[524] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | |
---|
| 5 | MODULE interface_surf |
---|
| 6 | |
---|
| 7 | ! Ce module regroupe toutes les routines gerant l'interface entre le modele |
---|
| 8 | ! atmospherique et les modeles de surface (sols continentaux, oceans, glaces) |
---|
| 9 | ! Les routines sont les suivantes: |
---|
| 10 | ! |
---|
| 11 | ! interfsurf_*: routines d'aiguillage vers les interfaces avec les |
---|
| 12 | ! differents modeles de surface |
---|
| 13 | ! interfsol\ |
---|
| 14 | ! > routines d'interface proprement dite |
---|
| 15 | ! interfoce/ |
---|
| 16 | ! |
---|
| 17 | ! interfstart: routine d'initialisation et de lecture de l'etat initial |
---|
| 18 | ! "interface" |
---|
| 19 | ! interffin : routine d'ecriture de l'etat de redemmarage de l'interface |
---|
| 20 | ! |
---|
| 21 | ! |
---|
| 22 | ! L. Fairhead, LMD, 02/2000 |
---|
| 23 | |
---|
| 24 | USE ioipsl |
---|
| 25 | |
---|
| 26 | IMPLICIT none |
---|
| 27 | |
---|
| 28 | PRIVATE |
---|
| 29 | PUBLIC :: interfsurf,interfsurf_hq, gath2cpl |
---|
| 30 | |
---|
| 31 | INTERFACE interfsurf |
---|
| 32 | module procedure interfsurf_hq, interfsurf_vent |
---|
| 33 | END INTERFACE |
---|
| 34 | |
---|
| 35 | INTERFACE interfoce |
---|
| 36 | module procedure interfoce_cpl, interfoce_slab, interfoce_lim |
---|
| 37 | END INTERFACE |
---|
| 38 | |
---|
| 39 | #include "YOMCST.inc" |
---|
| 40 | #include "indicesol.inc" |
---|
[686] | 41 | !IM |
---|
| 42 | #include "clesphys.inc" |
---|
[524] | 43 | |
---|
| 44 | ! run_off ruissellement total |
---|
| 45 | REAL, ALLOCATABLE, DIMENSION(:),SAVE :: run_off, run_off_lic |
---|
| 46 | real, allocatable, dimension(:),save :: coastalflow, riverflow |
---|
| 47 | !!$PB |
---|
| 48 | REAL, ALLOCATABLE, DIMENSION(:,:), SAVE :: tmp_rriv, tmp_rcoa,tmp_rlic |
---|
| 49 | !! pour simuler la fonte des glaciers antarctiques |
---|
| 50 | REAL, ALLOCATABLE, DIMENSION(:,:), SAVE :: coeff_iceberg |
---|
| 51 | real, save :: surf_maille |
---|
| 52 | real, save :: cte_flux_iceberg = 6.3e7 |
---|
| 53 | integer, save :: num_antarctic = 1 |
---|
| 54 | REAL, save :: tau_calv |
---|
| 55 | !!$ |
---|
| 56 | CONTAINS |
---|
| 57 | ! |
---|
| 58 | !############################################################################ |
---|
| 59 | ! |
---|
| 60 | SUBROUTINE interfsurf_hq(itime, dtime, date0, jour, rmu0, & |
---|
| 61 | & klon, iim, jjm, nisurf, knon, knindex, pctsrf, & |
---|
| 62 | & rlon, rlat, cufi, cvfi,& |
---|
| 63 | & debut, lafin, ok_veget, soil_model, nsoilmx, tsoil, qsol,& |
---|
| 64 | & zlev, u1_lay, v1_lay, temp_air, spechum, epot_air, ccanopy, & |
---|
| 65 | & tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 66 | & precip_rain, precip_snow, sollw, sollwdown, swnet, swdown, & |
---|
[590] | 67 | & fder, taux, tauy, & |
---|
| 68 | ! -- LOOP |
---|
| 69 | & windsp, & |
---|
| 70 | ! -- LOOP |
---|
| 71 | & rugos, rugoro, & |
---|
[524] | 72 | & albedo, snow, qsurf, & |
---|
| 73 | & tsurf, p1lay, ps, radsol, & |
---|
| 74 | & ocean, npas, nexca, zmasq, & |
---|
| 75 | & evap, fluxsens, fluxlat, dflux_l, dflux_s, & |
---|
| 76 | & tsol_rad, tsurf_new, alb_new, alblw, emis_new, & |
---|
[644] | 77 | & z0_new, pctsrf_new, agesno,fqcalving,ffonte, run_off_lic_0,& |
---|
| 78 | !IM "slab" ocean |
---|
| 79 | & flux_o, flux_g, tslab, seaice) |
---|
[524] | 80 | |
---|
| 81 | |
---|
| 82 | ! Cette routine sert d'aiguillage entre l'atmosphere et la surface en general |
---|
| 83 | ! (sols continentaux, oceans, glaces) pour les fluxs de chaleur et d'humidite. |
---|
| 84 | ! En pratique l'interface se fait entre la couche limite du modele |
---|
| 85 | ! atmospherique (clmain.F) et les routines de surface (sechiba, oasis, ...) |
---|
| 86 | ! |
---|
| 87 | ! |
---|
| 88 | ! L.Fairhead 02/2000 |
---|
| 89 | ! |
---|
| 90 | ! input: |
---|
| 91 | ! itime numero du pas de temps |
---|
| 92 | ! klon nombre total de points de grille |
---|
| 93 | ! iim, jjm nbres de pts de grille |
---|
| 94 | ! dtime pas de temps de la physique (en s) |
---|
| 95 | ! date0 jour initial |
---|
| 96 | ! jour jour dans l'annee en cours, |
---|
| 97 | ! rmu0 cosinus de l'angle solaire zenithal |
---|
| 98 | ! nexca pas de temps couplage |
---|
| 99 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
| 100 | ! knon nombre de points de la surface a traiter |
---|
| 101 | ! knindex index des points de la surface a traiter |
---|
| 102 | ! pctsrf tableau des pourcentages de surface de chaque maille |
---|
| 103 | ! rlon longitudes |
---|
| 104 | ! rlat latitudes |
---|
| 105 | ! cufi,cvfi resolution des mailles en x et y (m) |
---|
| 106 | ! debut logical: 1er appel a la physique |
---|
| 107 | ! lafin logical: dernier appel a la physique |
---|
| 108 | ! ok_veget logical: appel ou non au schema de surface continental |
---|
| 109 | ! (si false calcul simplifie des fluxs sur les continents) |
---|
| 110 | ! zlev hauteur de la premiere couche |
---|
| 111 | ! u1_lay vitesse u 1ere couche |
---|
| 112 | ! v1_lay vitesse v 1ere couche |
---|
| 113 | ! temp_air temperature de l'air 1ere couche |
---|
| 114 | ! spechum humidite specifique 1ere couche |
---|
| 115 | ! epot_air temp potentielle de l'air |
---|
| 116 | ! ccanopy concentration CO2 canopee |
---|
| 117 | ! tq_cdrag cdrag |
---|
| 118 | ! petAcoef coeff. A de la resolution de la CL pour t |
---|
| 119 | ! peqAcoef coeff. A de la resolution de la CL pour q |
---|
| 120 | ! petBcoef coeff. B de la resolution de la CL pour t |
---|
| 121 | ! peqBcoef coeff. B de la resolution de la CL pour q |
---|
| 122 | ! precip_rain precipitation liquide |
---|
| 123 | ! precip_snow precipitation solide |
---|
| 124 | ! sollw flux IR net a la surface |
---|
| 125 | ! sollwdown flux IR descendant a la surface |
---|
| 126 | ! swnet flux solaire net |
---|
| 127 | ! swdown flux solaire entrant a la surface |
---|
| 128 | ! albedo albedo de la surface |
---|
| 129 | ! tsurf temperature de surface |
---|
[644] | 130 | ! tslab temperature slab ocean |
---|
| 131 | ! pctsrf_slab pourcentages (0-1) des sous-surfaces dans le slab |
---|
| 132 | ! tmp_pctsrf_slab = pctsrf_slab |
---|
[524] | 133 | ! p1lay pression 1er niveau (milieu de couche) |
---|
| 134 | ! ps pression au sol |
---|
| 135 | ! radsol rayonnement net aus sol (LW + SW) |
---|
| 136 | ! ocean type d'ocean utilise (force, slab, couple) |
---|
| 137 | ! fder derivee des flux (pour le couplage) |
---|
| 138 | ! taux, tauy tension de vents |
---|
[590] | 139 | ! -- LOOP |
---|
| 140 | ! windsp module du vent a 10m |
---|
| 141 | ! -- LOOP |
---|
[524] | 142 | ! rugos rugosite |
---|
| 143 | ! zmasq masque terre/ocean |
---|
| 144 | ! rugoro rugosite orographique |
---|
| 145 | ! run_off_lic_0 runoff glacier du pas de temps precedent |
---|
| 146 | ! |
---|
| 147 | ! output: |
---|
| 148 | ! evap evaporation totale |
---|
| 149 | ! fluxsens flux de chaleur sensible |
---|
| 150 | ! fluxlat flux de chaleur latente |
---|
| 151 | ! tsol_rad |
---|
| 152 | ! tsurf_new temperature au sol |
---|
| 153 | ! alb_new albedo |
---|
| 154 | ! emis_new emissivite |
---|
| 155 | ! z0_new surface roughness |
---|
| 156 | ! pctsrf_new nouvelle repartition des surfaces |
---|
| 157 | |
---|
| 158 | #include "iniprint.h" |
---|
| 159 | |
---|
| 160 | |
---|
| 161 | ! Parametres d'entree |
---|
| 162 | integer, intent(IN) :: itime |
---|
| 163 | integer, intent(IN) :: iim, jjm |
---|
| 164 | integer, intent(IN) :: klon |
---|
| 165 | real, intent(IN) :: dtime |
---|
| 166 | real, intent(IN) :: date0 |
---|
| 167 | integer, intent(IN) :: jour |
---|
| 168 | real, intent(IN) :: rmu0(klon) |
---|
| 169 | integer, intent(IN) :: nisurf |
---|
| 170 | integer, intent(IN) :: knon |
---|
| 171 | integer, dimension(klon), intent(in) :: knindex |
---|
| 172 | real, dimension(klon,nbsrf), intent(IN) :: pctsrf |
---|
| 173 | logical, intent(IN) :: debut, lafin, ok_veget |
---|
| 174 | real, dimension(klon), intent(IN) :: rlon, rlat |
---|
| 175 | real, dimension(klon), intent(IN) :: cufi, cvfi |
---|
| 176 | real, dimension(klon), intent(INOUT) :: tq_cdrag |
---|
| 177 | real, dimension(klon), intent(IN) :: zlev |
---|
| 178 | real, dimension(klon), intent(IN) :: u1_lay, v1_lay |
---|
| 179 | real, dimension(klon), intent(IN) :: temp_air, spechum |
---|
| 180 | real, dimension(klon), intent(IN) :: epot_air, ccanopy |
---|
| 181 | real, dimension(klon), intent(IN) :: petAcoef, peqAcoef |
---|
| 182 | real, dimension(klon), intent(IN) :: petBcoef, peqBcoef |
---|
| 183 | real, dimension(klon), intent(IN) :: precip_rain, precip_snow |
---|
| 184 | real, dimension(klon), intent(IN) :: sollw, sollwdown, swnet, swdown |
---|
| 185 | real, dimension(klon), intent(IN) :: ps, albedo |
---|
| 186 | real, dimension(klon), intent(IN) :: tsurf, p1lay |
---|
[644] | 187 | !IM: "slab" ocean |
---|
[686] | 188 | real :: amn, amx |
---|
[644] | 189 | real, dimension(klon), intent(INOUT) :: tslab |
---|
| 190 | real, allocatable, dimension(:), save :: tmp_tslab |
---|
| 191 | real, dimension(klon), intent(OUT) :: flux_o, flux_g |
---|
| 192 | real, dimension(klon), intent(INOUT) :: seaice ! glace de mer (kg/m2) |
---|
[686] | 193 | real, dimension(klon) :: siceh ! hauteur glace de mer (m) |
---|
[524] | 194 | REAL, DIMENSION(klon), INTENT(INOUT) :: radsol,fder |
---|
| 195 | real, dimension(klon), intent(IN) :: zmasq |
---|
| 196 | real, dimension(klon), intent(IN) :: taux, tauy, rugos, rugoro |
---|
[590] | 197 | ! -- LOOP |
---|
| 198 | real, dimension(klon), intent(IN) :: windsp |
---|
| 199 | ! -- LOOP |
---|
[524] | 200 | character (len = 6) :: ocean |
---|
| 201 | integer :: npas, nexca ! nombre et pas de temps couplage |
---|
| 202 | real, dimension(klon), intent(INOUT) :: evap, snow, qsurf |
---|
| 203 | !! PB ajout pour soil |
---|
| 204 | logical :: soil_model |
---|
| 205 | integer :: nsoilmx |
---|
| 206 | REAL, DIMENSION(klon, nsoilmx) :: tsoil |
---|
| 207 | REAL, dimension(klon), intent(INOUT) :: qsol |
---|
| 208 | REAL, dimension(klon) :: soilcap |
---|
| 209 | REAL, dimension(klon) :: soilflux |
---|
| 210 | ! Parametres de sortie |
---|
| 211 | real, dimension(klon), intent(OUT):: fluxsens, fluxlat |
---|
| 212 | real, dimension(klon), intent(OUT):: tsol_rad, tsurf_new, alb_new |
---|
| 213 | real, dimension(klon), intent(OUT):: alblw |
---|
| 214 | real, dimension(klon), intent(OUT):: emis_new, z0_new |
---|
| 215 | real, dimension(klon), intent(OUT):: dflux_l, dflux_s |
---|
| 216 | real, dimension(klon,nbsrf), intent(OUT) :: pctsrf_new |
---|
| 217 | real, dimension(klon), intent(INOUT):: agesno |
---|
| 218 | real, dimension(klon), intent(INOUT):: run_off_lic_0 |
---|
| 219 | |
---|
| 220 | ! Flux thermique utiliser pour fondre la neige |
---|
| 221 | !jld a rajouter real, dimension(klon), intent(INOUT):: ffonte |
---|
| 222 | real, dimension(klon), intent(INOUT):: ffonte |
---|
| 223 | ! Flux d'eau "perdue" par la surface et nécessaire pour que limiter la |
---|
| 224 | ! hauteur de neige, en kg/m2/s |
---|
| 225 | !jld a rajouter real, dimension(klon), intent(INOUT):: fqcalving |
---|
| 226 | real, dimension(klon), intent(INOUT):: fqcalving |
---|
[644] | 227 | !IM: "slab" ocean |
---|
| 228 | real, dimension(klon) :: new_dif_grnd |
---|
| 229 | !IM: "slab" ocean - Local |
---|
| 230 | real, parameter :: t_grnd=271.35 |
---|
| 231 | real, dimension(klon) :: zx_sl |
---|
| 232 | integer i |
---|
| 233 | real, allocatable, dimension(:), save :: tmp_flux_o, tmp_flux_g |
