! $Id: newmicro.F 1723 2013-02-04 13:25:36Z nfevrier $ ! SUBROUTINE newmicro (ok_cdnc, bl95_b0, bl95_b1, . paprs, pplay, . t, pqlwp, pclc, pcltau, pclemi, . pch, pcl, pcm, pct, pctlwp, . xflwp, xfiwp, xflwc, xfiwc, . mass_solu_aero, mass_solu_aero_pi, . pcldtaupi, re, fl, reliq, reice) c USE dimphy USE phys_local_var_mod, only: scdnc,cldncl,reffclwtop,lcc, . reffclws,reffclwc,cldnvi,lcc3d, . lcc3dcon,lcc3dstra USE phys_state_var_mod, only: rnebcon,clwcon IMPLICIT none c====================================================================== c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 c O. Boucher (LMD/CNRS) mise a jour en 201212 c Objet: Calculer epaisseur optique et emmissivite des nuages c====================================================================== c Arguments: c ok_cdnc-input-L-flag pour calculer les rayons a partir des aerosols c c t-------input-R-temperature c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere dans la partie nuageuse (kg/kg) c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) c mass_solu_aero-----input-R-total mass concentration for all soluble aerosols[ug/m^3] c mass_solu_aero_pi--input-R-ditto, pre-industrial value c c bl95_b0-input-R-a PARAMETER, may be varied for tests (s-sea, l-land) c bl95_b1-input-R-a PARAMETER, may be varied for tests ( -"- ) c c re------output-R-Cloud droplet effective radius multiplied by fl [um] c fl------output-R-Denominator to re, introduced to avoid problems in c the averaging of the output. fl is the fraction of liquid c water clouds within a grid cell c c pcltau--output-R-epaisseur optique des nuages c pclemi--output-R-emissivite des nuages (0 a 1) c pcldtaupi-output-R-pre-industrial value of cloud optical thickness, c c pcl-output-R-2D low-level cloud cover c pcm-output-R-2D mid-level cloud cover c pch-output-R-2D high-level cloud cover c pct-output-R-2D total cloud cover c====================================================================== C #include "YOMCST.h" #include "nuage.h" #include "radepsi.h" #include "radopt.h" c choix de l'hypothese de recouvrememnt nuageuse LOGICAL RANDOM, MAXIMUM_RANDOM, MAXIMUM PARAMETER (RANDOM=.FALSE., MAXIMUM_RANDOM=.TRUE., MAXIMUM=.FALSE.) c LOGICAL, SAVE :: FIRST=.TRUE. !$OMP THREADPRIVATE(FIRST) INTEGER flag_max c c threshold PARAMETERs REAL thres_tau,thres_neb PARAMETER (thres_tau=0.3, thres_neb=0.001) c REAL phase3d(klon, klev) REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) c REAL paprs(klon,klev+1) REAL pplay(klon,klev) REAL t(klon,klev) REAL pclc(klon,klev) REAL pqlwp(klon,klev) REAL pcltau(klon,klev) REAL pclemi(klon,klev) REAL pcldtaupi(klon, klev) c REAL pct(klon) REAL pcl(klon) REAL pcm(klon) REAL pch(klon) REAL pctlwp(klon) c LOGICAL lo c !!Abderr modif JL mail du 19.01.2011 18:31 ! REAL cetahb, cetamb ! PARAMETER (cetahb = 0.45, cetamb = 0.80) ! Remplacer ! cetahb*paprs(i,1) par prmhc ! cetamb*paprs(i,1) par prlmc REAL prmhc ! Pressure between medium and high level cloud in Pa REAL prlmc ! Pressure between low and medium level cloud in Pa PARAMETER (prmhc = 440.*100., prlmc = 680.