c |
---|
107 | REAL seuil_neb |
---|
108 | PARAMETER (seuil_neb=0.001) |
---|
109 | c |
---|
110 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
111 | PARAMETER (nexpo=6) |
---|
112 | c PARAMETER (nexpo=1) |
---|
113 | |
---|
114 | REAL rel, tc, rei |
---|
115 | REAL k_ice0, k_ice, DF |
---|
116 | PARAMETER (k_ice0=0.005) ! units=m2/g |
---|
117 | PARAMETER (DF=1.66) ! diffusivity factor |
---|
118 | c |
---|
119 | cjq for the aerosol indirect effect |
---|
120 | cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
121 | cjq |
---|
122 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
---|
123 | REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) |
---|
124 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
125 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
126 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
127 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
128 | |
---|
129 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) |
---|
130 | |
---|
131 | LOGICAL ok_cdnc |
---|
132 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
133 | |
---|
134 | cjq-end |
---|
135 | cIM cf. CR:parametres supplementaires |
---|
136 | REAL zclear(klon) |
---|
137 | REAL zcloud(klon) |
---|
138 | REAL zcloudh(klon) |
---|
139 | REAL zcloudm(klon) |
---|
140 | REAL zcloudl(klon) |
---|
141 | REAL rhodz(klon, klev) !--rho*dz pour la couche |
---|
142 | REAL zrho(klon, klev) !--rho pour la couche |
---|
143 | REAL dh(klon, klev) !--dz pour la couche |
---|
144 | REAL zfice(klon, klev) |
---|
145 | REAL rad_chaud(klon, klev) !--rayon pour les nuages chauds |
---|
146 | REAL zflwp_var, zfiwp_var |
---|
147 | REAL d_rei_dt |
---|
148 | |
---|
149 | ! Abderrahmane oct 2009 |
---|
150 | Real reliq(klon, klev), reice(klon, klev) |
---|
151 | |
---|
152 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
153 | ! FH : 2011/05/24 |
---|
154 | ! |
---|
155 | ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max |
---|
156 | ! to be used for a temperature in celcius T(°C) < 0 |
---|
157 | ! rei=rei_min for T(°C) < -81.4 |
---|
158 | ! |
---|
159 | ! Calcul de la pente de la relation entre rayon effective des cristaux |
---|
160 | ! et la température. |
---|
161 | ! Pour retrouver les résultats numériques de la version d'origine, |
---|
162 | ! on impose 0.71 quand on est proche de 0.71 |
---|
163 | c |
---|
164 | d_rei_dt=(rei_max-rei_min)/81.4 |
---|
165 | if (abs(d_rei_dt-0.71)<1.e-4) d_rei_dt=0.71 |
---|
166 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
167 | c |
---|
168 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
169 | c IM inversion des DO |
---|
170 | c |
---|
171 | xflwp = 0.d0 |
---|
172 | xfiwp = 0.d0 |
---|
173 | xflwc = 0.d0 |
---|
174 | xfiwc = 0.d0 |
---|
175 | c |
---|
176 | reliq=0. |
---|
177 | reice=0. |
---|
178 | c |
---|
179 | DO k = 1, klev |
---|
180 | DO i = 1, klon |
---|
181 | c-layer calculation |
---|
182 | rhodz(i,k) = (paprs(i,k)-paprs(i,k+1))/RG ! kg/m2 |
---|
183 | zrho(i,k)=pplay(i,k)/t(i,k)/RD ! kg/m3 |
---|
184 | dh(i,k)=rhodz(i,k)/zrho(i,k) ! m |
---|
185 | c-Fraction of ice in cloud using a linear transition |
---|
186 | zfice(i,k) = 1.0 - (t(i,k)-t_glace_min) / |
---|