---|
| 234 | real, allocatable, dimension(:), save :: tmp_radsol |
---|
| 235 | real, allocatable, dimension(:,:), save :: tmp_pctsrf_slab |
---|
| 236 | real, allocatable, dimension(:), save :: tmp_seaice |
---|
[524] | 237 | |
---|
| 238 | ! Local |
---|
| 239 | character (len = 20),save :: modname = 'interfsurf_hq' |
---|
| 240 | character (len = 80) :: abort_message |
---|
| 241 | logical, save :: first_call = .true. |
---|
| 242 | integer, save :: error |
---|
| 243 | integer :: ii, index |
---|
| 244 | logical,save :: check = .false. |
---|
| 245 | real, dimension(klon):: cal, beta, dif_grnd, capsol |
---|
| 246 | !!$PB real, parameter :: calice=1.0/(5.1444e+06*0.15), tau_gl=86400.*5. |
---|
| 247 | real, parameter :: calice=1.0/(5.1444e+06*0.15), tau_gl=86400.*5. |
---|
| 248 | real, parameter :: calsno=1./(2.3867e+06*.15) |
---|
| 249 | real, dimension(klon):: alb_ice |
---|
| 250 | real, dimension(klon):: tsurf_temp |
---|
| 251 | real, dimension(klon):: qsurf_new |
---|
| 252 | !! real, allocatable, dimension(:), save :: alb_neig_grid |
---|
| 253 | real, dimension(klon):: alb_neig, alb_eau |
---|
| 254 | real, DIMENSION(klon):: zfra |
---|
| 255 | logical :: cumul = .false. |
---|
| 256 | INTEGER,dimension(1) :: iloc |
---|
| 257 | INTEGER :: isize |
---|
| 258 | real, dimension(klon):: fder_prev |
---|
| 259 | REAL, dimension(klon) :: bidule |
---|
[686] | 260 | ! |
---|
| 261 | !IM ?? quelques variables pour netcdf |
---|
| 262 | #include "netcdf.inc" |
---|
[524] | 263 | |
---|
| 264 | if (check) write(*,*) 'Entree ', modname |
---|
| 265 | ! |
---|
| 266 | ! On doit commencer par appeler les schemas de surfaces continentales |
---|
| 267 | ! car l'ocean a besoin du ruissellement qui est y calcule |
---|
| 268 | ! |
---|
| 269 | if (first_call) then |
---|
| 270 | call conf_interface(tau_calv) |
---|
| 271 | if (nisurf /= is_ter .and. klon > 1) then |
---|
| 272 | write(*,*)' *** Warning ***' |
---|
| 273 | write(*,*)' nisurf = ',nisurf,' /= is_ter = ',is_ter |
---|
| 274 | write(*,*)'or on doit commencer par les surfaces continentales' |
---|
| 275 | abort_message='voir ci-dessus' |
---|
| 276 | call abort_gcm(modname,abort_message,1) |
---|
| 277 | endif |
---|
| 278 | if (ocean /= 'slab ' .and. ocean /= 'force ' .and. ocean /= 'couple') then |
---|
| 279 | write(*,*)' *** Warning ***' |
---|
| 280 | write(*,*)'Option couplage pour l''ocean = ', ocean |
---|
| 281 | abort_message='option pour l''ocean non valable' |
---|
| 282 | call abort_gcm(modname,abort_message,1) |
---|
| 283 | endif |
---|
| 284 | if ( is_oce > is_sic ) then |
---|
| 285 | write(*,*)' *** Warning ***' |
---|
| 286 | write(*,*)' Pour des raisons de sequencement dans le code' |
---|
| 287 | write(*,*)' l''ocean doit etre traite avant la banquise' |
---|
| 288 | write(*,*)' or is_oce = ',is_oce, '> is_sic = ',is_sic |
---|
| 289 | abort_message='voir ci-dessus' |
---|
| 290 | call abort_gcm(modname,abort_message,1) |
---|
| 291 | endif |
---|
| 292 | ! allocate(alb_neig_grid(klon), stat = error) |
---|
| 293 | ! if (error /= 0) then |
---|
| 294 | ! abort_message='Pb allocation alb_neig_grid' |
---|
| 295 | ! call abort_gcm(modname,abort_message,1) |
---|
| 296 | ! endif |
---|
| 297 | endif |
---|
| 298 | first_call = .false. |
---|
| 299 | |
---|
| 300 | ! Initialisations diverses |
---|
| 301 | ! |
---|
| 302 | !!$ cal=0.; beta=1.; dif_grnd=0.; capsol=0. |
---|
| 303 | !!$ alb_new = 0.; z0_new = 0.; alb_neig = 0.0 |
---|
| 304 | !!$! PB |
---|
| 305 | !!$ tsurf_new = 0. |
---|
| 306 | |
---|
| 307 | !IM cf JLD |
---|
| 308 | ffonte(1:knon)=0. |
---|
| 309 | fqcalving(1:knon)=0. |
---|
| 310 | |
---|
| 311 | cal = 999999. ; beta = 999999. ; dif_grnd = 999999. ; capsol = 999999. |
---|
| 312 | alb_new = 999999. ; z0_new = 999999. ; alb_neig = 999999. |
---|
| 313 | tsurf_new = 999999. |
---|
| 314 | alblw = 999999. |
---|
[644] | 315 | |
---|
| 316 | !IM: "slab" ocean; initialisations |
---|
| 317 | flux_o = 0. |
---|
| 318 | flux_g = 0. |
---|
| 319 | ! |
---|
| 320 | if (.not. allocated(tmp_flux_o)) then |
---|
| 321 | allocate(tmp_flux_o(klon), stat = error) |
---|
| 322 | DO i=1, knon |
---|
| 323 | tmp_flux_o(knindex(i))=flux_o(i) |
---|
| 324 | ENDDO |
---|
| 325 | if (error /= 0) then |
---|
| 326 | abort_message='Pb allocation tmp_flux_o' |
---|
| 327 | call abort_gcm(modname,abort_message,1) |
---|
| 328 | endif |
---|
| 329 | endif |
---|
| 330 | if (.not. allocated(tmp_flux_g)) then |
---|
| 331 | allocate(tmp_flux_g(klon), stat = error) |
---|
| 332 | DO i=1, knon |
---|
| 333 | tmp_flux_g(knindex(i))=flux_g(i) |
---|
| 334 | ENDDO |
---|
| 335 | if (error /= 0) then |
---|
| 336 | abort_message='Pb allocation tmp_flux_g' |
---|
| 337 | call abort_gcm(modname,abort_message,1) |
---|
| 338 | endif |
---|
| 339 | endif |
---|
| 340 | if (.not. allocated(tmp_radsol)) then |
---|
| 341 | allocate(tmp_radsol(klon), stat = error) |
---|
| 342 | if (error /= 0) then |
---|
| 343 | abort_message='Pb allocation tmp_radsol' |
---|
| 344 | call abort_gcm(modname,abort_message,1) |
---|
| 345 | endif |
---|
| 346 | endif |
---|
| 347 | if (.not. allocated(tmp_pctsrf_slab)) then |
---|
| 348 | allocate(tmp_pctsrf_slab(klon,nbsrf), stat = error) |
---|
| 349 | if (error /= 0) then |
---|
| 350 | abort_message='Pb allocation tmp_pctsrf_slab' |
---|
| 351 | call abort_gcm(modname,abort_message,1) |
---|
| 352 | endif |
---|
| 353 | DO i=1, klon |
---|
| 354 | tmp_pctsrf_slab(i,1:nbsrf)=pctsrf(i,1:nbsrf) |
---|
| 355 | ENDDO |
---|
| 356 | endif |
---|
| 357 | ! |
---|
| 358 | if (.not. allocated(tmp_seaice)) then |
---|
| 359 | allocate(tmp_seaice(klon), stat = error) |
---|
| 360 | if (error /= 0) then |
---|
| 361 | abort_message='Pb allocation tmp_seaice' |
---|
| 362 | call abort_gcm(modname,abort_message,1) |
---|
| 363 | endif |
---|
[686] | 364 | IF(check) THEN |
---|
| 365 | PRINT*,'allocation tmp_seaice nisurf itime',nisurf, itime |
---|
| 366 | ENDIF |
---|
[644] | 367 | endif |
---|
| 368 | ! |
---|
| 369 | if (.not. allocated(tmp_tslab)) then |
---|
| 370 | allocate(tmp_tslab(klon), stat = error) |
---|
| 371 | if (error /= 0) then |
---|
| 372 | abort_message='Pb allocation tmp_tslab' |
---|
| 373 | call abort_gcm(modname,abort_message,1) |
---|
| 374 | endif |
---|
| 375 | endif |
---|
| 376 | DO i=1, klon |
---|
| 377 | tmp_tslab(i)=tslab(i) |
---|
| 378 | ENDDO |
---|
| 379 | ! |
---|
[524] | 380 | ! Aiguillage vers les differents schemas de surface |
---|
| 381 | |
---|
| 382 | if (nisurf == is_ter) then |
---|
| 383 | ! |
---|
| 384 | ! Surface "terre" appel a l'interface avec les sols continentaux |
---|
| 385 | ! |
---|
| 386 | ! allocation du run-off |
---|
| 387 | if (.not. allocated(coastalflow)) then |
---|
| 388 | allocate(coastalflow(knon), stat = error) |
---|
| 389 | if (error /= 0) then |
---|
| 390 | abort_message='Pb allocation coastalflow' |
---|
| 391 | call abort_gcm(modname,abort_message,1) |
---|
| 392 | endif |
---|
| 393 | allocate(riverflow(knon), stat = error) |
---|
| 394 | if (error /= 0) then |
---|
| 395 | abort_message='Pb allocation riverflow' |
---|
| 396 | call abort_gcm(modname,abort_message,1) |
---|
| 397 | endif |
---|
| 398 | allocate(run_off(knon), stat = error) |
---|
| 399 | if (error /= 0) then |
---|
| 400 | abort_message='Pb allocation run_off' |
---|
| 401 | call abort_gcm(modname,abort_message,1) |
---|
| 402 | endif |
---|
[560] | 403 | !cym |
---|
[559] | 404 | run_off=0.0 |
---|
[560] | 405 | !cym |
---|
[559] | 406 | |
---|
[524] | 407 | !!$PB |
---|
| 408 | ALLOCATE (tmp_rriv(iim,jjm+1), stat=error) |
---|
| 409 | if (error /= 0) then |
---|
| 410 | abort_message='Pb allocation tmp_rriv' |
---|
| 411 | call abort_gcm(modname,abort_message,1) |
---|
| 412 | endif |
---|
| 413 | ALLOCATE (tmp_rcoa(iim,jjm+1), stat=error) |
---|
| 414 | if (error /= 0) then |
---|
| 415 | abort_message='Pb allocation tmp_rcoa' |
---|
| 416 | call abort_gcm(modname,abort_message,1) |
---|
| 417 | endif |
---|
| 418 | ALLOCATE (tmp_rlic(iim,jjm+1), stat=error) |
---|
| 419 | if (error /= 0) then |
---|
| 420 | abort_message='Pb allocation tmp_rlic' |
---|
| 421 | call abort_gcm(modname,abort_message,1) |
---|
| 422 | endif |
---|
[623] | 423 | tmp_rriv = 0.0 |
---|
| 424 | tmp_rcoa = 0.0 |
---|
| 425 | tmp_rlic = 0.0 |
---|
[524] | 426 | |
---|
| 427 | !!$ |
---|
| 428 | else if (size(coastalflow) /= knon) then |
---|
| 429 | write(*,*)'Bizarre, le nombre de points continentaux' |
---|
| 430 | write(*,*)'a change entre deux appels. J''arrete ...' |
---|
| 431 | abort_message='voir ci-dessus' |
---|
| 432 | call abort_gcm(modname,abort_message,1) |
---|
| 433 | endif |
---|
| 434 | coastalflow = 0. |
---|
| 435 | riverflow = 0. |
---|
| 436 | ! |
---|
| 437 | ! Calcul age de la neige |
---|
| 438 | ! |
---|
| 439 | !!$ PB ATTENTION changement ordre des appels |
---|
| 440 | !!$ CALL albsno(klon,agesno,alb_neig_grid) |
---|
| 441 | |
---|
| 442 | if (.not. ok_veget) then |
---|
| 443 | ! |
---|
| 444 | ! calcul albedo: lecture albedo fichier CL puis ajout albedo neige |
---|
| 445 | ! |
---|
| 446 | call interfsur_lim(itime, dtime, jour, & |
---|
| 447 | & klon, nisurf, knon, knindex, debut, & |
---|
| 448 | & alb_new, z0_new) |
---|
| 449 | ! |
---|
| 450 | ! calcul snow et qsurf, hydrol adapté |
---|
| 451 | ! |
---|
| 452 | CALL calbeta(dtime, nisurf, knon, snow, qsol, beta, capsol, dif_grnd) |
---|
| 453 | |
---|
| 454 | IF (soil_model) THEN |
---|
| 455 | CALL soil(dtime, nisurf, knon,snow, tsurf, tsoil,soilcap, soilflux) |
---|
| 456 | cal(1:knon) = RCPD / soilcap(1:knon) |
---|
| 457 | radsol(1:knon) = radsol(1:knon) + soilflux(1:knon) |
---|
| 458 | ELSE |
---|
| 459 | cal = RCPD * capsol |
---|
| 460 | !!$ cal = capsol |
---|
| 461 | ENDIF |
---|
| 462 | CALL calcul_fluxs( klon, knon, nisurf, dtime, & |
---|
| 463 | & tsurf, p1lay, cal, beta, tq_cdrag, ps, & |
---|
| 464 | & precip_rain, precip_snow, snow, qsurf, & |
---|
| 465 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
| 466 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 467 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
| 468 | |
---|
| 469 | CALL fonte_neige( klon, knon, nisurf, dtime, & |
---|
| 470 | & tsurf, p1lay, cal, beta, tq_cdrag, ps, & |
---|
| 471 | & precip_rain, precip_snow, snow, qsol, & |
---|
| 472 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
| 473 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 474 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & |
---|
| 475 | & fqcalving,ffonte, run_off_lic_0) |
---|
| 476 | |
---|
| 477 | |
---|
| 478 | call albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)) |
---|
| 479 | where (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. |
---|
| 480 | zfra(1:knon) = max(0.0,min(1.0,snow(1:knon)/(snow(1:knon)+10.0))) |
---|
| 481 | alb_new(1 : knon) = alb_neig(1 : knon) *zfra(1:knon) + & |
---|
| 482 | & alb_new(1 : knon)*(1.0-zfra(1:knon)) |
---|
| 483 | z0_new = sqrt(z0_new**2+rugoro**2) |
---|
| 484 | alblw(1 : knon) = alb_new(1 : knon) |
---|
| 485 | |
---|
| 486 | else |
---|
| 487 | !! CALL albsno(klon,agesno,alb_neig_grid) |
---|
| 488 | ! |
---|
| 489 | ! appel a sechiba |
---|
| 490 | ! |
---|
| 491 | #ifdef CPP_VEGET |
---|
| 492 | call interfsol(itime, klon, dtime, date0, nisurf, knon, & |
---|
| 493 | & knindex, rlon, rlat, cufi, cvfi, iim, jjm, pctsrf, & |
---|
| 494 | & debut, lafin, ok_veget, & |