*100.) C INTEGER i, k REAL xflwp(klon), xfiwp(klon) REAL xflwc(klon,klev), xfiwc(klon,klev) c REAL radius c REAL coef_froi, coef_chau PARAMETER (coef_chau=0.13, coef_froi=0.09) c REAL seuil_neb PARAMETER (seuil_neb=0.001) c INTEGER nexpo ! exponentiel pour glace/eau PARAMETER (nexpo=6) c PARAMETER (nexpo=1) REAL rel, tc, rei REAL k_ice0, k_ice, DF PARAMETER (k_ice0=0.005) ! units=m2/g PARAMETER (DF=1.66) ! diffusivity factor c cjq for the aerosol indirect effect cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 cjq REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] REAL re(klon, klev) ! cloud droplet effective radius [um] REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) LOGICAL ok_cdnc REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula cjq-end cIM cf. CR:parametres supplementaires REAL zclear(klon) REAL zcloud(klon) REAL zcloudh(klon) REAL zcloudm(klon) REAL zcloudl(klon) REAL rhodz(klon, klev) !--rho*dz pour la couche REAL zrho(klon, klev) !--rho pour la couche REAL dh(klon, klev) !--dz pour la couche REAL zfice(klon, klev) REAL rad_chaud(klon, klev) !--rayon pour les nuages chauds REAL zflwp_var, zfiwp_var REAL d_rei_dt ! Abderrahmane oct 2009 Real reliq(klon, klev), reice(klon, klev) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! FH : 2011/05/24 ! ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max ! to be used for a temperature in celcius T(°C) < 0 ! rei=rei_min for T(°C) < -81.4 ! ! Calcul de la pente de la relation entre rayon effective des cristaux ! et la température. ! Pour retrouver les résultats numériques de la version d'origine, ! on impose 0.71 quand on est proche de 0.71 c d_rei_dt=(rei_max-rei_min)/81.4 if (abs(d_rei_dt-0.71)<1.e-4) d_rei_dt=0.71 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! c c Calculer l'epaisseur optique et l'emmissivite des nuages c IM inversion des DO c xflwp = 0.d0 xfiwp = 0.d0 xflwc = 0.d0 xfiwc = 0.d0 c reliq=0. reice=0. c DO k = 1, klev DO i = 1, klon c-layer calculation rhodz(i,k) = (paprs(i,k)-paprs(i,k+1))/RG ! kg/m2 zrho(i,k)=pplay(i,k)/t(i,k)/RD ! kg/m3 dh(i,k)=rhodz(i,k)/zrho(i,k) ! m c-Fraction of ice in cloud using a linear transition zfice(i,k) = 1.0 - (t(i,k)-t_glace_min) / & (t_glace_max-t_glace_min) zfice(i,k) = MIN(MAX(zfice(i,k),0.0),1.0) c-IM Total Liquid/Ice water content xflwc(i,k) = (1.-zfice(i,k))*pqlwp(i,k) xfiwc(i,k) = zfice(i,k)*pqlwp(i,k) ENDDO ENDDO IF (ok_cdnc) THEN c c--we compute cloud properties as a function of the aerosol load c DO k = 1, klev DO i = 1, klon c c Formula "D" of Boucher and Lohmann, Tellus, 1995 c Cloud droplet number concentration (CDNC) is restricted c to be within [20, 1000 cm^3] c c--present-day case cdnc(i,k) = 10.**(bl95_b0+bl95_b1* & log(MAX(mass_solu_aero(i,k),1.e-4))/log(10.))*1.e6 !-m-3 cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) c c--pre-industrial case cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* & log(MAX(mass_solu_aero_pi(i,k),1.e-4))/log(10.)) & *1.e6 !-m-3 cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) c c--present-day case rad_chaud(i,k) = & 1.1*((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) rad_chaud(i,k) = MAX(rad_chaud(i,k) * 1.e6, 5.) c c--pre-industrial case radius = & 1.1*((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) & /(4./3.