187 | & (t_glace_max-t_glace_min) |
---|
188 | zfice(i,k) = MIN(MAX(zfice(i,k),0.0),1.0) |
---|
189 | c-IM Total Liquid/Ice water content |
---|
190 | xflwc(i,k) = (1.-zfice(i,k))*pqlwp(i,k) |
---|
191 | xfiwc(i,k) = zfice(i,k)*pqlwp(i,k) |
---|
192 | ENDDO |
---|
193 | ENDDO |
---|
194 | |
---|
195 | IF (ok_cdnc) THEN |
---|
196 | c |
---|
197 | c--we compute cloud properties as a function of the aerosol load |
---|
198 | c |
---|
199 | DO k = 1, klev |
---|
200 | DO i = 1, klon |
---|
201 | c |
---|
202 | c Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
203 | c Cloud droplet number concentration (CDNC) is restricted |
---|
204 | c to be within [20, 1000 cm^3] |
---|
205 | c |
---|
206 | c--present-day case |
---|
207 | cdnc(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
208 | & log(MAX(mass_solu_aero(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
209 | cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) |
---|
210 | c |
---|
211 | c--pre-industrial case |
---|
212 | cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
213 | & log(MAX(mass_solu_aero_pi(i,k),1.e-4))/log(10.)) |
---|
214 | & *1.e6 !-m-3 |
---|
215 | cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) |
---|
216 | c |
---|
217 | c--present-day case |
---|
218 | rad_chaud(i,k) = |
---|
219 | & 1.1*((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
220 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
---|
221 | rad_chaud(i,k) = MAX(rad_chaud(i,k) * 1.e6, 5.) |
---|
222 | c |
---|
223 | c--pre-industrial case |
---|
224 | radius = |
---|
225 | & 1.1*((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
226 | & /(4./3.*RPI*1000.*cdnc_pi(i,k)))**(1./3.) |
---|
227 | radius = MAX(radius*1.e6, 5.) |
---|
228 | c |
---|
229 | c--pre-industrial case |
---|
230 | c--liquid/ice cloud water paths: |
---|
231 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
232 | c |
---|
233 | pcldtaupi(i,k) = 0.0 |
---|
234 | c |
---|
235 | ELSE |
---|
236 | c |
---|
237 | zflwp_var= 1000.*(1.-zfice(i,k))*pqlwp(i,k)/pclc(i,k) |
---|
238 | & *rhodz(i,k) |
---|
239 | zfiwp_var= 1000.*zfice(i,k)*pqlwp(i,k)/pclc(i,k) |
---|
240 | & *rhodz(i,k) |
---|
241 | tc = t(i,k)-273.15 |
---|
242 | rei = d_rei_dt*tc + rei_max |
---|
243 | if (tc.le.-81.4) rei = rei_min |
---|
244 | c |
---|
245 | c-- cloud optical thickness : |
---|
246 | c [for liquid clouds, traditional formula, |
---|
247 | c for ice clouds, Ebert & Curry (1992)] |
---|
248 | c |
---|
249 | if (zflwp_var.eq.0.) radius = 1. |
---|
250 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
251 | pcldtaupi(i,k) = 3.0/2.0 * zflwp_var / radius |
---|
252 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
253 | c |
---|
254 | ENDIF |
---|
255 | c |
---|
256 | ENDDO |
---|
257 | ENDDO |
---|
258 | c |
---|
259 | ELSE !--not ok_cdnc |
---|
260 | c |
---|
261 | c-prescribed cloud droplet radius |
---|
262 | c |
---|
263 | DO k = 1, MIN(3,klev) |
---|
264 | DO i = 1, klon |
---|
265 | rad_chaud(i,k) = rad_chau2 |
---|
266 | ENDDO |
---|
267 | ENDDO |
---|
268 | DO k = MIN(3,klev)+1, klev |
---|
269 | DO i = 1, klon |
---|
270 | rad_chaud(i,k) = rad_chau1 |
---|
271 | ENDDO |
---|
272 | ENDDO |
---|
273 | |
---|