---|
| 495 | & zlev, u1_lay, v1_lay, temp_air, spechum, epot_air, ccanopy, & |
---|
| 496 | & tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 497 | & precip_rain, precip_snow, sollwdown, swnet, swdown, & |
---|
| 498 | & tsurf, p1lay/100., ps/100., radsol, & |
---|
| 499 | & evap, fluxsens, fluxlat, & |
---|
| 500 | & tsol_rad, tsurf_new, alb_new, alblw, & |
---|
| 501 | & emis_new, z0_new, dflux_l, dflux_s, qsurf_new) |
---|
| 502 | |
---|
| 503 | ! |
---|
| 504 | ! ajout de la contribution du relief |
---|
| 505 | ! |
---|
| 506 | z0_new = SQRT(z0_new**2+rugoro**2) |
---|
| 507 | ! |
---|
| 508 | ! mise a jour de l'humidite saturante calculee par ORCHIDEE |
---|
| 509 | qsurf(1:knon) = qsurf_new(1:knon) |
---|
| 510 | #endif |
---|
| 511 | |
---|
| 512 | endif |
---|
| 513 | ! |
---|
| 514 | ! Remplissage des pourcentages de surface |
---|
| 515 | ! |
---|
| 516 | pctsrf_new(:,nisurf) = pctsrf(:,nisurf) |
---|
| 517 | |
---|
| 518 | else if (nisurf == is_oce) then |
---|
| 519 | |
---|
[686] | 520 | if (check) write(*,*)'ocean, nisurf = ',nisurf,'knon=',knon |
---|
[524] | 521 | ! |
---|
| 522 | ! Surface "ocean" appel a l'interface avec l'ocean |
---|
| 523 | ! |
---|
| 524 | if (ocean == 'couple') then |
---|
| 525 | if (nexca == 0) then |
---|
| 526 | abort_message='nexca = 0 dans interfoce_cpl' |
---|
| 527 | call abort_gcm(modname,abort_message,1) |
---|
| 528 | endif |
---|
| 529 | |
---|
| 530 | cumul = .false. |
---|
| 531 | |
---|
| 532 | iloc = maxloc(fder(1:klon)) |
---|
| 533 | if (check) then |
---|
| 534 | if (fder(iloc(1))> 0.) then |
---|
| 535 | WRITE(*,*)'**** Debug fder ****' |
---|
| 536 | WRITE(*,*)'max fder(',iloc(1),') = ',fder(iloc(1)) |
---|
| 537 | endif |
---|
| 538 | endif |
---|
| 539 | !!$ |
---|
| 540 | !!$ where(fder.gt.0.) |
---|
| 541 | !!$ fder = 0. |
---|
| 542 | !!$ endwhere |
---|
| 543 | |
---|
| 544 | call interfoce(itime, dtime, cumul, & |
---|
| 545 | & klon, iim, jjm, nisurf, pctsrf, knon, knindex, rlon, rlat, & |
---|
| 546 | & ocean, npas, nexca, debut, lafin, & |
---|
| 547 | & swdown, sollw, precip_rain, precip_snow, evap, tsurf, & |
---|
[590] | 548 | & fluxlat, fluxsens, fder, albedo, taux, tauy, & |
---|
| 549 | ! -- LOOP |
---|
| 550 | & windsp, & |
---|
| 551 | ! -- LOOP |
---|
| 552 | & zmasq, & |
---|
| 553 | & tsurf_new, alb_new, & |
---|
| 554 | & pctsrf_new) |
---|
[524] | 555 | |
---|
[644] | 556 | !IM: "slab" ocean |
---|
| 557 | else if (ocean == 'slab ') then |
---|
[686] | 558 | DO i=1, knon |
---|
| 559 | tsurf_new(i) = tmp_tslab(knindex(i)) |
---|
| 560 | ENDDO |
---|
[644] | 561 | pctsrf_new = tmp_pctsrf_slab |
---|
| 562 | ! |
---|
[524] | 563 | else ! lecture conditions limites |
---|
| 564 | call interfoce(itime, dtime, jour, & |
---|
| 565 | & klon, nisurf, knon, knindex, & |
---|
| 566 | & debut, & |
---|
| 567 | & tsurf_new, pctsrf_new) |
---|
| 568 | |
---|
| 569 | endif |
---|
| 570 | |
---|
| 571 | tsurf_temp = tsurf_new |
---|
| 572 | cal = 0. |
---|
| 573 | beta = 1. |
---|
| 574 | dif_grnd = 0. |
---|
| 575 | alb_neig(:) = 0. |
---|
| 576 | agesno(:) = 0. |
---|
| 577 | |
---|
| 578 | call calcul_fluxs( klon, knon, nisurf, dtime, & |
---|
| 579 | & tsurf_temp, p1lay, cal, beta, tq_cdrag, ps, & |
---|
| 580 | & precip_rain, precip_snow, snow, qsurf, & |
---|
| 581 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
| 582 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 583 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
| 584 | |
---|
| 585 | fder_prev = fder |
---|
| 586 | fder = fder_prev + dflux_s + dflux_l |
---|
| 587 | |
---|
| 588 | iloc = maxloc(fder(1:klon)) |
---|
| 589 | if (check.and.fder(iloc(1))> 0.) then |
---|
| 590 | WRITE(*,*)'**** Debug fder****' |
---|
| 591 | WRITE(*,*)'max fder(',iloc(1),') = ',fder(iloc(1)) |
---|
| 592 | WRITE(*,*)'fder_prev, dflux_s, dflux_l',fder_prev(iloc(1)), & |
---|
| 593 | & dflux_s(iloc(1)), dflux_l(iloc(1)) |
---|
| 594 | endif |
---|
| 595 | !!$ |
---|
| 596 | !!$ where(fder.gt.0.) |
---|
| 597 | !!$ fder = 0. |
---|
| 598 | !!$ endwhere |
---|
| 599 | |
---|
[644] | 600 | !IM: flux ocean-atmosphere utile pour le "slab" ocean |
---|
| 601 | DO i=1, knon |
---|
| 602 | zx_sl(i) = RLVTT |
---|
| 603 | if (tsurf_new(i) .LT. RTT) zx_sl(i) = RLSTT |
---|
[686] | 604 | !IM flux_o(i) = fluxsens(i)-evap(i)*zx_sl(i) |
---|
| 605 | flux_o(i) = fluxsens(i) + fluxlat(i) |
---|
[644] | 606 | tmp_flux_o(knindex(i)) = flux_o(i) |
---|
| 607 | tmp_radsol(knindex(i))=radsol(i) |
---|
| 608 | ENDDO |
---|
[524] | 609 | ! |
---|
| 610 | ! 2eme appel a interfoce pour le cumul des champs (en particulier |
---|
| 611 | ! fluxsens et fluxlat calcules dans calcul_fluxs) |
---|
| 612 | ! |
---|
| 613 | if (ocean == 'couple') then |
---|
| 614 | |
---|
| 615 | cumul = .true. |
---|
| 616 | |
---|
| 617 | call interfoce(itime, dtime, cumul, & |
---|
| 618 | & klon, iim, jjm, nisurf, pctsrf, knon, knindex, rlon, rlat, & |
---|
| 619 | & ocean, npas, nexca, debut, lafin, & |
---|
| 620 | & swdown, sollw, precip_rain, precip_snow, evap, tsurf, & |
---|
[590] | 621 | & fluxlat, fluxsens, fder, albedo, taux, tauy, & |
---|
| 622 | ! -- LOOP |
---|
| 623 | & windsp, & |
---|
| 624 | ! -- LOOP |
---|
| 625 | & zmasq, & |
---|
| 626 | & tsurf_new, alb_new, & |
---|
| 627 | & pctsrf_new) |
---|
[524] | 628 | |
---|
| 629 | endif |
---|
| 630 | |
---|
| 631 | ! |
---|
| 632 | ! calcul albedo |
---|
| 633 | ! |
---|
| 634 | |
---|
| 635 | if ( minval(rmu0) == maxval(rmu0) .and. minval(rmu0) == -999.999 ) then |
---|
| 636 | CALL alboc(FLOAT(jour),rlat,alb_eau) |
---|
| 637 | else ! cycle diurne |
---|
| 638 | CALL alboc_cd(rmu0,alb_eau) |
---|
| 639 | endif |
---|
| 640 | DO ii =1, knon |
---|
| 641 | alb_new(ii) = alb_eau(knindex(ii)) |
---|
| 642 | enddo |
---|
| 643 | |
---|
| 644 | z0_new = sqrt(rugos**2 + rugoro**2) |
---|
| 645 | alblw(1:knon) = alb_new(1:knon) |
---|
| 646 | |
---|
| 647 | ! |
---|
| 648 | else if (nisurf == is_sic) then |
---|
| 649 | |
---|
[686] | 650 | if (check) write(*,*)'sea ice, nisurf = ',nisurf,'knon=',knon |
---|
[524] | 651 | ! |
---|
| 652 | ! Surface "glace de mer" appel a l'interface avec l'ocean |
---|
| 653 | ! |
---|
| 654 | ! |
---|
| 655 | if (ocean == 'couple') then |
---|
| 656 | |
---|
| 657 | cumul =.false. |
---|
| 658 | |
---|
| 659 | iloc = maxloc(fder(1:klon)) |
---|
| 660 | if (check.and.fder(iloc(1))> 0.) then |
---|
| 661 | WRITE(*,*)'**** Debug fder ****' |
---|
| 662 | WRITE(*,*)'max fder(',iloc(1),') = ',fder(iloc(1)) |
---|
| 663 | endif |
---|
| 664 | !!$ |
---|
| 665 | !!$ where(fder.gt.0.) |
---|
| 666 | !!$ fder = 0. |
---|
| 667 | !!$ endwhere |
---|
| 668 | |
---|
| 669 | call interfoce(itime, dtime, cumul, & |
---|
| 670 | & klon, iim, jjm, nisurf, pctsrf, knon, knindex, rlon, rlat, & |
---|
| 671 | & ocean, npas, nexca, debut, lafin, & |
---|
| 672 | & swdown, sollw, precip_rain, precip_snow, evap, tsurf, & |
---|
[590] | 673 | & fluxlat, fluxsens, fder, albedo, taux, tauy, & |
---|
| 674 | ! -- LOOP |
---|
| 675 | & windsp, & |
---|
| 676 | ! -- LOOP |
---|
| 677 | & zmasq, & |
---|
| 678 | & tsurf_new, alb_new, & |
---|
| 679 | & pctsrf_new) |
---|
[524] | 680 | |
---|
| 681 | tsurf_temp = tsurf_new |
---|
| 682 | cal = 0. |
---|
| 683 | dif_grnd = 0. |
---|
| 684 | beta = 1.0 |
---|
| 685 | |
---|
[644] | 686 | !IM: "slab" ocean |
---|
| 687 | else if (ocean == 'slab ') then |
---|
[686] | 688 | !IM ajout sicOBSERVE BEG |
---|
| 689 | IF ( ok_slab_sicOBS) THEN |
---|
| 690 | ! ! lecture conditions limites |
---|
| 691 | CALL interfoce(itime, dtime, jour, & |
---|
| 692 | & klon, nisurf, knon, knindex, & |
---|
| 693 | & debut, & |
---|
| 694 | & tsurf_new, pctsrf_new) |
---|
| 695 | ! |
---|
| 696 | tmp_pctsrf_slab=pctsrf_new |
---|
| 697 | print*,'jour lecture pctsrf_new sic =',jour |
---|
| 698 | ! |
---|
| 699 | ELSE !ok_slab_sicOBS |
---|
[644] | 700 | pctsrf_new=tmp_pctsrf_slab |
---|
[686] | 701 | ENDIF |
---|
| 702 | !IM ajout sicOBSERVE END |
---|
[644] | 703 | ! |
---|
| 704 | DO ii = 1, knon |
---|
| 705 | tsurf_new(ii) = tsurf(ii) |
---|
| 706 | IF (pctsrf_new(knindex(ii),nisurf) < EPSFRA) then |
---|
| 707 | snow(ii) = 0.0 |
---|
| 708 | tsurf_new(ii) = RTT - 1.8 |
---|
| 709 | IF (soil_model) tsoil(ii,:) = RTT -1.8 |
---|
| 710 | ENDIF |
---|
| 711 | ENDDO |
---|
| 712 | |
---|
| 713 | CALL calbeta(dtime, nisurf, knon, snow, qsol, beta, capsol, dif_grnd) |
---|
| 714 | |
---|
| 715 | IF (soil_model) THEN |
---|
| 716 | CALL soil(dtime, nisurf, knon,snow, tsurf_new, tsoil,soilcap, soilflux) |
---|
| 717 | cal(1:knon) = RCPD / soilcap(1:knon) |
---|
| 718 | radsol(1:knon) = radsol(1:knon) + soilflux(1:knon) |
---|
| 719 | ELSE |
---|
| 720 | dif_grnd = 1.0 / tau_gl |
---|
| 721 | cal = RCPD * calice |
---|
| 722 | WHERE (snow > 0.0) cal = RCPD * calsno |
---|
| 723 | ENDIF |
---|
| 724 | tsurf_temp = tsurf_new |
---|
| 725 | beta = 1.0 |
---|
| 726 | ! |
---|
[524] | 727 | ELSE |
---|
| 728 | ! ! lecture conditions limites |
---|
| 729 | CALL interfoce(itime, dtime, jour, & |
---|
| 730 | & klon, nisurf, knon, knindex, & |
---|
| 731 | & debut, & |
---|
| 732 | & tsurf_new, pctsrf_new) |
---|
| 733 | |
---|
| 734 | !IM cf LF |
---|
| 735 | DO ii = 1, knon |
---|
[644] | 736 | tsurf_new(ii) = tsurf(ii) |
---|
| 737 | IF (pctsrf_new(knindex(ii),nisurf) < EPSFRA) then |
---|
[524] | 738 | snow(ii) = 0.0 |
---|
| 739 | !IM cf LF/JLD tsurf(ii) = RTT - 1.8 |
---|
| 740 | tsurf_new(ii) = RTT - 1.8 |
---|
| 741 | IF (soil_model) tsoil(ii,:) = RTT -1.8 |
---|
| 742 | endif |
---|
| 743 | enddo |
---|
| 744 | |
---|
| 745 | CALL calbeta(dtime, nisurf, knon, snow, qsol, beta, capsol, dif_grnd) |
---|
| 746 | |
---|
| 747 | IF (soil_model) THEN |
---|
| 748 | !IM cf LF/JLD CALL soil(dtime, nisurf, knon,snow, tsurf, tsoil,soilcap, soilflux) |
---|
| 749 | CALL soil(dtime, nisurf, knon,snow, tsurf_new, tsoil,soilcap, soilflux) |
---|
| 750 | cal(1:knon) = RCPD / soilcap(1:knon) |
---|
| 751 | radsol(1:knon) = radsol(1:knon) + soilflux(1:knon) |
---|
[686] | 752 | dif_grnd = 1.0 / tau_gl |
---|
[524] | 753 | ELSE |
---|
| 754 | dif_grnd = 1.0 / tau_gl |
---|
| 755 | cal = RCPD * calice |
---|
| 756 | WHERE (snow > 0.0) cal = RCPD * calsno |
---|
| 757 | ENDIF |
---|
[644] | 758 | !IMbadtsurf_temp = tsurf |
---|
| 759 | tsurf_temp = tsurf_new |
---|
[524] | 760 | beta = 1.0 |
---|
[686] | 761 | ENDIF !ocean == |
---|
[524] | 762 | |
---|
| 763 | CALL calcul_fluxs( klon, knon, nisurf, dtime, & |
---|
| 764 | & tsurf_temp, p1lay, cal, beta, tq_cdrag, ps, & |
---|
| 765 | & precip_rain, precip_snow, snow, qsurf, & |
---|
| 766 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
| 767 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 768 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
[644] | 769 | ! |
---|
[524] | 770 | IF (ocean /= 'couple') THEN |
---|
| 771 | CALL fonte_neige( klon, knon, nisurf, dtime, & |
---|
| 772 | & tsurf_temp, p1lay, cal, beta, tq_cdrag, ps, & |
---|
| 773 | & precip_rain, precip_snow, snow, qsol, & |
---|
| 774 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
| 775 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 776 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & |
---|
| 777 | & fqcalving,ffonte, run_off_lic_0) |
---|
| 778 | |
---|
| 779 | ! calcul albedo |
---|
| 780 | |
---|
| 781 | CALL albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)) |
---|