*RPI*1000.*cdnc_pi(i,k)))**(1./3.) radius = MAX(radius*1.e6, 5.) c c--pre-industrial case c--liquid/ice cloud water paths: IF (pclc(i,k) .LE. seuil_neb) THEN c pcldtaupi(i,k) = 0.0 c ELSE c zflwp_var= 1000.*(1.-zfice(i,k))*pqlwp(i,k)/pclc(i,k) & *rhodz(i,k) zfiwp_var= 1000.*zfice(i,k)*pqlwp(i,k)/pclc(i,k) & *rhodz(i,k) tc = t(i,k)-273.15 rei = d_rei_dt*tc + rei_max if (tc.le.-81.4) rei = rei_min c c-- cloud optical thickness : c [for liquid clouds, traditional formula, c for ice clouds, Ebert & Curry (1992)] c if (zflwp_var.eq.0.) radius = 1. if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. pcldtaupi(i,k) = 3.0/2.0 * zflwp_var / radius & + zfiwp_var * (3.448e-03 + 2.431/rei) c ENDIF c ENDDO ENDDO c ELSE !--not ok_cdnc c c-prescribed cloud droplet radius c DO k = 1, MIN(3,klev) DO i = 1, klon rad_chaud(i,k) = rad_chau2 ENDDO ENDDO DO k = MIN(3,klev)+1, klev DO i = 1, klon rad_chaud(i,k) = rad_chau1 ENDDO ENDDO ENDIF !--ok_cdnc c c--computation of cloud optical depth and emissivity c--in the general case c DO k = 1, klev DO i = 1, klon c IF (pclc(i,k) .LE. seuil_neb) THEN c c effective cloud droplet radius (microns) for liquid water clouds: c For output diagnostics cloud droplet effective radius [um] c we multiply here with f * xl (fraction of liquid water c clouds in the grid cell) to avoid problems in the averaging of the output. c In the output of IOIPSL, derive the REAL cloud droplet c effective radius as re/fl c fl(i,k) = seuil_neb*(1.-zfice(i,k)) re(i,k) = rad_chaud(i,k)*fl(i,k) rel = 0. rei = 0. pclc(i,k) = 0.0 pcltau(i,k) = 0.0 pclemi(i,k) = 0.0 c ELSE c c -- liquid/ice cloud water paths: zflwp_var= 1000.*(1.-zfice(i,k))*pqlwp(i,k)/pclc(i,k) & *rhodz(i,k) zfiwp_var= 1000.*zfice(i,k)*pqlwp(i,k)/pclc(i,k) & *rhodz(i,k) c c effective cloud droplet radius (microns) for liquid water clouds: c For output diagnostics cloud droplet effective radius [um] c we multiply here with f * xl (fraction of liquid water c clouds in the grid cell) to avoid problems in the averaging of the output. c In the output of IOIPSL, derive the REAL cloud droplet c effective radius as re/fl c fl(i,k) = pclc(i,k)*(1.-zfice(i,k)) re(i,k) = rad_chaud(i,k)*fl(i,k) c rel = rad_chaud(i,k) c c for ice clouds: as a function of the ambiant temperature c [formula used by Iacobellis and Somerville (2000), with an c asymptotical value of 3.5 microns at T<-81.4 C added to be c consistent with observations of Heymsfield et al. 1986]: c 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as rei_max=61.29 c tc = t(i,k)-273.15 rei = d_rei_dt*tc + rei_max if (tc.le.-81.4) rei = rei_min c c-- cloud optical thickness : c [for liquid clouds, traditional formula, c for ice clouds, Ebert & Curry (1992)] c if (zflwp_var.eq.0.) rel = 1. if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. pcltau(i,k) = 3.0/2.0 * ( zflwp_var/rel ) & + zfiwp_var * (3.448e-03 + 2.431/rei) c c -- cloud infrared emissivity: c [the broadband infrared absorption coefficient is PARAMETERized c as a function of the effective cld droplet radius] c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): c