274 | ENDIF !--ok_cdnc |
---|
275 | c |
---|
276 | c--computation of cloud optical depth and emissivity |
---|
277 | c--in the general case |
---|
278 | c |
---|
279 | DO k = 1, klev |
---|
280 | DO i = 1, klon |
---|
281 | c |
---|
282 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
283 | c |
---|
284 | c effective cloud droplet radius (microns) for liquid water clouds: |
---|
285 | c For output diagnostics cloud droplet effective radius [um] |
---|
286 | c we multiply here with f * xl (fraction of liquid water |
---|
287 | c clouds in the grid cell) to avoid problems in the averaging of the output. |
---|
288 | c In the output of IOIPSL, derive the REAL cloud droplet |
---|
289 | c effective radius as re/fl |
---|
290 | c |
---|
291 | fl(i,k) = seuil_neb*(1.-zfice(i,k)) |
---|
292 | re(i,k) = rad_chaud(i,k)*fl(i,k) |
---|
293 | rel = 0. |
---|
294 | rei = 0. |
---|
295 | pclc(i,k) = 0.0 |
---|
296 | pcltau(i,k) = 0.0 |
---|
297 | pclemi(i,k) = 0.0 |
---|
298 | c |
---|
299 | ELSE |
---|
300 | c |
---|
301 | c -- liquid/ice cloud water paths: |
---|
302 | |
---|
303 | zflwp_var= 1000.*(1.-zfice(i,k))*pqlwp(i,k)/pclc(i,k) |
---|
304 | & *rhodz(i,k) |
---|
305 | zfiwp_var= 1000.*zfice(i,k)*pqlwp(i,k)/pclc(i,k) |
---|
306 | & *rhodz(i,k) |
---|
307 | c |
---|
308 | c effective cloud droplet radius (microns) for liquid water clouds: |
---|
309 | c For output diagnostics cloud droplet effective radius [um] |
---|
310 | c we multiply here with f * xl (fraction of liquid water |
---|
311 | c clouds in the grid cell) to avoid problems in the averaging of the output. |
---|
312 | c In the output of IOIPSL, derive the REAL cloud droplet |
---|
313 | c effective radius as re/fl |
---|
314 | c |
---|
315 | fl(i,k) = pclc(i,k)*(1.-zfice(i,k)) |
---|
316 | re(i,k) = rad_chaud(i,k)*fl(i,k) |
---|
317 | c |
---|
318 | rel = rad_chaud(i,k) |
---|
319 | c |
---|
320 | c for ice clouds: as a function of the ambiant temperature |
---|
321 | c [formula used by Iacobellis and Somerville (2000), with an |
---|
322 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
323 | c consistent with observations of Heymsfield et al. 1986]: |
---|
324 | c 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as rei_max=61.29 |
---|
325 | c |
---|
326 | tc = t(i,k)-273.15 |
---|
327 | rei = d_rei_dt*tc + rei_max |
---|
328 | if (tc.le.-81.4) rei = rei_min |
---|
329 | c |
---|
330 | c-- cloud optical thickness : |
---|
331 | c [for liquid clouds, traditional formula, |
---|
332 | c for ice clouds, Ebert & Curry (1992)] |
---|
333 | c |
---|
334 | if (zflwp_var.eq.0.) rel = 1. |
---|
335 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
336 | pcltau(i,k) = 3.0/2.0 * ( zflwp_var/rel ) |
---|
337 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
338 | c |
---|
339 | c -- cloud infrared emissivity: |
---|
340 | c [the broadband infrared absorption coefficient is PARAMETERized |
---|
341 | c as a function of the effective cld droplet radius] |
---|
342 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
343 | c |
---|
344 | k_ice = k_ice0 + 1.0/rei |
---|
345 | c |
---|
346 | pclemi(i,k) = 1.0 |
---|
347 | & - EXP( -coef_chau*zflwp_var - DF*k_ice*zfiwp_var) |
---|
348 | c |