| 782 | WHERE (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. |
---|
| 783 | zfra(1:knon) = MAX(0.0,MIN(1.0,snow(1:knon)/(snow(1:knon)+10.0))) |
---|
| 784 | alb_new(1 : knon) = alb_neig(1 : knon) *zfra(1:knon) + & |
---|
| 785 | & 0.6 * (1.0-zfra(1:knon)) |
---|
| 786 | !! alb_new(1 : knon) = 0.6 |
---|
| 787 | ENDIF |
---|
[686] | 788 | ! |
---|
| 789 | !IM: flux entre l'ocean et la glace de mer pour le "slab" ocean |
---|
| 790 | ! |
---|
| 791 | DO i = 1, knon |
---|
| 792 | ! |
---|
| 793 | !IM: faire dependre le coefficient de conduction de la glace de mer |
---|
| 794 | ! de l'epaisseur de la glace de mer, dans l'hypothese ou le coeff. |
---|
| 795 | ! actuel correspond a 3m de glace de mer, cf. L.Li |
---|
| 796 | ! |
---|
| 797 | IF(1.EQ.0) THEN |
---|
| 798 | IF(siceh(i).GT.0.) THEN |
---|
| 799 | new_dif_grnd(i) = dif_grnd(i)*3./siceh(i) |
---|
| 800 | ELSE |
---|
| 801 | new_dif_grnd(i) = 0. |
---|
| 802 | ENDIF |
---|
| 803 | ENDIF !(1.EQ.0) THEN |
---|
| 804 | ! |
---|
| 805 | IF (cal(i).GT.1.0e-15) THEN |
---|
| 806 | flux_g(i)=(tsurf_new(i)-t_grnd) & |
---|
| 807 | & * dif_grnd(i) *RCPD/cal(i) |
---|
| 808 | ! & * new_dif_grnd(i) *RCPD/cal(i) |
---|
| 809 | ENDIF |
---|
| 810 | tmp_flux_g(knindex(i))=flux_g(i) |
---|
| 811 | ! |
---|
| 812 | !IM: Attention: ne pas initialiser le tmp_radsol puisque c'est deja fait sur is_oce; |
---|
| 813 | !IM: tmp_radsol doit etre le flux solaire qui arrive sur l'ocean |
---|
| 814 | !IM: et non pas celui qui arrive sur la glace de mer |
---|
| 815 | ! |
---|
| 816 | ENDDO |
---|
[524] | 817 | |
---|
| 818 | fder_prev = fder |
---|
| 819 | fder = fder_prev + dflux_s + dflux_l |
---|
| 820 | |
---|
| 821 | iloc = maxloc(fder(1:klon)) |
---|
| 822 | if (check.and.fder(iloc(1))> 0.) then |
---|
| 823 | WRITE(*,*)'**** Debug fder ****' |
---|
| 824 | WRITE(*,*)'max fder(',iloc(1),') = ',fder(iloc(1)) |
---|
| 825 | WRITE(*,*)'fder_prev, dflux_s, dflux_l',fder_prev(iloc(1)), & |
---|
| 826 | & dflux_s(iloc(1)), dflux_l(iloc(1)) |
---|
| 827 | endif |
---|
| 828 | !!$ where(fder.gt.0.) |
---|
| 829 | !!$ fder = 0. |
---|
| 830 | !!$ endwhere |
---|
| 831 | |
---|
| 832 | ! |
---|
| 833 | ! 2eme appel a interfoce pour le cumul et le passage des flux a l'ocean |
---|
| 834 | ! |
---|
| 835 | if (ocean == 'couple') then |
---|
| 836 | |
---|
| 837 | cumul =.true. |
---|
| 838 | |
---|
| 839 | call interfoce(itime, dtime, cumul, & |
---|
| 840 | & klon, iim, jjm, nisurf, pctsrf, knon, knindex, rlon, rlat, & |
---|
| 841 | & ocean, npas, nexca, debut, lafin, & |
---|
| 842 | & swdown, sollw, precip_rain, precip_snow, evap, tsurf, & |
---|
[590] | 843 | & fluxlat, fluxsens, fder, albedo, taux, tauy, & |
---|
| 844 | ! -- LOOP |
---|
| 845 | & windsp, & |
---|
| 846 | ! -- LOOP |
---|
| 847 | & zmasq, & |
---|
| 848 | & tsurf_new, alb_new, & |
---|
| 849 | & pctsrf_new) |
---|
[524] | 850 | |
---|
[686] | 851 | !IM: "slab" ocean |
---|
| 852 | else if (ocean == 'slab ') then |
---|
| 853 | ! |
---|
| 854 | IF (check) THEN |
---|
| 855 | amn=MIN(tmp_tslab(1),1000.) |
---|
| 856 | amx=MAX(tmp_tslab(1),-1000.) |
---|
| 857 | DO i=2, klon |
---|
| 858 | amn=MIN(tmp_tslab(i),amn) |
---|
| 859 | amx=MAX(tmp_tslab(i),amx) |
---|
| 860 | ENDDO |
---|
| 861 | ! |
---|
| 862 | PRINT*,' debut avant interfoce_slab min max tmp_tslab',amn,amx |
---|
| 863 | ENDIF !(check) THEN |
---|
| 864 | ! |
---|
| 865 | cumul = .true. |
---|
| 866 | tslab = tmp_tslab |
---|
| 867 | call interfoce(klon, debut, itime, dtime, jour, & |
---|
| 868 | & tmp_radsol, tmp_flux_o, tmp_flux_g, tmp_pctsrf_slab, & |
---|
| 869 | & tslab, seaice, pctsrf_new) |
---|
| 870 | ! |
---|
| 871 | tmp_seaice=seaice |
---|
| 872 | tmp_pctsrf_slab=pctsrf_new |
---|
| 873 | DO i=1, knon |
---|
| 874 | tmp_tslab(knindex(i))=tslab(knindex(i)) |
---|
| 875 | ENDDO !i |
---|
| 876 | ! |
---|
[524] | 877 | |
---|
| 878 | endif |
---|
| 879 | |
---|
| 880 | |
---|
| 881 | z0_new = 0.002 |
---|
| 882 | z0_new = SQRT(z0_new**2+rugoro**2) |
---|
| 883 | alblw(1:knon) = alb_new(1:knon) |
---|
| 884 | |
---|
[686] | 885 | |
---|
[524] | 886 | else if (nisurf == is_lic) then |
---|
| 887 | |
---|
| 888 | if (check) write(*,*)'glacier, nisurf = ',nisurf |
---|
| 889 | |
---|
| 890 | if (.not. allocated(run_off_lic)) then |
---|
| 891 | allocate(run_off_lic(knon), stat = error) |
---|
| 892 | if (error /= 0) then |
---|
| 893 | abort_message='Pb allocation run_off_lic' |
---|
| 894 | call abort_gcm(modname,abort_message,1) |
---|
| 895 | endif |
---|
| 896 | run_off_lic = 0. |
---|
| 897 | endif |
---|
| 898 | ! |
---|
| 899 | ! Surface "glacier continentaux" appel a l'interface avec le sol |
---|
| 900 | ! |
---|
| 901 | ! call interfsol(nisurf) |
---|
| 902 | IF (soil_model) THEN |
---|
| 903 | CALL soil(dtime, nisurf, knon, snow, tsurf, tsoil,soilcap, soilflux) |
---|
| 904 | cal(1:knon) = RCPD / soilcap(1:knon) |
---|
| 905 | radsol(1:knon) = radsol(1:knon) + soilflux(1:knon) |
---|
| 906 | ELSE |
---|
| 907 | cal = RCPD * calice |
---|
| 908 | WHERE (snow > 0.0) cal = RCPD * calsno |
---|
| 909 | ENDIF |
---|
| 910 | beta = 1.0 |
---|
| 911 | dif_grnd = 0.0 |
---|
| 912 | |
---|
| 913 | call calcul_fluxs( klon, knon, nisurf, dtime, & |
---|
| 914 | & tsurf, p1lay, cal, beta, tq_cdrag, ps, & |
---|
| 915 | & precip_rain, precip_snow, snow, qsurf, & |
---|
| 916 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
| 917 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 918 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
| 919 | |
---|
| 920 | call fonte_neige( klon, knon, nisurf, dtime, & |
---|
| 921 | & tsurf, p1lay, cal, beta, tq_cdrag, ps, & |
---|
| 922 | & precip_rain, precip_snow, snow, qsol, & |
---|
| 923 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
| 924 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 925 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & |
---|
| 926 | & fqcalving,ffonte, run_off_lic_0) |
---|
| 927 | |
---|
| 928 | ! passage du run-off des glaciers calcule dans fonte_neige au coupleur |
---|
| 929 | bidule=0. |
---|
| 930 | bidule(1:knon)= run_off_lic(1:knon) |
---|
| 931 | call gath2cpl(bidule, tmp_rlic, klon, knon,iim,jjm,knindex) |
---|
| 932 | ! |
---|
| 933 | ! calcul albedo |
---|
| 934 | ! |
---|
| 935 | CALL albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)) |
---|
| 936 | WHERE (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. |
---|
| 937 | zfra(1:knon) = MAX(0.0,MIN(1.0,snow(1:knon)/(snow(1:knon)+10.0))) |
---|
| 938 | alb_new(1 : knon) = alb_neig(1 : knon)*zfra(1:knon) + & |
---|
| 939 | & 0.6 * (1.0-zfra(1:knon)) |
---|
[644] | 940 | ! |
---|
| 941 | !IM: plusieurs choix/tests sur l'albedo des "glaciers continentaux" |
---|
| 942 | ! alb_new(1 : knon) = 0.6 !IM cf FH/GK |
---|
[524] | 943 | ! alb_new(1 : knon) = 0.82 |
---|
[644] | 944 | ! alb_new(1 : knon) = 0.77 !211003 Ksta0.77 |
---|
| 945 | ! alb_new(1 : knon) = 0.8 !KstaTER0.8 & LMD_ARMIP5 |
---|
[524] | 946 | !IM: KstaTER0.77 & LMD_ARMIP6 |
---|
| 947 | alb_new(1 : knon) = 0.77 |
---|
| 948 | |
---|
| 949 | ! |
---|
| 950 | ! Rugosite |
---|
| 951 | ! |
---|
| 952 | z0_new = rugoro |
---|
| 953 | ! |
---|
| 954 | ! Remplissage des pourcentages de surface |
---|
| 955 | ! |
---|
| 956 | pctsrf_new(:,nisurf) = pctsrf(:,nisurf) |
---|
| 957 | |
---|
| 958 | alblw(1:knon) = alb_new(1:knon) |
---|
| 959 | else |
---|
| 960 | write(*,*)'Index surface = ',nisurf |
---|
| 961 | abort_message = 'Index surface non valable' |
---|
| 962 | call abort_gcm(modname,abort_message,1) |
---|
| 963 | endif |
---|
| 964 | |
---|
| 965 | END SUBROUTINE interfsurf_hq |
---|
| 966 | |
---|
| 967 | ! |
---|
| 968 | !######################################################################### |
---|
| 969 | ! |
---|
| 970 | SUBROUTINE interfsurf_vent(nisurf, knon & |
---|
| 971 | & ) |
---|
| 972 | ! |
---|
| 973 | ! Cette routine sert d'aiguillage entre l'atmosphere et la surface en general |
---|
| 974 | ! (sols continentaux, oceans, glaces) pour les tensions de vents. |
---|
| 975 | ! En pratique l'interface se fait entre la couche limite du modele |
---|
| 976 | ! atmospherique (clmain.F) et les routines de surface (sechiba, oasis, ...) |
---|
| 977 | ! |
---|
| 978 | ! |
---|
| 979 | ! L.Fairhead 02/2000 |
---|
| 980 | ! |
---|
| 981 | ! input: |
---|
| 982 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
| 983 | ! knon nombre de points de la surface a traiter |
---|
| 984 | |
---|
| 985 | ! Parametres d'entree |
---|
| 986 | integer, intent(IN) :: nisurf |
---|
| 987 | integer, intent(IN) :: knon |
---|
| 988 | |
---|
| 989 | |
---|
| 990 | return |
---|
| 991 | END SUBROUTINE interfsurf_vent |
---|
| 992 | ! |
---|
| 993 | !######################################################################### |
---|
| 994 | ! |
---|
| 995 | #ifdef CPP_VEGET |
---|
| 996 | SUBROUTINE interfsol(itime, klon, dtime, date0, nisurf, knon, & |
---|
| 997 | & knindex, rlon, rlat, cufi, cvfi, iim, jjm, pctsrf, & |
---|
| 998 | & debut, lafin, ok_veget, & |
---|
| 999 | & plev, u1_lay, v1_lay, temp_air, spechum, epot_air, ccanopy, & |
---|
| 1000 | & tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 1001 | & precip_rain, precip_snow, lwdown, swnet, swdown, & |
---|
| 1002 | & tsurf, p1lay, ps, radsol, & |
---|
| 1003 | & evap, fluxsens, fluxlat, & |
---|
| 1004 | & tsol_rad, tsurf_new, alb_new, alblw, & |
---|
| 1005 | & emis_new, z0_new, dflux_l, dflux_s, qsurf) |
---|
| 1006 | |
---|
| 1007 | USE intersurf |
---|
| 1008 | |
---|
| 1009 | ! Cette routine sert d'interface entre le modele atmospherique et le |
---|
| 1010 | ! modele de sol continental. Appel a sechiba |
---|
| 1011 | ! |
---|
| 1012 | ! L. Fairhead 02/2000 |
---|
| 1013 | ! |
---|
| 1014 | ! input: |
---|
| 1015 | ! itime numero du pas de temps |
---|
| 1016 | ! klon nombre total de points de grille |
---|
| 1017 | ! dtime pas de temps de la physique (en s) |
---|
| 1018 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
| 1019 | ! knon nombre de points de la surface a traiter |
---|
| 1020 | ! knindex index des points de la surface a traiter |
---|
| 1021 | ! rlon longitudes de la grille entiere |
---|
| 1022 | ! rlat latitudes de la grille entiere |
---|
| 1023 | ! pctsrf tableau des fractions de surface de chaque maille |
---|
| 1024 | ! debut logical: 1er appel a la physique (lire les restart) |
---|
| 1025 | ! lafin logical: dernier appel a la physique (ecrire les restart) |
---|
| 1026 | ! ok_veget logical: appel ou non au schema de surface continental |
---|
| 1027 | ! (si false calcul simplifie des fluxs sur les continents) |
---|
| 1028 | ! plev hauteur de la premiere couche (Pa) |
---|
| 1029 | ! u1_lay vitesse u 1ere couche |
---|
| 1030 | ! v1_lay vitesse v 1ere couche |
---|
| 1031 | ! temp_air temperature de l'air 1ere couche |
---|
| 1032 | ! spechum humidite specifique 1ere couche |
---|
| 1033 | ! epot_air temp pot de l'air |
---|
| 1034 | ! ccanopy concentration CO2 canopee |
---|
| 1035 | ! tq_cdrag cdrag |
---|
| 1036 | ! petAcoef coeff. A de la resolution de la CL pour t |
---|
| 1037 | ! peqAcoef coeff. A de la resolution de la CL pour q |
---|
| 1038 | ! petBcoef coeff. B de la resolution de la CL pour t |
---|
| 1039 | ! peqBcoef coeff. B de la resolution de la CL pour q |
---|
| 1040 | ! precip_rain precipitation liquide |
---|
| 1041 | ! precip_snow precipitation solide |
---|
| 1042 | ! lwdown flux IR descendant a la surface |
---|