k_ice = k_ice0 + 1.0/rei c pclemi(i,k) = 1.0 & - EXP( -coef_chau*zflwp_var - DF*k_ice*zfiwp_var) c ENDIF c reliq(i,k)=rel reice(i,k)=rei c xflwp(i) = xflwp(i)+ xflwc(i,k) * rhodz(i,k) xfiwp(i) = xfiwp(i)+ xfiwc(i,k) * rhodz(i,k) c ENDDO ENDDO c c--if cloud droplet radius is fixed, then pcldtaupi=pcltau c IF (.NOT.ok_cdnc) THEN DO k = 1, klev DO i = 1, klon pcldtaupi(i,k)=pcltau(i,k) ENDDO ENDDO ENDIF C C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS c IM cf. CR:test: calcul prenant ou non en compte le recouvrement c initialisations c DO i=1,klon zclear(i)=1. zcloud(i)=0. zcloudh(i)=0. zcloudm(i)=0. zcloudl(i)=0. pch(i)=1.0 pcm(i) = 1.0 pcl(i) = 1.0 pctlwp(i) = 0.0 ENDDO C c--calculation of liquid water path c DO k = klev, 1, -1 DO i = 1, klon pctlwp(i) = pctlwp(i)+ pqlwp(i,k)*rhodz(i,k) ENDDO ENDDO c c--calculation of cloud properties with cloud overlap c IF (NOVLP.EQ.1) THEN DO k = klev, 1, -1 DO i = 1, klon zclear(i)=zclear(i)*(1.-MAX(pclc(i,k),zcloud(i))) & /(1.-MIN(REAL(zcloud(i), kind=8),1.-ZEPSEC)) pct(i)=1.-zclear(i) IF (paprs(i,k).LT.prmhc) THEN pch(i) = pch(i)*(1.-MAX(pclc(i,k),zcloudh(i))) & /(1.-MIN(REAL(zcloudh(i), kind=8),1.-ZEPSEC)) zcloudh(i)=pclc(i,k) ELSE IF (paprs(i,k).GE.prmhc .AND. & paprs(i,k).LT.prlmc) THEN pcm(i) = pcm(i)*(1.-MAX(pclc(i,k),zcloudm(i))) & /(1.-MIN(REAL(zcloudm(i), kind=8),1.-ZEPSEC)) zcloudm(i)=pclc(i,k) ELSE IF (paprs(i,k).GE.prlmc) THEN pcl(i) = pcl(i)*(1.-MAX(pclc(i,k),zcloudl(i))) & /(1.-MIN(REAL(zcloudl(i), kind=8),1.-ZEPSEC)) zcloudl(i)=pclc(i,k) endif zcloud(i)=pclc(i,k) ENDDO ENDDO ELSE IF (NOVLP.EQ.2) THEN DO k = klev, 1, -1 DO i = 1, klon zcloud(i)=MAX(pclc(i,k),zcloud(i)) pct(i)=zcloud(i) IF (paprs(i,k).LT.prmhc) THEN pch(i) = MIN(pclc(i,k),pch(i)) ELSE IF (paprs(i,k).GE.prmhc .AND. & paprs(i,k).LT.prlmc) THEN pcm(i) = MIN(pclc(i,k),pcm(i)) ELSE IF (paprs(i,k).GE.prlmc) THEN pcl(i) = MIN(pclc(i,k),pcl(i)) endif ENDDO ENDDO ELSE IF (NOVLP.EQ.3) THEN DO k = klev, 1, -1 DO i = 1, klon zclear(i)=zclear(i)*(1.-pclc(i,k)) pct(i)=1-zclear(i) IF (paprs(i,k).LT.prmhc) THEN pch(i) = pch(i)*(1.0-pclc(i,k)) ELSE IF (paprs(i,k).GE.prmhc .AND. & paprs(i,k).LT.prlmc) THEN pcm(i) = pcm(i)*(1.0-pclc(i,k)) ELSE IF (paprs(i,k).GE.prlmc) THEN pcl(i) = pcl(i)*(1.0-pclc(i,k)) endif ENDDO ENDDO ENDIF C DO i = 1, klon pch(i)=1.-pch(i) pcm(i)=1.-pcm(i) pcl(i)=1.-pcl(i) ENDDO c c ======================================================== c DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL c ======================================================== c change by Nicolas Yan (LSCE) c Cloud Droplet Number Concentration (CDNC) : 3D variable c Fractionnal cover by liquid water cloud (LCC3D) : 3D variable c Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable c Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable c Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable c IF (ok_cdnc) THEN c DO k = 1, klev DO i = 1, klon phase3d(i,k)=1-zfice(i,k) IF (pclc(i,k) .LE. seuil_neb) THEN lcc3d(i,k)=seuil_neb*phase3d(i,k) ELSE lcc3d(i,k)=pclc(i,k)*phase3d(i,k) ENDIF scdnc(i,k)=lcc3d(i,k)*cdnc(i,k) ! m-3 ENDDO ENDDO c DO i=1,klon