---|
349 | ENDIF |
---|
350 | c |
---|
351 | reliq(i,k)=rel |
---|
352 | reice(i,k)=rei |
---|
353 | c |
---|
354 | xflwp(i) = xflwp(i)+ xflwc(i,k) * rhodz(i,k) |
---|
355 | xfiwp(i) = xfiwp(i)+ xfiwc(i,k) * rhodz(i,k) |
---|
356 | c |
---|
357 | ENDDO |
---|
358 | ENDDO |
---|
359 | c |
---|
360 | c--if cloud droplet radius is fixed, then pcldtaupi=pcltau |
---|
361 | c |
---|
362 | IF (.NOT.ok_cdnc) THEN |
---|
363 | DO k = 1, klev |
---|
364 | DO i = 1, klon |
---|
365 | pcldtaupi(i,k)=pcltau(i,k) |
---|
366 | ENDDO |
---|
367 | ENDDO |
---|
368 | ENDIF |
---|
369 | C |
---|
370 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
371 | c IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
372 | c initialisations |
---|
373 | c |
---|
374 | DO i=1,klon |
---|
375 | zclear(i)=1. |
---|
376 | zcloud(i)=0. |
---|
377 | zcloudh(i)=0. |
---|
378 | zcloudm(i)=0. |
---|
379 | zcloudl(i)=0. |
---|
380 | pch(i)=1.0 |
---|
381 | pcm(i) = 1.0 |
---|
382 | pcl(i) = 1.0 |
---|
383 | pctlwp(i) = 0.0 |
---|
384 | ENDDO |
---|
385 | C |
---|
386 | c--calculation of liquid water path |
---|
387 | c |
---|
388 | DO k = klev, 1, -1 |
---|
389 | DO i = 1, klon |
---|
390 | pctlwp(i) = pctlwp(i)+ pqlwp(i,k)*rhodz(i,k) |
---|
391 | ENDDO |
---|
392 | ENDDO |
---|
393 | c |
---|
394 | c--calculation of cloud properties with cloud overlap |
---|
395 | c |
---|
396 | IF (NOVLP.EQ.1) THEN |
---|
397 | DO k = klev, 1, -1 |
---|
398 | DO i = 1, klon |
---|
399 | zclear(i)=zclear(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
400 | & /(1.-MIN(REAL(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
401 | pct(i)=1.-zclear(i) |
---|
402 | IF (paprs(i,k).LT.prmhc) THEN |
---|
403 | pch(i) = pch(i)*(1.-MAX(pclc(i,k),zcloudh(i))) |
---|
404 | & /(1.-MIN(REAL(zcloudh(i), kind=8),1.-ZEPSEC)) |
---|
405 | zcloudh(i)=pclc(i,k) |
---|
406 | ELSE IF (paprs(i,k).GE.prmhc .AND. |
---|
407 | & paprs(i,k).LT.prlmc) THEN |
---|
408 | pcm(i) = pcm(i)*(1.-MAX(pclc(i,k),zcloudm(i))) |
---|
409 | & /(1.-MIN(REAL(zcloudm(i), kind=8),1.-ZEPSEC)) |
---|
410 | zcloudm(i)=pclc(i,k) |
---|
411 | ELSE IF (paprs(i,k).GE.prlmc) THEN |
---|
412 | pcl(i) = pcl(i)*(1.-MAX(pclc(i,k),zcloudl(i))) |
---|
413 | & /(1.-MIN(REAL(zcloudl(i), kind=8),1.-ZEPSEC)) |
---|
414 | zcloudl(i)=pclc(i,k) |
---|
415 | endif |
---|
416 | zcloud(i)=pclc(i,k) |
---|
417 | ENDDO |
---|
418 | ENDDO |
---|
419 | ELSE IF (NOVLP.EQ.2) THEN |
---|
420 | DO k = klev, 1, -1 |
---|
421 | DO i = 1, klon |
---|
422 | zcloud(i)=MAX(pclc(i,k),zcloud(i)) |
---|
423 | pct(i)=zcloud(i) |
---|
424 | IF (paprs(i,k).LT.prmhc) THEN |
---|
425 | pch(i) = MIN(pclc(i,k),pch(i)) |
---|
426 | ELSE IF (paprs(i,k).GE.prmhc .AND. |
---|
427 | & paprs(i,k).LT.prlmc) THEN |
---|
428 | pcm(i) = MIN(pclc(i,k),pcm(i)) |
---|
429 | ELSE IF (paprs(i,k).GE.prlmc) THEN |
---|
430 | pcl(i) = MIN(pclc(i,k),pcl(i)) |
---|
431 | endif |
---|
432 | ENDDO |
---|
433 | ENDDO |
---|
434 | ELSE IF (NOVLP.EQ.3) THEN |
---|
435 | DO k = klev, 1, -1 |
---|
436 | DO i = 1, klon |
---|
437 | zclear(i)=zclear(i)*(1.-pclc(i,k)) |
---|
438 | pct(i)=1-zclear(i) |
---|
439 | IF (paprs(i,k).LT.prmhc) THEN |
---|
440 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