| 1043 | ! swnet flux solaire net |
---|
| 1044 | ! swdown flux solaire entrant a la surface |
---|
| 1045 | ! tsurf temperature de surface |
---|
| 1046 | ! p1lay pression 1er niveau (milieu de couche) |
---|
| 1047 | ! ps pression au sol |
---|
| 1048 | ! radsol rayonnement net aus sol (LW + SW) |
---|
| 1049 | ! |
---|
| 1050 | ! |
---|
| 1051 | ! input/output |
---|
| 1052 | ! run_off ruissellement total |
---|
| 1053 | ! |
---|
| 1054 | ! output: |
---|
| 1055 | ! evap evaporation totale |
---|
| 1056 | ! fluxsens flux de chaleur sensible |
---|
| 1057 | ! fluxlat flux de chaleur latente |
---|
| 1058 | ! tsol_rad |
---|
| 1059 | ! tsurf_new temperature au sol |
---|
| 1060 | ! alb_new albedo |
---|
| 1061 | ! emis_new emissivite |
---|
| 1062 | ! z0_new surface roughness |
---|
| 1063 | ! qsurf air moisture at surface |
---|
| 1064 | |
---|
| 1065 | ! Parametres d'entree |
---|
| 1066 | integer, intent(IN) :: itime |
---|
| 1067 | integer, intent(IN) :: klon |
---|
| 1068 | real, intent(IN) :: dtime |
---|
| 1069 | real, intent(IN) :: date0 |
---|
| 1070 | integer, intent(IN) :: nisurf |
---|
| 1071 | integer, intent(IN) :: knon |
---|
| 1072 | integer, intent(IN) :: iim, jjm |
---|
| 1073 | integer, dimension(klon), intent(IN) :: knindex |
---|
| 1074 | logical, intent(IN) :: debut, lafin, ok_veget |
---|
| 1075 | real, dimension(klon,nbsrf), intent(IN) :: pctsrf |
---|
| 1076 | real, dimension(klon), intent(IN) :: rlon, rlat |
---|
| 1077 | real, dimension(klon), intent(IN) :: cufi, cvfi |
---|
| 1078 | real, dimension(klon), intent(IN) :: plev |
---|
| 1079 | real, dimension(klon), intent(IN) :: u1_lay, v1_lay |
---|
| 1080 | real, dimension(klon), intent(IN) :: temp_air, spechum |
---|
| 1081 | real, dimension(klon), intent(IN) :: epot_air, ccanopy |
---|
| 1082 | real, dimension(klon), intent(INOUT) :: tq_cdrag |
---|
| 1083 | real, dimension(klon), intent(IN) :: petAcoef, peqAcoef |
---|
| 1084 | real, dimension(klon), intent(IN) :: petBcoef, peqBcoef |
---|
| 1085 | real, dimension(klon), intent(IN) :: precip_rain, precip_snow |
---|
| 1086 | real, dimension(klon), intent(IN) :: lwdown, swnet, swdown, ps |
---|
| 1087 | !IM cf. JP +++ |
---|
| 1088 | real, dimension(klon) :: swdown_vrai |
---|
| 1089 | !IM cf. JP --- |
---|
| 1090 | real, dimension(klon), intent(IN) :: tsurf, p1lay |
---|
| 1091 | real, dimension(klon), intent(IN) :: radsol |
---|
| 1092 | ! Parametres de sortie |
---|
| 1093 | real, dimension(klon), intent(OUT):: evap, fluxsens, fluxlat, qsurf |
---|
| 1094 | real, dimension(klon), intent(OUT):: tsol_rad, tsurf_new, alb_new, alblw |
---|
| 1095 | real, dimension(klon), intent(OUT):: emis_new, z0_new |
---|
| 1096 | real, dimension(klon), intent(OUT):: dflux_s, dflux_l |
---|
| 1097 | |
---|
| 1098 | ! Local |
---|
| 1099 | ! |
---|
| 1100 | integer :: ii, ij, jj, igrid, ireal, i, index, iglob |
---|
| 1101 | integer :: error |
---|
| 1102 | character (len = 20) :: modname = 'interfsol' |
---|
| 1103 | character (len = 80) :: abort_message |
---|
| 1104 | logical,save :: check = .FALSE. |
---|
| 1105 | real, dimension(klon) :: cal, beta, dif_grnd, capsol |
---|
| 1106 | ! type de couplage dans sechiba |
---|
| 1107 | ! character (len=10) :: coupling = 'implicit' |
---|
| 1108 | ! drapeaux controlant les appels dans SECHIBA |
---|
| 1109 | ! type(control_type), save :: control_in |
---|
| 1110 | ! Preserved albedo |
---|
| 1111 | !IM cf. JP +++ |
---|
| 1112 | real, allocatable, dimension(:), save :: albedo_keep, zlev |
---|
| 1113 | !IM cf. JP --- |
---|
| 1114 | ! coordonnees geographiques |
---|
| 1115 | real, allocatable, dimension(:,:), save :: lalo |
---|
| 1116 | ! pts voisins |
---|
| 1117 | integer,allocatable, dimension(:,:), save :: neighbours |
---|
| 1118 | ! fractions continents |
---|
| 1119 | real,allocatable, dimension(:), save :: contfrac |
---|
| 1120 | ! resolution de la grille |
---|
| 1121 | real, allocatable, dimension (:,:), save :: resolution |
---|
| 1122 | ! correspondance point n -> indices (i,j) |
---|
| 1123 | integer, allocatable, dimension(:,:), save :: correspond |
---|
| 1124 | ! offset pour calculer les point voisins |
---|
| 1125 | integer, dimension(8,3), save :: off_ini |
---|
| 1126 | integer, dimension(8), save :: offset |
---|
| 1127 | ! Identifieurs des fichiers restart et histoire |
---|
| 1128 | integer, save :: rest_id, hist_id |
---|
| 1129 | integer, save :: rest_id_stom, hist_id_stom |
---|
| 1130 | ! |
---|
| 1131 | real, allocatable, dimension (:,:), save :: lon_scat, lat_scat |
---|
| 1132 | |
---|
| 1133 | logical, save :: lrestart_read = .true. , lrestart_write = .false. |
---|
| 1134 | |
---|
| 1135 | real, dimension(klon):: snow |
---|
| 1136 | real, dimension(knon,2) :: albedo_out |
---|
| 1137 | ! Pb de nomenclature |
---|
| 1138 | real, dimension(klon) :: petA_orc, peqA_orc |
---|
| 1139 | real, dimension(klon) :: petB_orc, peqB_orc |
---|
| 1140 | ! Pb de correspondances de grilles |
---|
| 1141 | integer, dimension(:), save, allocatable :: ig, jg |
---|
| 1142 | integer :: indi, indj |
---|
| 1143 | integer, dimension(klon) :: ktindex |
---|
| 1144 | REAL, dimension(klon) :: bidule |
---|
| 1145 | ! Essai cdrag |
---|
| 1146 | real, dimension(klon) :: cdrag |
---|
| 1147 | |
---|
| 1148 | #include "temps.inc" |
---|
| 1149 | #include "YOMCST.inc" |
---|
| 1150 | #include "iniprint.h" |
---|
| 1151 | |
---|
| 1152 | if (check) write(lunout,*)'Entree ', modname |
---|
| 1153 | if (check) write(lunout,*)'ok_veget = ',ok_veget |
---|
| 1154 | |
---|
| 1155 | ktindex(:) = knindex(:) + iim - 1 |
---|
| 1156 | |
---|
| 1157 | ! initialisation |
---|
| 1158 | if (debut) then |
---|
| 1159 | |
---|
| 1160 | IF ( .NOT. allocated(albedo_keep)) THEN |
---|
| 1161 | ALLOCATE(albedo_keep(klon)) |
---|
| 1162 | ALLOCATE(zlev(klon)) |
---|
| 1163 | ENDIF |
---|
| 1164 | ! Pb de correspondances de grilles |
---|
| 1165 | allocate(ig(klon)) |
---|
| 1166 | allocate(jg(klon)) |
---|
| 1167 | ig(1) = 1 |
---|
| 1168 | jg(1) = 1 |
---|
| 1169 | indi = 0 |
---|
| 1170 | indj = 2 |
---|
| 1171 | do igrid = 2, klon - 1 |
---|
| 1172 | indi = indi + 1 |
---|
| 1173 | if ( indi > iim) then |
---|
| 1174 | indi = 1 |
---|
| 1175 | indj = indj + 1 |
---|
| 1176 | endif |
---|
| 1177 | ig(igrid) = indi |
---|
| 1178 | jg(igrid) = indj |
---|
| 1179 | enddo |
---|
| 1180 | ig(klon) = 1 |
---|
| 1181 | jg(klon) = jjm + 1 |
---|
| 1182 | ! |
---|
| 1183 | ! Initialisation des offset |
---|
| 1184 | ! |
---|
| 1185 | ! offset bord ouest |
---|
| 1186 | off_ini(1,1) = - iim ; off_ini(2,1) = - iim + 1; off_ini(3,1) = 1 |
---|
| 1187 | off_ini(4,1) = iim + 1; off_ini(5,1) = iim ; off_ini(6,1) = 2 * iim - 1 |
---|
| 1188 | off_ini(7,1) = iim -1 ; off_ini(8,1) = - 1 |
---|
| 1189 | ! offset point normal |
---|
| 1190 | off_ini(1,2) = - iim ; off_ini(2,2) = - iim + 1; off_ini(3,2) = 1 |
---|
| 1191 | off_ini(4,2) = iim + 1; off_ini(5,2) = iim ; off_ini(6,2) = iim - 1 |
---|
| 1192 | off_ini(7,2) = -1 ; off_ini(8,2) = - iim - 1 |
---|
| 1193 | ! offset bord est |
---|
| 1194 | off_ini(1,3) = - iim; off_ini(2,3) = - 2 * iim + 1; off_ini(3,3) = - iim + 1 |
---|
| 1195 | off_ini(4,3) = 1 ; off_ini(5,3) = iim ; off_ini(6,3) = iim - 1 |
---|
| 1196 | off_ini(7,3) = -1 ; off_ini(8,3) = - iim - 1 |
---|
| 1197 | ! |
---|
| 1198 | ! Initialisation des correspondances point -> indices i,j |
---|
| 1199 | ! |
---|
| 1200 | if (( .not. allocated(correspond))) then |
---|
| 1201 | allocate(correspond(iim,jjm+1), stat = error) |
---|
| 1202 | if (error /= 0) then |
---|
| 1203 | abort_message='Pb allocation correspond' |
---|
| 1204 | call abort_gcm(modname,abort_message,1) |
---|
| 1205 | endif |
---|
| 1206 | endif |
---|
| 1207 | ! |
---|
| 1208 | ! Attention aux poles |
---|
| 1209 | ! |
---|
| 1210 | do igrid = 1, knon |
---|
| 1211 | index = ktindex(igrid) |
---|
| 1212 | jj = int((index - 1)/iim) + 1 |
---|
| 1213 | ij = index - (jj - 1) * iim |
---|
| 1214 | correspond(ij,jj) = igrid |
---|
| 1215 | enddo |
---|
| 1216 | |
---|
| 1217 | ! Allouer et initialiser le tableau de coordonnees du sol |
---|
| 1218 | ! |
---|
| 1219 | if ((.not. allocated(lalo))) then |
---|
| 1220 | allocate(lalo(knon,2), stat = error) |
---|
| 1221 | if (error /= 0) then |
---|
| 1222 | abort_message='Pb allocation lalo' |
---|
| 1223 | call abort_gcm(modname,abort_message,1) |
---|
| 1224 | endif |
---|
| 1225 | endif |
---|
| 1226 | if ((.not. allocated(lon_scat))) then |
---|
| 1227 | allocate(lon_scat(iim,jjm+1), stat = error) |
---|
| 1228 | if (error /= 0) then |
---|
| 1229 | abort_message='Pb allocation lon_scat' |
---|
| 1230 | call abort_gcm(modname,abort_message,1) |
---|
| 1231 | endif |
---|
| 1232 | endif |
---|
| 1233 | if ((.not. allocated(lat_scat))) then |
---|
| 1234 | allocate(lat_scat(iim,jjm+1), stat = error) |
---|
| 1235 | if (error /= 0) then |
---|
| 1236 | abort_message='Pb allocation lat_scat' |
---|
| 1237 | call abort_gcm(modname,abort_message,1) |
---|
| 1238 | endif |
---|
| 1239 | endif |
---|
| 1240 | lon_scat = 0. |
---|
| 1241 | lat_scat = 0. |
---|
| 1242 | do igrid = 1, knon |
---|
| 1243 | index = knindex(igrid) |
---|
| 1244 | lalo(igrid,2) = rlon(index) |
---|
| 1245 | lalo(igrid,1) = rlat(index) |
---|
| 1246 | ij = index - int((index-1)/iim)*iim - 1 |
---|
| 1247 | jj = 2 + int((index-1)/iim) |
---|
| 1248 | if (mod(index,iim) == 1 ) then |
---|
| 1249 | jj = 1 + int((index-1)/iim) |
---|
| 1250 | ij = iim |
---|
| 1251 | endif |
---|
| 1252 | ! lon_scat(ij,jj) = rlon(index) |
---|
| 1253 | ! lat_scat(ij,jj) = rlat(index) |
---|
| 1254 | enddo |
---|
| 1255 | index = 1 |
---|
| 1256 | do jj = 2, jjm |
---|
| 1257 | do ij = 1, iim |
---|
| 1258 | index = index + 1 |
---|
| 1259 | lon_scat(ij,jj) = rlon(index) |
---|
| 1260 | lat_scat(ij,jj) = rlat(index) |
---|
| 1261 | enddo |
---|
| 1262 | enddo |
---|
| 1263 | lon_scat(:,1) = lon_scat(:,2) |
---|
| 1264 | lat_scat(:,1) = rlat(1) |
---|
| 1265 | lon_scat(:,jjm+1) = lon_scat(:,2) |
---|
| 1266 | lat_scat(:,jjm+1) = rlat(klon) |
---|
| 1267 | ! Pb de correspondances de grilles! |
---|
| 1268 | ! do igrid = 1, knon |
---|
| 1269 | ! index = ktindex(igrid) |
---|
| 1270 | ! ij = ig(index) |
---|
| 1271 | ! jj = jg(index) |
---|
| 1272 | ! lon_scat(ij,jj) = rlon(index) |
---|
| 1273 | ! lat_scat(ij,jj) = rlat(index) |
---|
| 1274 | ! enddo |
---|
| 1275 | |
---|
| 1276 | ! |
---|
| 1277 | ! Allouer et initialiser le tableau des voisins et des fraction de continents |
---|
| 1278 | ! |
---|
| 1279 | if ( (.not.allocated(neighbours))) THEN |
---|
| 1280 | allocate(neighbours(knon,8), stat = error) |
---|
| 1281 | if (error /= 0) then |
---|
| 1282 | abort_message='Pb allocation neighbours' |
---|
| 1283 | call abort_gcm(modname,abort_message,1) |
---|
| 1284 | endif |
---|
| 1285 | endif |
---|
| 1286 | neighbours = -1. |
---|
| 1287 | if (( .not. allocated(contfrac))) then |
---|
| 1288 | allocate(contfrac(knon), stat = error) |
---|
| 1289 | if (error /= 0) then |
---|
| 1290 | abort_message='Pb allocation contfrac' |
---|
| 1291 | call abort_gcm(modname,abort_message,1) |
---|
| 1292 | endif |
---|
| 1293 | endif |
---|
| 1294 | |
---|
| 1295 | do igrid = 1, knon |
---|
| 1296 | ireal = knindex(igrid) |
---|
| 1297 | contfrac(igrid) = pctsrf(ireal,is_ter) |
---|
| 1298 | enddo |
---|
| 1299 | |
---|
| 1300 | do igrid = 1, knon |
---|
| 1301 | iglob = ktindex(igrid) |
---|
| 1302 | if (mod(iglob, iim) == 1) then |