lcc(i)=0. reffclwtop(i)=0. cldncl(i)=0. IF(RANDOM .OR. MAXIMUM_RANDOM) tcc(i) = 1. IF(MAXIMUM) tcc(i) = 0. ENDDO c DO i=1,klon DO k=klev-1,1,-1 !From TOA down c ! Test, if the cloud optical depth exceeds the necessary ! threshold: IF (pcltau(i,k).GT.thres_tau . .AND. pclc(i,k).GT.thres_neb) THEN IF (MAXIMUM) THEN IF (FIRST) THEN write(*,*)'Hypothese de recouvrement: MAXIMUM' FIRST=.FALSE. ENDIF flag_max= -1. ftmp(i) = MAX(tcc(i),pclc(i,k)) ENDIF IF (RANDOM) THEN IF (FIRST) THEN write(*,*)'Hypothese de recouvrement: RANDOM' FIRST=.FALSE. ENDIF flag_max= 1. ftmp(i) = tcc(i) * (1-pclc(i,k)) ENDIF IF (MAXIMUM_RANDOM) THEN IF (FIRST) THEN write(*,*)'Hypothese de recouvrement: MAXIMUM_ . RANDOM' FIRST=.FALSE. ENDIF flag_max= 1. ftmp(i) = tcc(i) * . (1. - MAX(pclc(i,k),pclc(i,k+1))) / . (1. - MIN(pclc(i,k+1),1.-thres_neb)) ENDIF c Effective radius of cloud droplet at top of cloud (m) reffclwtop(i) = reffclwtop(i) + rad_chaud(i,k) * . 1.0E-06 * phase3d(i,k) * ( tcc(i) - ftmp(i))*flag_max c CDNC at top of cloud (m-3) cldncl(i) = cldncl(i) + cdnc(i,k) * phase3d(i,k) * . (tcc(i) - ftmp(i))*flag_max c Liquid Cloud Content at top of cloud lcc(i) = lcc(i) + phase3d(i,k) * (tcc(i)-ftmp(i))* . flag_max c Total Cloud Content at top of cloud tcc(i)=ftmp(i) ENDIF ! is there a visible, not-too-small cloud? ENDDO ! loop over k c IF (RANDOM .OR. MAXIMUM_RANDOM) tcc(i)=1.-tcc(i) c ENDDO ! loop over i !! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC REFFCLWS) DO i = 1, klon DO k = 1, klev ! Weight to be used for outputs: eau_liquide*couverture nuageuse lcc3dcon(i,k) =rnebcon(i,k)*phase3d(i,k)*clwcon(i,k) ! eau liquide convective lcc3dstra(i,k)=pclc(i,k)*pqlwp(i,k)*phase3d(i,k) lcc3dstra(i,k)=lcc3dstra(i,k)-lcc3dcon(i,k) ! eau liquide stratiforme lcc3dstra(i,k)=MAX(lcc3dstra(i,k),0.0) ! Compute cloud droplet radius as above in meter radius=1.1*((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) radius=MAX(radius, 5.e-6) ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D reffclwc(i,k)=radius reffclwc(i,k)=reffclwc(i,k)*lcc3dcon(i,k) ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D reffclws(i,k)=radius reffclws(i,k)=reffclws(i,k)*lcc3dstra(i,k) ENDDO !klev ENDDO !klon c c Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D c DO i = 1, klon cldnvi(i)=0. lcc_integrat(i)=0. height(i)=0. DO k = 1, klev cldnvi(i)=cldnvi(i)+cdnc(i,k)*lcc3d(i,k)*dh(i,k) lcc_integrat(i)=lcc_integrat(i)+lcc3d(i,k)*dh(i,k) height(i)=height(i)+dh(i,k) ENDDO ! klev lcc_integrat(i)=lcc_integrat(i)/height(i) IF (lcc_integrat(i) .LE. 1.0E-03) THEN cldnvi(i)=cldnvi(i)*lcc(i)/seuil_neb ELSE cldnvi(i)=cldnvi(i)*lcc(i)/lcc_integrat(i) ENDIF ENDDO ! klon DO i = 1, klon DO k = 1, klev IF (scdnc(i,k) .LE. 0.0) scdnc(i,k)=0.0 IF (reffclws(i,k) .LE. 0.0) reffclws(i,k)=0.0 IF (reffclwc(i,k) .LE. 0.0) reffclwc(i,k)=0.0 IF (lcc3d(i,k) .LE. 0.0) lcc3d(i,k)=0.0 IF (lcc3dcon(i,k) .LE. 0.0) lcc3dcon(i,k)=0.0 IF (lcc3dstra(i,k) .LE. 0.0) lcc3dstra(i,k)=0.0 ENDDO IF (reffclwtop(i) .LE. 0.0) reffclwtop(i)=0.0 IF (cldncl(i) .LE. 0.0) cldncl(i)=0.0 IF (cldnvi(i) .LE. 0.0) cldnvi(i)=0.0 IF (lcc(i) .LE. 0.0) lcc(i)=0.0 ENDDO c ENDIF !ok_cdnc c RETURN c END