441 | ELSE IF (paprs(i,k).GE.prmhc .AND. |
---|
442 | & paprs(i,k).LT.prlmc) THEN |
---|
443 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
444 | ELSE IF (paprs(i,k).GE.prlmc) THEN |
---|
445 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
446 | endif |
---|
447 | ENDDO |
---|
448 | ENDDO |
---|
449 | ENDIF |
---|
450 | C |
---|
451 | DO i = 1, klon |
---|
452 | pch(i)=1.-pch(i) |
---|
453 | pcm(i)=1.-pcm(i) |
---|
454 | pcl(i)=1.-pcl(i) |
---|
455 | ENDDO |
---|
456 | c |
---|
457 | c ======================================================== |
---|
458 | c DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL |
---|
459 | c ======================================================== |
---|
460 | c change by Nicolas Yan (LSCE) |
---|
461 | c Cloud Droplet Number Concentration (CDNC) : 3D variable |
---|
462 | c Fractionnal cover by liquid water cloud (LCC3D) : 3D variable |
---|
463 | c Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable |
---|
464 | c Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable |
---|
465 | c Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable |
---|
466 | c |
---|
467 | IF (ok_cdnc) THEN |
---|
468 | c |
---|
469 | DO k = 1, klev |
---|
470 | DO i = 1, klon |
---|
471 | phase3d(i,k)=1-zfice(i,k) |
---|
472 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
473 | lcc3d(i,k)=seuil_neb*phase3d(i,k) |
---|
474 | ELSE |
---|
475 | lcc3d(i,k)=pclc(i,k)*phase3d(i,k) |
---|
476 | ENDIF |
---|
477 | scdnc(i,k)=lcc3d(i,k)*cdnc(i,k) ! m-3 |
---|
478 | ENDDO |
---|
479 | ENDDO |
---|
480 | c |
---|
481 | DO i=1,klon |
---|
482 | lcc(i)=0. |
---|
483 | reffclwtop(i)=0. |
---|
484 | cldncl(i)=0. |
---|
485 | IF(RANDOM .OR. MAXIMUM_RANDOM) tcc(i) = 1. |
---|
486 | IF(MAXIMUM) tcc(i) = 0. |
---|
487 | ENDDO |
---|
488 | c |
---|
489 | DO i=1,klon |
---|
490 | DO k=klev-1,1,-1 !From TOA down |
---|
491 | c |
---|
492 | ! Test, if the cloud optical depth exceeds the necessary |
---|
493 | ! threshold: |
---|
494 | |
---|
495 | IF (pcltau(i,k).GT.thres_tau |
---|
496 | . .AND. pclc(i,k).GT.thres_neb) THEN |
---|
497 | |
---|
498 | IF (MAXIMUM) THEN |
---|
499 | IF (FIRST) THEN |
---|
500 | write(*,*)'Hypothese de recouvrement: MAXIMUM' |
---|
501 | FIRST=.FALSE. |
---|
502 | ENDIF |
---|
503 | flag_max= -1. |
---|
504 | ftmp(i) = MAX(tcc(i),pclc(i,k)) |
---|
505 | ENDIF |
---|
506 | |
---|
507 | IF (RANDOM) THEN |
---|
508 | IF (FIRST) THEN |
---|
509 | write(*,*)'Hypothese de recouvrement: RANDOM' |
---|
510 | FIRST=.FALSE. |
---|
511 | ENDIF |
---|
512 | flag_max= 1. |
---|
513 | ftmp(i) = tcc(i) * (1-pclc(i,k)) |
---|
514 | ENDIF |
---|
515 | |
---|
516 | IF (MAXIMUM_RANDOM) THEN |
---|
517 | IF (FIRST) THEN |
---|
518 | write(*,*)'Hypothese de recouvrement: MAXIMUM_ |
---|
519 | . RANDOM' |
---|
520 | FIRST=.FALSE. |
---|
521 | ENDIF |
---|
522 | flag_max= 1. |
---|
523 | ftmp(i) = tcc(i) * |
---|
524 | . (1. - MAX(pclc(i,k),pclc(i,k+1))) / |
---|
525 | . (1. - MIN(pclc(i,k+1),1.-thres_neb)) |
---|
526 | ENDIF |
---|
527 | c Effective radius of cloud droplet at top of cloud (m) |
---|
528 | reffclwtop(i) = reffclwtop(i) + rad_chaud(i,k) * |
---|
529 | . 1.0E-06 * phase3d(i,k) * ( tcc(i) - ftmp(i))*flag_max |