---|
| 1303 | offset = off_ini(:,1) |
---|
| 1304 | else if(mod(iglob, iim) == 0) then |
---|
| 1305 | offset = off_ini(:,3) |
---|
| 1306 | else |
---|
| 1307 | offset = off_ini(:,2) |
---|
| 1308 | endif |
---|
| 1309 | do i = 1, 8 |
---|
| 1310 | index = iglob + offset(i) |
---|
| 1311 | ireal = (min(max(1, index - iim + 1), klon)) |
---|
| 1312 | if (pctsrf(ireal, is_ter) > EPSFRA) then |
---|
| 1313 | jj = int((index - 1)/iim) + 1 |
---|
| 1314 | ij = index - (jj - 1) * iim |
---|
| 1315 | neighbours(igrid, i) = correspond(ij, jj) |
---|
| 1316 | endif |
---|
| 1317 | enddo |
---|
| 1318 | enddo |
---|
| 1319 | |
---|
| 1320 | ! |
---|
| 1321 | ! Allocation et calcul resolutions |
---|
| 1322 | IF ( (.NOT.ALLOCATED(resolution))) THEN |
---|
| 1323 | ALLOCATE(resolution(knon,2), stat = error) |
---|
| 1324 | if (error /= 0) then |
---|
| 1325 | abort_message='Pb allocation resolution' |
---|
| 1326 | call abort_gcm(modname,abort_message,1) |
---|
| 1327 | endif |
---|
| 1328 | ENDIF |
---|
| 1329 | do igrid = 1, knon |
---|
| 1330 | ij = knindex(igrid) |
---|
| 1331 | resolution(igrid,1) = cufi(ij) |
---|
| 1332 | resolution(igrid,2) = cvfi(ij) |
---|
| 1333 | enddo |
---|
[644] | 1334 | !IM tester la resolution que recoit Orchidee |
---|
| 1335 | IF((maxval(resolution(:,2)) == 0.).OR. & |
---|
| 1336 | & (maxval(resolution(:,1)) == 0.)) THEN |
---|
| 1337 | abort_message='STOP interfsol : resolution recue par Orchidee = 0.' |
---|
| 1338 | call abort_gcm(modname,abort_message,1) |
---|
| 1339 | ENDIF |
---|
[524] | 1340 | |
---|
| 1341 | endif ! (fin debut) |
---|
| 1342 | |
---|
| 1343 | ! |
---|
| 1344 | ! Appel a la routine sols continentaux |
---|
| 1345 | ! |
---|
| 1346 | if (lafin) lrestart_write = .true. |
---|
| 1347 | if (check) write(lunout,*)'lafin ',lafin,lrestart_write |
---|
| 1348 | |
---|
| 1349 | petA_orc = petBcoef * dtime |
---|
| 1350 | petB_orc = petAcoef |
---|
| 1351 | peqA_orc = peqBcoef * dtime |
---|
| 1352 | peqB_orc = peqAcoef |
---|
| 1353 | |
---|
| 1354 | cdrag = 0. |
---|
| 1355 | cdrag(1:knon) = tq_cdrag(1:knon) |
---|
| 1356 | |
---|
| 1357 | !IM cf. JP +++ |
---|
| 1358 | ! zlev(1:knon) = (100.*plev(1:knon))/((ps(1:knon)/287.05*temp_air(1:knon))*9.80665) |
---|
| 1359 | zlev(1:knon) = (100.*plev(1:knon))/((ps(1:knon)/RD*temp_air(1:knon))*RG) |
---|
| 1360 | !IM cf. JP --- |
---|
| 1361 | |
---|
| 1362 | |
---|
| 1363 | ! PF et PASB |
---|
| 1364 | ! where(cdrag > 0.01) |
---|
| 1365 | ! cdrag = 0.01 |
---|
| 1366 | ! endwhere |
---|
| 1367 | ! write(*,*)'Cdrag = ',minval(cdrag),maxval(cdrag) |
---|
| 1368 | |
---|
| 1369 | ! |
---|
| 1370 | ! Init Orchidee |
---|
| 1371 | ! |
---|
| 1372 | if (debut) then |
---|
| 1373 | call intersurf_main (itime+itau_phy-1, iim, jjm+1, knon, ktindex, dtime, & |
---|
| 1374 | & lrestart_read, lrestart_write, lalo, & |
---|
| 1375 | & contfrac, neighbours, resolution, date0, & |
---|
| 1376 | & zlev, u1_lay, v1_lay, spechum, temp_air, epot_air, ccanopy, & |
---|
| 1377 | & cdrag, petA_orc, peqA_orc, petB_orc, peqB_orc, & |
---|
| 1378 | & precip_rain, precip_snow, lwdown, swnet, swdown, ps, & |
---|
| 1379 | & evap, fluxsens, fluxlat, coastalflow, riverflow, & |
---|
| 1380 | & tsol_rad, tsurf_new, qsurf, albedo_out, emis_new, z0_new, & |
---|
| 1381 | & lon_scat, lat_scat) |
---|
| 1382 | |
---|
| 1383 | !IM cf. JP +++ |
---|
| 1384 | albedo_keep(1:knon) = (albedo_out(1:knon,1)+albedo_out(1:knon,2))/2. |
---|
| 1385 | !IM cf. JP --- |
---|
| 1386 | |
---|
| 1387 | endif |
---|
| 1388 | |
---|
| 1389 | !IM cf. JP +++ |
---|
[644] | 1390 | !IM swdown_vrai(1:knon) = swnet(1:knon)/(1. - albedo_keep(1:knon)) |
---|
| 1391 | !IM modification faite dans clmain |
---|
| 1392 | swdown_vrai(1:knon) = swdown(1:knon) |
---|
[524] | 1393 | !IM cf. JP --- |
---|
| 1394 | |
---|
| 1395 | call intersurf_main (itime+itau_phy, iim, jjm+1, knon, ktindex, dtime, & |
---|
| 1396 | & lrestart_read, lrestart_write, lalo, & |
---|
| 1397 | & contfrac, neighbours, resolution, date0, & |
---|
| 1398 | & zlev, u1_lay, v1_lay, spechum, temp_air, epot_air, ccanopy, & |
---|
| 1399 | & cdrag, petA_orc, peqA_orc, petB_orc, peqB_orc, & |
---|
| 1400 | & precip_rain, precip_snow, lwdown, swnet, swdown_vrai, ps, & |
---|
| 1401 | & evap, fluxsens, fluxlat, coastalflow, riverflow, & |
---|
| 1402 | & tsol_rad, tsurf_new, qsurf, albedo_out, emis_new, z0_new, & |
---|
| 1403 | & lon_scat, lat_scat) |
---|
| 1404 | |
---|
| 1405 | !IM cf. JP +++ |
---|
| 1406 | albedo_keep(1:knon) = (albedo_out(1:knon,1)+albedo_out(1:knon,2))/2. |
---|
| 1407 | !IM cf. JP --- |
---|
| 1408 | |
---|
| 1409 | bidule=0. |
---|
| 1410 | bidule(1:knon)=riverflow(1:knon) |
---|
| 1411 | call gath2cpl(bidule, tmp_rriv, klon, knon,iim,jjm,knindex) |
---|
| 1412 | bidule=0. |
---|
| 1413 | bidule(1:knon)=coastalflow(1:knon) |
---|
| 1414 | call gath2cpl(bidule, tmp_rcoa, klon, knon,iim,jjm,knindex) |
---|
| 1415 | alb_new(1:knon) = albedo_out(1:knon,1) |
---|
| 1416 | alblw(1:knon) = albedo_out(1:knon,2) |
---|
| 1417 | |
---|
| 1418 | |
---|
| 1419 | ! Convention orchidee: positif vers le haut |
---|
| 1420 | fluxsens(1:knon) = -1. * fluxsens(1:knon) |
---|
| 1421 | fluxlat(1:knon) = -1. * fluxlat(1:knon) |
---|
| 1422 | |
---|
| 1423 | ! evap = -1. * evap |
---|
| 1424 | |
---|
| 1425 | if (debut) lrestart_read = .false. |
---|
| 1426 | |
---|
| 1427 | END SUBROUTINE interfsol |
---|
| 1428 | #endif |
---|
| 1429 | ! |
---|
| 1430 | !######################################################################### |
---|
| 1431 | ! |
---|
| 1432 | SUBROUTINE interfoce_cpl(itime, dtime, cumul, & |
---|
| 1433 | & klon, iim, jjm, nisurf, pctsrf, knon, knindex, rlon, rlat, & |
---|
| 1434 | & ocean, npas, nexca, debut, lafin, & |
---|
| 1435 | & swdown, lwdown, precip_rain, precip_snow, evap, tsurf, & |
---|
[590] | 1436 | & fluxlat, fluxsens, fder, albsol, taux, tauy, & |
---|
| 1437 | ! -- LOOP |
---|
| 1438 | & windsp, & |
---|
| 1439 | ! -- LOOP |
---|
| 1440 | & zmasq, & |
---|
| 1441 | & tsurf_new, alb_new, & |
---|
| 1442 | & pctsrf_new) |
---|
[524] | 1443 | |
---|
| 1444 | ! Cette routine sert d'interface entre le modele atmospherique et un |
---|
| 1445 | ! coupleur avec un modele d'ocean 'complet' derriere |
---|
| 1446 | ! |
---|
| 1447 | ! Le modele de glace qu'il est prevu d'utiliser etant couple directement a |
---|
| 1448 | ! l'ocean presentement, on va passer deux fois dans cette routine par pas de |
---|
| 1449 | ! temps physique, une fois avec les points oceans et l'autre avec les points |
---|
| 1450 | ! glace. A chaque pas de temps de couplage, la lecture des champs provenant |
---|
| 1451 | ! du coupleur se fera "dans" l'ocean et l'ecriture des champs a envoyer |
---|
| 1452 | ! au coupleur "dans" la glace. Il faut donc des tableaux de travail "tampons" |
---|
| 1453 | ! dimensionnes sur toute la grille qui remplissent les champs sur les |
---|
| 1454 | ! domaines ocean/glace quand il le faut. Il est aussi necessaire que l'index |
---|
| 1455 | ! ocean soit traiter avant l'index glace (sinon tout intervertir) |
---|
| 1456 | ! |
---|
| 1457 | ! |
---|
| 1458 | ! L. Fairhead 02/2000 |
---|
| 1459 | ! |
---|
| 1460 | ! input: |
---|
| 1461 | ! itime numero du pas de temps |
---|
| 1462 | ! iim, jjm nbres de pts de grille |
---|
| 1463 | ! dtime pas de temps de la physique |
---|
| 1464 | ! klon nombre total de points de grille |
---|
| 1465 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
| 1466 | ! pctsrf tableau des fractions de surface de chaque maille |
---|
| 1467 | ! knon nombre de points de la surface a traiter |
---|
| 1468 | ! knindex index des points de la surface a traiter |
---|
| 1469 | ! rlon longitudes |
---|
| 1470 | ! rlat latitudes |
---|
| 1471 | ! debut logical: 1er appel a la physique |
---|
| 1472 | ! lafin logical: dernier appel a la physique |
---|
| 1473 | ! ocean type d'ocean |
---|
| 1474 | ! nexca frequence de couplage |
---|
| 1475 | ! swdown flux solaire entrant a la surface |
---|
| 1476 | ! lwdown flux IR net a la surface |
---|
| 1477 | ! precip_rain precipitation liquide |
---|
| 1478 | ! precip_snow precipitation solide |
---|
| 1479 | ! evap evaporation |
---|
| 1480 | ! tsurf temperature de surface |
---|
| 1481 | ! fder derivee dF/dT |
---|
| 1482 | ! albsol albedo du sol (coherent avec swdown) |
---|
| 1483 | ! taux tension de vent en x |
---|
| 1484 | ! tauy tension de vent en y |
---|
[590] | 1485 | ! -- LOOP |
---|
| 1486 | ! windsp module du vent a 10m |
---|
| 1487 | ! -- LOOP |
---|
[524] | 1488 | ! nexca frequence de couplage |
---|
| 1489 | ! zmasq masque terre/ocean |
---|
| 1490 | ! |
---|
| 1491 | ! |
---|
| 1492 | ! output: |
---|
| 1493 | ! tsurf_new temperature au sol |
---|
| 1494 | ! alb_new albedo |
---|
| 1495 | ! pctsrf_new nouvelle repartition des surfaces |
---|
| 1496 | ! alb_ice albedo de la glace |
---|
| 1497 | ! |
---|
[623] | 1498 | #ifdef CPP_PSMILE |
---|
| 1499 | USE oasis |
---|
| 1500 | integer :: il_time_secs !time in seconds |
---|
| 1501 | #endif |
---|
[524] | 1502 | |
---|
| 1503 | ! Parametres d'entree |
---|
| 1504 | integer, intent(IN) :: itime |
---|
| 1505 | integer, intent(IN) :: iim, jjm |
---|
| 1506 | real, intent(IN) :: dtime |
---|
| 1507 | integer, intent(IN) :: klon |
---|
| 1508 | integer, intent(IN) :: nisurf |
---|
| 1509 | integer, intent(IN) :: knon |
---|
| 1510 | real, dimension(klon,nbsrf), intent(IN) :: pctsrf |
---|
| 1511 | integer, dimension(klon), intent(in) :: knindex |
---|
| 1512 | logical, intent(IN) :: debut, lafin |
---|
| 1513 | real, dimension(klon), intent(IN) :: rlon, rlat |
---|
| 1514 | character (len = 6) :: ocean |
---|
| 1515 | real, dimension(klon), intent(IN) :: lwdown, swdown |
---|
| 1516 | real, dimension(klon), intent(IN) :: precip_rain, precip_snow |
---|
| 1517 | real, dimension(klon), intent(IN) :: tsurf, fder, albsol, taux, tauy |
---|
[590] | 1518 | ! -- LOOP |
---|
| 1519 | real, dimension(klon), intent(IN) :: windsp |
---|
| 1520 | ! -- LOOP |
---|
[524] | 1521 | INTEGER :: nexca, npas, kstep |
---|
| 1522 | real, dimension(klon), intent(IN) :: zmasq |
---|
| 1523 | real, dimension(klon), intent(IN) :: fluxlat, fluxsens |
---|
| 1524 | logical, intent(IN) :: cumul |
---|
| 1525 | real, dimension(klon), intent(INOUT) :: evap |
---|
| 1526 | |
---|
| 1527 | ! Parametres de sortie |
---|
| 1528 | real, dimension(klon), intent(OUT):: tsurf_new, alb_new |
---|
| 1529 | real, dimension(klon,nbsrf), intent(OUT) :: pctsrf_new |
---|
| 1530 | |
---|
| 1531 | ! Variables locales |
---|
| 1532 | integer :: j, error, sum_error, ig, cpl_index,i |
---|
[590] | 1533 | ! -- LOOP |
---|
| 1534 | INTEGER :: nsrf |
---|
| 1535 | ! -- LOOP |
---|
[524] | 1536 | character (len = 20) :: modname = 'interfoce_cpl' |
---|
| 1537 | character (len = 80) :: abort_message |
---|
| 1538 | logical,save :: check = .FALSE. |
---|
| 1539 | ! variables pour moyenner les variables de couplage |
---|
| 1540 | real, allocatable, dimension(:,:),save :: cpl_sols, cpl_nsol, cpl_rain |
---|
| 1541 | real, allocatable, dimension(:,:),save :: cpl_snow, cpl_evap, cpl_tsol |
---|
| 1542 | real, allocatable, dimension(:,:),save :: cpl_fder, cpl_albe, cpl_taux |
---|
[590] | 1543 | ! -- LOOP |
---|
| 1544 | real, allocatable, dimension(:,:),save :: cpl_windsp |
---|
| 1545 | ! -- LOOP |
---|
[524] | 1546 | real, allocatable, dimension(:,:),save :: cpl_tauy |
---|
| 1547 | REAL, ALLOCATABLE, DIMENSION(:,:),SAVE :: cpl_rriv, cpl_rcoa, cpl_rlic |