---|
530 | c CDNC at top of cloud (m-3) |
---|
531 | cldncl(i) = cldncl(i) + cdnc(i,k) * phase3d(i,k) * |
---|
532 | . (tcc(i) - ftmp(i))*flag_max |
---|
533 | c Liquid Cloud Content at top of cloud |
---|
534 | lcc(i) = lcc(i) + phase3d(i,k) * (tcc(i)-ftmp(i))* |
---|
535 | . flag_max |
---|
536 | c Total Cloud Content at top of cloud |
---|
537 | tcc(i)=ftmp(i) |
---|
538 | |
---|
539 | ENDIF ! is there a visible, not-too-small cloud? |
---|
540 | ENDDO ! loop over k |
---|
541 | c |
---|
542 | IF (RANDOM .OR. MAXIMUM_RANDOM) tcc(i)=1.-tcc(i) |
---|
543 | c |
---|
544 | ENDDO ! loop over i |
---|
545 | |
---|
546 | !! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC REFFCLWS) |
---|
547 | DO i = 1, klon |
---|
548 | DO k = 1, klev |
---|
549 | ! Weight to be used for outputs: eau_liquide*couverture nuageuse |
---|
550 | lcc3dcon(i,k) =rnebcon(i,k)*phase3d(i,k)*clwcon(i,k) ! eau liquide convective |
---|
551 | lcc3dstra(i,k)=pclc(i,k)*pqlwp(i,k)*phase3d(i,k) |
---|
552 | lcc3dstra(i,k)=lcc3dstra(i,k)-lcc3dcon(i,k) ! eau liquide stratiforme |
---|
553 | lcc3dstra(i,k)=MAX(lcc3dstra(i,k),0.0) |
---|
554 | ! Compute cloud droplet radius as above in meter |
---|
555 | radius=1.1*((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
556 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
---|
557 | radius=MAX(radius, 5.e-6) |
---|
558 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D |
---|
559 | reffclwc(i,k)=radius |
---|
560 | reffclwc(i,k)=reffclwc(i,k)*lcc3dcon(i,k) |
---|
561 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D |
---|
562 | reffclws(i,k)=radius |
---|
563 | reffclws(i,k)=reffclws(i,k)*lcc3dstra(i,k) |
---|
564 | ENDDO !klev |
---|
565 | ENDDO !klon |
---|
566 | c |
---|
567 | c Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D |
---|
568 | c |
---|
569 | DO i = 1, klon |
---|
570 | cldnvi(i)=0. |
---|
571 | lcc_integrat(i)=0. |
---|
572 | height(i)=0. |
---|
573 | DO k = 1, klev |
---|
574 | cldnvi(i)=cldnvi(i)+cdnc(i,k)*lcc3d(i,k)*dh(i,k) |
---|
575 | lcc_integrat(i)=lcc_integrat(i)+lcc3d(i,k)*dh(i,k) |
---|
576 | height(i)=height(i)+dh(i,k) |
---|
577 | ENDDO ! klev |
---|
578 | lcc_integrat(i)=lcc_integrat(i)/height(i) |
---|
579 | IF (lcc_integrat(i) .LE. 1.0E-03) THEN |
---|
580 | cldnvi(i)=cldnvi(i)*lcc(i)/seuil_neb |
---|
581 | ELSE |
---|
582 | cldnvi(i)=cldnvi(i)*lcc(i)/lcc_integrat(i) |
---|
583 | ENDIF |
---|
584 | ENDDO ! klon |
---|
585 | |
---|
586 | DO i = 1, klon |
---|
587 | DO k = 1, klev |
---|
588 | IF (scdnc(i,k) .LE. 0.0) scdnc(i,k)=0.0 |
---|
589 | IF (reffclws(i,k) .LE. 0.0) reffclws(i,k)=0.0 |
---|
590 | IF (reffclwc(i,k) .LE. 0.0) reffclwc(i,k)=0.0 |
---|
591 | IF (lcc3d(i,k) .LE. 0.0) lcc3d(i,k)=0.0 |
---|
592 | IF (lcc3dcon(i,k) .LE. 0.0) lcc3dcon(i,k)=0.0 |
---|
593 | IF (lcc3dstra(i,k) .LE. 0.0) lcc3dstra(i,k)=0.0 |
---|
594 | ENDDO |
---|
595 | IF (reffclwtop(i) .LE. 0.0) reffclwtop(i)=0.0 |
---|
596 | IF (cldncl(i) .LE. 0.0) cldncl(i)=0.0 |
---|
597 | IF (cldnvi(i) .LE. 0.0) cldnvi(i)=0.0 |
---|
598 | IF (lcc(i) .LE. 0.0) lcc(i)=0.0 |
---|
599 | ENDDO |
---|
600 | c |
---|
601 | ENDIF !ok_cdnc |
---|
602 | c |
---|
603 | RETURN |
---|
604 | c |
---|
605 | END |
---|