---|
| 1548 | !!$ |
---|
| 1549 | ! variables tampons avant le passage au coupleur |
---|
| 1550 | real, allocatable, dimension(:,:,:),save :: tmp_sols, tmp_nsol, tmp_rain |
---|
| 1551 | real, allocatable, dimension(:,:,:),save :: tmp_snow, tmp_evap, tmp_tsol |
---|
| 1552 | real, allocatable, dimension(:,:,:),save :: tmp_fder, tmp_albe, tmp_taux |
---|
[590] | 1553 | ! -- LOOP |
---|
| 1554 | real, allocatable, dimension(:,:,:),save :: tmp_windsp |
---|
| 1555 | ! -- LOOP |
---|
[524] | 1556 | !!$ real, allocatable, dimension(:,:,:),save :: tmp_tauy, tmp_rriv, tmp_rcoa |
---|
| 1557 | REAL, ALLOCATABLE, DIMENSION(:,:,:),SAVE :: tmp_tauy |
---|
| 1558 | ! variables a passer au coupleur |
---|
| 1559 | real, dimension(iim, jjm+1) :: wri_sol_ice, wri_sol_sea, wri_nsol_ice |
---|
| 1560 | real, dimension(iim, jjm+1) :: wri_nsol_sea, wri_fder_ice, wri_evap_ice |
---|
| 1561 | REAL, DIMENSION(iim, jjm+1) :: wri_evap_sea, wri_rcoa, wri_rriv |
---|
| 1562 | REAL, DIMENSION(iim, jjm+1) :: wri_rain, wri_snow, wri_taux, wri_tauy |
---|
[590] | 1563 | ! -- LOOP |
---|
| 1564 | REAL, DIMENSION(iim, jjm+1) :: wri_windsp |
---|
| 1565 | ! -- LOOP |
---|
[524] | 1566 | REAL, DIMENSION(iim, jjm+1) :: wri_calv |
---|
| 1567 | REAL, DIMENSION(iim, jjm+1) :: wri_tauxx, wri_tauyy, wri_tauzz |
---|
| 1568 | REAL, DIMENSION(iim, jjm+1) :: tmp_lon, tmp_lat |
---|
| 1569 | ! variables relues par le coupleur |
---|
| 1570 | ! read_sic = fraction de glace |
---|
| 1571 | ! read_sit = temperature de glace |
---|
| 1572 | real, allocatable, dimension(:,:),save :: read_sst, read_sic, read_sit |
---|
| 1573 | real, allocatable, dimension(:,:),save :: read_alb_sic |
---|
| 1574 | ! variable tampon |
---|
| 1575 | real, dimension(klon) :: tamp_sic |
---|
| 1576 | ! sauvegarde des fractions de surface d'un pas de temps a l'autre apres |
---|
| 1577 | ! l'avoir lu |
---|
| 1578 | real, allocatable,dimension(:,:),save :: pctsrf_sav |
---|
| 1579 | real, dimension(iim, jjm+1, 2) :: tamp_srf |
---|
| 1580 | integer, allocatable, dimension(:), save :: tamp_ind |
---|
| 1581 | real, allocatable, dimension(:,:),save :: tamp_zmasq |
---|
| 1582 | real, dimension(iim, jjm+1) :: deno |
---|
| 1583 | integer :: idtime |
---|
| 1584 | integer, allocatable,dimension(:),save :: unity |
---|
| 1585 | ! |
---|
| 1586 | logical, save :: first_appel = .true. |
---|
| 1587 | logical,save :: print |
---|
| 1588 | !maf |
---|
| 1589 | ! variables pour avoir une sortie IOIPSL des champs echanges |
---|
| 1590 | CHARACTER*80,SAVE :: clintocplnam, clfromcplnam |
---|
| 1591 | INTEGER, SAVE :: jf,nhoridct,nidct |
---|
| 1592 | INTEGER, SAVE :: nhoridcs,nidcs |
---|
| 1593 | INTEGER :: ndexct(iim*(jjm+1)),ndexcs(iim*(jjm+1)) |
---|
| 1594 | REAL :: zx_lon(iim,jjm+1), zx_lat(iim,jjm+1), zjulian |
---|
[557] | 1595 | INTEGER,save :: idayref |
---|
| 1596 | !med integer :: itau_w |
---|
| 1597 | integer,save :: itau_w |
---|
[590] | 1598 | ! -- LOOP |
---|
| 1599 | integer :: nb_interf_cpl |
---|
| 1600 | ! -- LOOP |
---|
[524] | 1601 | #include "param_cou.h" |
---|
| 1602 | #include "inc_cpl.h" |
---|
| 1603 | #include "temps.inc" |
---|
[594] | 1604 | #include "iniprint.h" |
---|
[524] | 1605 | ! |
---|
| 1606 | ! Initialisation |
---|
| 1607 | ! |
---|
| 1608 | if (check) write(*,*)'Entree ',modname,'nisurf = ',nisurf |
---|
| 1609 | |
---|
| 1610 | if (first_appel) then |
---|
| 1611 | error = 0 |
---|
| 1612 | allocate(unity(klon), stat = error) |
---|
| 1613 | if ( error /=0) then |
---|
| 1614 | abort_message='Pb allocation variable unity' |
---|
| 1615 | call abort_gcm(modname,abort_message,1) |
---|
| 1616 | endif |
---|
| 1617 | allocate(pctsrf_sav(klon,nbsrf), stat = error) |
---|
| 1618 | if ( error /=0) then |
---|
| 1619 | abort_message='Pb allocation variable pctsrf_sav' |
---|
| 1620 | call abort_gcm(modname,abort_message,1) |
---|
| 1621 | endif |
---|
| 1622 | pctsrf_sav = 0. |
---|
| 1623 | |
---|
| 1624 | do ig = 1, klon |
---|
| 1625 | unity(ig) = ig |
---|
| 1626 | enddo |
---|
| 1627 | sum_error = 0 |
---|
| 1628 | allocate(cpl_sols(klon,2), stat = error); sum_error = sum_error + error |
---|
| 1629 | allocate(cpl_nsol(klon,2), stat = error); sum_error = sum_error + error |
---|
| 1630 | allocate(cpl_rain(klon,2), stat = error); sum_error = sum_error + error |
---|
| 1631 | allocate(cpl_snow(klon,2), stat = error); sum_error = sum_error + error |
---|
| 1632 | allocate(cpl_evap(klon,2), stat = error); sum_error = sum_error + error |
---|
| 1633 | allocate(cpl_tsol(klon,2), stat = error); sum_error = sum_error + error |
---|
| 1634 | allocate(cpl_fder(klon,2), stat = error); sum_error = sum_error + error |
---|
| 1635 | allocate(cpl_albe(klon,2), stat = error); sum_error = sum_error + error |
---|
| 1636 | allocate(cpl_taux(klon,2), stat = error); sum_error = sum_error + error |
---|
[590] | 1637 | ! -- LOOP |
---|
| 1638 | allocate(cpl_windsp(klon,2), stat = error); sum_error = sum_error + error |
---|
| 1639 | ! -- LOOP |
---|
[524] | 1640 | allocate(cpl_tauy(klon,2), stat = error); sum_error = sum_error + error |
---|
| 1641 | ALLOCATE(cpl_rriv(iim,jjm+1), stat=error); sum_error = sum_error + error |
---|
| 1642 | ALLOCATE(cpl_rcoa(iim,jjm+1), stat=error); sum_error = sum_error + error |
---|
| 1643 | ALLOCATE(cpl_rlic(iim,jjm+1), stat=error); sum_error = sum_error + error |
---|
| 1644 | !! |
---|
| 1645 | allocate(read_sst(iim, jjm+1), stat = error); sum_error = sum_error + error |
---|
| 1646 | allocate(read_sic(iim, jjm+1), stat = error); sum_error = sum_error + error |
---|
| 1647 | allocate(read_sit(iim, jjm+1), stat = error); sum_error = sum_error + error |
---|
| 1648 | allocate(read_alb_sic(iim, jjm+1), stat = error); sum_error = sum_error + error |
---|
| 1649 | |
---|
| 1650 | if (sum_error /= 0) then |
---|
| 1651 | abort_message='Pb allocation variables couplees' |
---|
| 1652 | call abort_gcm(modname,abort_message,1) |
---|
| 1653 | endif |
---|
| 1654 | cpl_sols = 0.; cpl_nsol = 0.; cpl_rain = 0.; cpl_snow = 0. |
---|
| 1655 | cpl_evap = 0.; cpl_tsol = 0.; cpl_fder = 0.; cpl_albe = 0. |
---|
| 1656 | cpl_taux = 0.; cpl_tauy = 0.; cpl_rriv = 0.; cpl_rcoa = 0.; cpl_rlic = 0. |
---|
[590] | 1657 | ! -- LOOP |
---|
| 1658 | cpl_windsp = 0. |
---|
| 1659 | ! -- LOOP |
---|
[524] | 1660 | |
---|
| 1661 | sum_error = 0 |
---|
| 1662 | allocate(tamp_ind(klon), stat = error); sum_error = sum_error + error |
---|
| 1663 | allocate(tamp_zmasq(iim, jjm+1), stat = error); sum_error = sum_error + error |
---|
| 1664 | do ig = 1, klon |
---|
| 1665 | tamp_ind(ig) = ig |
---|
| 1666 | enddo |
---|
| 1667 | call gath2cpl(zmasq, tamp_zmasq, klon, klon, iim, jjm, tamp_ind) |
---|
| 1668 | ! |
---|
| 1669 | ! initialisation couplage |
---|
| 1670 | ! |
---|
| 1671 | idtime = int(dtime) |
---|
[557] | 1672 | #ifdef CPP_COUPLE |
---|
| 1673 | #ifdef CPP_PSMILE |
---|
[623] | 1674 | CALL inicma(iim, (jjm+1)) |
---|
[557] | 1675 | #else |
---|
| 1676 | call inicma(npas , nexca, idtime,(jjm+1)*iim) |
---|
| 1677 | #endif |
---|
| 1678 | #endif |
---|
[524] | 1679 | ! |
---|
| 1680 | ! initialisation sorties netcdf |
---|
| 1681 | ! |
---|
| 1682 | idayref = day_ini |
---|
| 1683 | CALL ymds2ju(annee_ref, 1, idayref, 0.0, zjulian) |
---|
| 1684 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlon,zx_lon) |
---|
| 1685 | DO i = 1, iim |
---|
| 1686 | zx_lon(i,1) = rlon(i+1) |
---|
| 1687 | zx_lon(i,jjm+1) = rlon(i+1) |
---|
| 1688 | ENDDO |
---|
| 1689 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlat,zx_lat) |
---|
| 1690 | clintocplnam="cpl_atm_tauflx" |
---|
| 1691 | CALL histbeg(clintocplnam, iim,zx_lon(:,1),jjm+1,zx_lat(1,:),1,iim,1,jjm+1, & |
---|
| 1692 | & itau_phy,zjulian,dtime,nhoridct,nidct) |
---|
| 1693 | ! no vertical axis |
---|
| 1694 | CALL histdef(nidct, 'tauxe','tauxe', & |
---|
| 1695 | & "-",iim, jjm+1, nhoridct, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
| 1696 | CALL histdef(nidct, 'tauyn','tauyn', & |
---|
| 1697 | & "-",iim, jjm+1, nhoridct, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
| 1698 | CALL histdef(nidct, 'tmp_lon','tmp_lon', & |
---|
| 1699 | & "-",iim, jjm+1, nhoridct, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
| 1700 | CALL histdef(nidct, 'tmp_lat','tmp_lat', & |
---|
| 1701 | & "-",iim, jjm+1, nhoridct, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
| 1702 | DO jf=1,jpflda2o1 + jpflda2o2 |
---|
| 1703 | CALL histdef(nidct, cl_writ(jf),cl_writ(jf), & |
---|
| 1704 | & "-",iim, jjm+1, nhoridct, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
| 1705 | END DO |
---|
| 1706 | CALL histend(nidct) |
---|
| 1707 | CALL histsync(nidct) |
---|
| 1708 | |
---|
| 1709 | clfromcplnam="cpl_atm_sst" |
---|
| 1710 | CALL histbeg(clfromcplnam, iim,zx_lon(:,1),jjm+1,zx_lat(1,:),1,iim,1,jjm+1, & |
---|
| 1711 | & 0,zjulian,dtime,nhoridcs,nidcs) |
---|
| 1712 | ! no vertical axis |
---|
| 1713 | DO jf=1,jpfldo2a |
---|
| 1714 | CALL histdef(nidcs, cl_read(jf),cl_read(jf), & |
---|
| 1715 | & "-",iim, jjm+1, nhoridcs, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
| 1716 | END DO |
---|
| 1717 | CALL histend(nidcs) |
---|
| 1718 | CALL histsync(nidcs) |
---|
| 1719 | |
---|
| 1720 | ! pour simuler la fonte des glaciers antarctiques |
---|
| 1721 | ! |
---|
| 1722 | surf_maille = (4. * rpi * ra**2) / (iim * (jjm +1)) |
---|
| 1723 | ALLOCATE(coeff_iceberg(iim,jjm+1), stat=error) |
---|
| 1724 | if (error /= 0) then |
---|
| 1725 | abort_message='Pb allocation variable coeff_iceberg' |
---|
| 1726 | call abort_gcm(modname,abort_message,1) |
---|
| 1727 | endif |
---|
| 1728 | open (12,file='flux_iceberg',form='formatted',status='old') |
---|
| 1729 | read (12,*) coeff_iceberg |
---|
| 1730 | close (12) |
---|
| 1731 | num_antarctic = max(1, count(coeff_iceberg > 0)) |
---|
| 1732 | |
---|
| 1733 | first_appel = .false. |
---|
| 1734 | endif ! fin if (first_appel) |
---|
| 1735 | |
---|
| 1736 | ! Initialisations |
---|
| 1737 | |
---|
| 1738 | ! calcul des fluxs a passer |
---|
[590] | 1739 | ! -- LOOP |
---|
| 1740 | nb_interf_cpl = nb_interf_cpl + 1 |
---|
| 1741 | if (check) write(lunout,*)'passage dans interface_surf.F90 : ',nb_interf_cpl |
---|
| 1742 | ! -- LOOP |
---|
[524] | 1743 | cpl_index = 1 |
---|
| 1744 | if (nisurf == is_sic) cpl_index = 2 |
---|
| 1745 | if (cumul) then |
---|
[590] | 1746 | ! -- LOOP |
---|
| 1747 | if (check) write(lunout,*)'passage dans cumul ' |
---|
| 1748 | if (check) write(lunout,*)'valeur de cpl_index ', cpl_index |
---|
| 1749 | ! -- LOOP |
---|
[524] | 1750 | if (check) write(*,*) modname, 'cumul des champs' |
---|
| 1751 | do ig = 1, knon |
---|
| 1752 | cpl_sols(ig,cpl_index) = cpl_sols(ig,cpl_index) & |
---|
| 1753 | & + swdown(ig) / FLOAT(nexca) |
---|
| 1754 | cpl_nsol(ig,cpl_index) = cpl_nsol(ig,cpl_index) & |
---|
| 1755 | & + (lwdown(ig) + fluxlat(ig) +fluxsens(ig))& |
---|
| 1756 | & / FLOAT(nexca) |
---|
| 1757 | cpl_rain(ig,cpl_index) = cpl_rain(ig,cpl_index) & |
---|
| 1758 | & + precip_rain(ig) / FLOAT(nexca) |
---|
| 1759 | cpl_snow(ig,cpl_index) = cpl_snow(ig,cpl_index) & |
---|
| 1760 | & + precip_snow(ig) / FLOAT(nexca) |
---|
| 1761 | cpl_evap(ig,cpl_index) = cpl_evap(ig,cpl_index) & |
---|
| 1762 | & + evap(ig) / FLOAT(nexca) |
---|
| 1763 | cpl_tsol(ig,cpl_index) = cpl_tsol(ig,cpl_index) & |
---|
| 1764 | & + tsurf(ig) / FLOAT(nexca) |
---|
| 1765 | cpl_fder(ig,cpl_index) = cpl_fder(ig,cpl_index) & |
---|
| 1766 | & + fder(ig) / FLOAT(nexca) |
---|
| 1767 | cpl_albe(ig,cpl_index) = cpl_albe(ig,cpl_index) & |
---|
| 1768 | & + albsol(ig) / FLOAT(nexca) |
---|
| 1769 | cpl_taux(ig,cpl_index) = cpl_taux(ig,cpl_index) & |
---|
| 1770 | & + taux(ig) / FLOAT(nexca) |
---|
| 1771 | cpl_tauy(ig,cpl_index) = cpl_tauy(ig,cpl_index) & |
---|
| 1772 | & + tauy(ig) / FLOAT(nexca) |
---|
[590] | 1773 | ! -- LOOP |
---|
| 1774 | IF (cpl_index .EQ. 1) THEN |
---|
| 1775 | cpl_windsp(ig,cpl_index) = cpl_windsp(ig,cpl_index) & |
---|
| 1776 | & + windsp(ig) / FLOAT(nexca) |
---|
| 1777 | ENDIF |
---|
| 1778 | ! -- LOOP |
---|
[524] | 1779 | enddo |
---|
| 1780 | IF (cpl_index .EQ. 1) THEN |
---|
| 1781 | cpl_rriv(:,:) = cpl_rriv(:,:) + tmp_rriv(:,:) / FLOAT(nexca) |
---|
| 1782 | cpl_rcoa(:,:) = cpl_rcoa(:,:) + tmp_rcoa(:,:) / FLOAT(nexca) |
---|
| 1783 | cpl_rlic(:,:) = cpl_rlic(:,:) + tmp_rlic(:,:) / FLOAT(nexca) |
---|
| 1784 | ENDIF |
---|
| 1785 | endif |
---|
| 1786 | |
---|
| 1787 | if (mod(itime, nexca) == 1) then |
---|
| 1788 | ! |
---|
| 1789 | ! Demande des champs au coupleur |
---|
| 1790 | ! |
---|
| 1791 | ! Si le domaine considere est l'ocean, on lit les champs venant du coupleur |
---|
| 1792 | ! |
---|
| 1793 | if (nisurf == is_oce .and. .not. cumul) then |
---|
| 1794 | if (check) write(*,*)'rentree fromcpl, itime-1 = ',itime-1 |
---|
[557] | 1795 | #ifdef CPP_COUPLE |
---|
| 1796 | #ifdef CPP_PSMILE |
---|
| 1797 | il_time_secs=(itime-1)*dtime |
---|
| 1798 | CALL fromcpl(il_time_secs, iim, (jjm+1), & |
---|
| 1799 | & read_sst, read_sic, read_sit, read_alb_sic) |
---|
| 1800 | #else |
---|
[524] | 1801 | call fromcpl(itime-1,(jjm+1)*iim, & |
---|
| 1802 | & read_sst, read_sic, read_sit, read_alb_sic) |
---|
[557] | 1803 | #endif |
---|
| 1804 | #endif |
---|
[524] | 1805 | ! |
---|
| 1806 | ! sorties NETCDF des champs recus |
---|
| 1807 | ! |
---|
| 1808 | ndexcs(:)=0 |
---|
| 1809 | itau_w = itau_phy + itime |
---|
| 1810 | CALL histwrite(nidcs,cl_read(1),itau_w,read_sst,iim*(jjm+1),ndexcs) |
---|
| 1811 | CALL histwrite(nidcs,cl_read(2),itau_w,read_sic,iim*(jjm+1),ndexcs) |
---|
| 1812 | CALL histwrite(nidcs,cl_read(3),itau_w,read_alb_sic,iim*(jjm+1),ndexcs) |
---|
| 1813 | CALL histwrite(nidcs,cl_read(4),itau_w,read_sit,iim*(jjm+1),ndexcs) |
---|
| 1814 | CALL histsync(nidcs) |
---|
| 1815 | ! pas utile IF (npas-itime.LT.nexca )CALL histclo(nidcs) |
---|
| 1816 | |
---|
| 1817 | do j = 1, jjm + 1 |
---|
| 1818 | do ig = 1, iim |
---|
| 1819 | if (abs(1. - read_sic(ig,j)) < 0.00001) then |
---|
| 1820 | read_sst(ig,j) = RTT - 1.8 |
---|
| 1821 | read_sit(ig,j) = read_sit(ig,j) / read_sic(ig,j) |
---|
| 1822 | read_alb_sic(ig,j) = read_alb_sic(ig,j) / read_sic(ig,j) |
---|
| 1823 | else if (abs(read_sic(ig,j)) < 0.00001) then |
---|
| 1824 | read_sst(ig,j) = read_sst(ig,j) / (1. - read_sic(ig,j)) |
---|
| 1825 | read_sit(ig,j) = read_sst(ig,j) |
---|
| 1826 | read_alb_sic(ig,j) = 0.6 |
---|
| 1827 | else |
---|
| 1828 | read_sst(ig,j) = read_sst(ig,j) / (1. - read_sic(ig,j)) |
---|
| 1829 | read_sit(ig,j) = read_sit(ig,j) / read_sic(ig,j) |
---|
| 1830 | read_alb_sic(ig,j) = read_alb_sic(ig,j) / read_sic(ig,j) |
---|
| 1831 | endif |
---|
| 1832 | enddo |
---|
| 1833 | enddo |
---|
| 1834 | ! |
---|
| 1835 | ! transformer read_sic en pctsrf_sav |
---|
| 1836 | ! |
---|
| 1837 | call cpl2gath(read_sic, tamp_sic , klon, klon,iim,jjm, unity) |
---|
| 1838 | do ig = 1, klon |
---|
| 1839 | IF (pctsrf(ig,is_oce) > epsfra .OR. & |
---|
| 1840 | & pctsrf(ig,is_sic) > epsfra) THEN |
---|
| 1841 | pctsrf_sav(ig,is_sic) = (pctsrf(ig,is_oce) + pctsrf(ig,is_sic)) & |
---|
| 1842 | & * tamp_sic(ig) |
---|
| 1843 | pctsrf_sav(ig,is_oce) = (pctsrf(ig,is_oce) + pctsrf(ig,is_sic)) & |
---|
| 1844 | & - pctsrf_sav(ig,is_sic) |
---|
| 1845 | endif |
---|
| 1846 | enddo |
---|
| 1847 | ! |
---|
| 1848 | ! Pour rattraper des erreurs d'arrondis |
---|
| 1849 | ! |
---|
| 1850 | where (abs(pctsrf_sav(:,is_sic)) .le. 2.*epsilon(pctsrf_sav(1,is_sic))) |
---|
| 1851 | pctsrf_sav(:,is_sic) = 0. |
---|
| 1852 | pctsrf_sav(:,is_oce) = pctsrf(:,is_oce) + pctsrf(:,is_sic) |
---|
| 1853 | endwhere |
---|
| 1854 | where (abs(pctsrf_sav(:,is_oce)) .le. 2.*epsilon(pctsrf_sav(1,is_oce))) |
---|
| 1855 | pctsrf_sav(:,is_sic) = pctsrf(:,is_oce) + pctsrf(:,is_sic) |
---|
| 1856 | pctsrf_sav(:,is_oce) = 0. |
---|
| 1857 | endwhere |
---|
| 1858 | if (minval(pctsrf_sav(:,is_oce)) < 0.) then |
---|
| 1859 | write(*,*)'Pb fraction ocean inferieure a 0' |
---|
| 1860 | write(*,*)'au point ',minloc(pctsrf_sav(:,is_oce)) |
---|
| 1861 | write(*,*)'valeur = ',minval(pctsrf_sav(:,is_oce)) |
---|
| 1862 | abort_message = 'voir ci-dessus' |
---|
| 1863 | call abort_gcm(modname,abort_message,1) |
---|
| 1864 | endif |
---|
| 1865 | if (minval(pctsrf_sav(:,is_sic)) < 0.) then |
---|
| 1866 | write(*,*)'Pb fraction glace inferieure a 0' |
---|
| 1867 | write(*,*)'au point ',minloc(pctsrf_sav(:,is_sic)) |
---|
| 1868 | write(*,*)'valeur = ',minval(pctsrf_sav(:,is_sic)) |
---|
| 1869 | abort_message = 'voir ci-dessus' |
---|
| 1870 | call abort_gcm(modname,abort_message,1) |
---|
| 1871 | endif |
---|
| 1872 | endif |
---|
| 1873 | endif ! fin mod(itime, nexca) == 1 |
---|
| 1874 | |
---|
| 1875 | if (mod(itime, nexca) == 0) then |
---|
| 1876 | ! |
---|
| 1877 | ! allocation memoire |
---|
| 1878 | if (nisurf == is_oce .and. (.not. cumul) ) then |
---|
| 1879 | sum_error = 0 |
---|
| 1880 | allocate(tmp_sols(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1881 | allocate(tmp_nsol(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1882 | allocate(tmp_rain(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1883 | allocate(tmp_snow(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1884 | allocate(tmp_evap(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1885 | allocate(tmp_tsol(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1886 | allocate(tmp_fder(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1887 | allocate(tmp_albe(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1888 | allocate(tmp_taux(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1889 | allocate(tmp_tauy(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
[590] | 1890 | ! -- LOOP |
---|
| 1891 | allocate(tmp_windsp(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1892 | ! -- LOOP |
---|
[524] | 1893 | !!$ allocate(tmp_rriv(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1894 | !!$ allocate(tmp_rcoa(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
| 1895 | if (sum_error /= 0) then |
---|
| 1896 | abort_message='Pb allocation variables couplees pour l''ecriture' |
---|
| 1897 | call abort_gcm(modname,abort_message,1) |
---|
| 1898 | endif |
---|
| 1899 | endif |
---|
| 1900 | |
---|
| 1901 | ! |
---|
| 1902 | ! Mise sur la bonne grille des champs a passer au coupleur |
---|
| 1903 | ! |
---|
| 1904 | cpl_index = 1 |
---|
| 1905 | if (nisurf == is_sic) cpl_index = 2 |
---|
| 1906 | call gath2cpl(cpl_sols(1,cpl_index), tmp_sols(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
| 1907 | call gath2cpl(cpl_nsol(1,cpl_index), tmp_nsol(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
| 1908 | call gath2cpl(cpl_rain(1,cpl_index), tmp_rain(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
| 1909 | call gath2cpl(cpl_snow(1,cpl_index), tmp_snow(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
| 1910 | call gath2cpl(cpl_evap(1,cpl_index), tmp_evap(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
| 1911 | call gath2cpl(cpl_tsol(1,cpl_index), tmp_tsol(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
| 1912 | call gath2cpl(cpl_fder(1,cpl_index), tmp_fder(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
| 1913 | call gath2cpl(cpl_albe(1,cpl_index), tmp_albe(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
| 1914 | call gath2cpl(cpl_taux(1,cpl_index), tmp_taux(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
[590] | 1915 | ! -- LOOP |
---|
| 1916 | call gath2cpl(cpl_windsp(1,cpl_index), tmp_windsp(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
| 1917 | ! -- LOOP |
---|
[524] | 1918 | call gath2cpl(cpl_tauy(1,cpl_index), tmp_tauy(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
| 1919 | |
---|
| 1920 | ! |
---|
| 1921 | ! Si le domaine considere est la banquise, on envoie les champs au coupleur |
---|
| 1922 | ! |
---|
| 1923 | if (nisurf == is_sic .and. cumul) then |
---|
| 1924 | wri_rain = 0.; wri_snow = 0.; wri_rcoa = 0.; wri_rriv = 0. |
---|
| 1925 | wri_taux = 0.; wri_tauy = 0. |
---|
[590] | 1926 | ! -- LOOP |
---|
| 1927 | wri_windsp = 0. |
---|
| 1928 | ! -- LOOP |
---|
[524] | 1929 | call gath2cpl(pctsrf(1,is_oce), tamp_srf(1,1,1), klon, klon, iim, jjm, tamp_ind) |
---|
| 1930 | call gath2cpl(pctsrf(1,is_sic), tamp_srf(1,1,2), klon, klon, iim, jjm, tamp_ind) |
---|
| 1931 | |
---|
| 1932 | wri_sol_ice = tmp_sols(:,:,2) |
---|
| 1933 | wri_sol_sea = tmp_sols(:,:,1) |
---|
| 1934 | wri_nsol_ice = tmp_nsol(:,:,2) |
---|
| 1935 | wri_nsol_sea = tmp_nsol(:,:,1) |
---|
| 1936 | wri_fder_ice = tmp_fder(:,:,2) |
---|
| 1937 | wri_evap_ice = tmp_evap(:,:,2) |
---|
| 1938 | wri_evap_sea = tmp_evap(:,:,1) |
---|
[590] | 1939 | ! -- LOOP |
---|
| 1940 | wri_windsp = tmp_windsp(:,:,1) |
---|
| 1941 | ! -- LOOP |
---|
| 1942 | |
---|
[524] | 1943 | !!$PB |
---|
| 1944 | wri_rriv = cpl_rriv(:,:) |
---|
| 1945 | wri_rcoa = cpl_rcoa(:,:) |
---|
| 1946 | DO j = 1, jjm + 1 |
---|
| 1947 | wri_calv(:,j) = sum(cpl_rlic(:,j)) / iim |
---|
| 1948 | enddo |
---|
| 1949 | |
---|
| 1950 | where (tamp_zmasq /= 1.) |
---|
| 1951 | deno = tamp_srf(:,:,1) + tamp_srf(:,:,2) |
---|
| 1952 | wri_rain = tmp_rain(:,:,1) * tamp_srf(:,:,1) / deno + & |
---|
| 1953 | & tmp_rain(:,:,2) * tamp_srf(:,:,2) / deno |
---|
| 1954 | wri_snow = tmp_snow(:,:,1) * tamp_srf(:,:,1) / deno + & |
---|
| 1955 | & tmp_snow(:,:,2) * tamp_srf(:,:,2) / deno |
---|
| 1956 | wri_taux = tmp_taux(:,:,1) * tamp_srf(:,:,1) / deno + & |
---|
| 1957 | & tmp_taux(:,:,2) * tamp_srf(:,:,2) / deno |
---|
| 1958 | wri_tauy = tmp_tauy(:,:,1) * tamp_srf(:,:,1) / deno + & |
---|
| 1959 | & tmp_tauy(:,:,2) * tamp_srf(:,:,2) / deno |
---|
| 1960 | endwhere |
---|
| 1961 | ! |
---|
| 1962 | ! pour simuler la fonte des glaciers antarctiques |
---|
| 1963 | ! |
---|
| 1964 | !$$$ wri_rain = wri_rain & |
---|
| 1965 | !$$$ & + coeff_iceberg * cte_flux_iceberg / (num_antarctic * surf_maille) |
---|
| 1966 | ! wri_calv = coeff_iceberg * cte_flux_iceberg / (num_antarctic * surf_maille) |
---|
| 1967 | ! |
---|
| 1968 | ! on passe les coordonnées de la grille |
---|
| 1969 | ! |
---|
| 1970 | |
---|
| 1971 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlon,tmp_lon) |
---|
| 1972 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlat,tmp_lat) |
---|
| 1973 | |
---|
| 1974 | DO i = 1, iim |
---|
| 1975 | tmp_lon(i,1) = rlon(i+1) |
---|
| 1976 | tmp_lon(i,jjm + 1) = rlon(i+1) |
---|
| 1977 | ENDDO |
---|
| 1978 | ! |
---|
| 1979 | ! sortie netcdf des champs pour le changement de repere |
---|
| 1980 | ! |
---|
| 1981 | ndexct(:)=0 |
---|
| 1982 | CALL histwrite(nidct,'tauxe',itau_w,wri_taux,iim*(jjm+1),ndexct) |
---|
| 1983 | CALL histwrite(nidct,'tauyn',itau_w,wri_tauy,iim*(jjm+1),ndexct) |
---|
| 1984 | CALL histwrite(nidct,'tmp_lon',itau_w,tmp_lon,iim*(jjm+1),ndexct) |
---|
| 1985 | CALL histwrite(nidct,'tmp_lat',itau_w,tmp_lat,iim*(jjm+1),ndexct) |
---|
| 1986 | |
---|
| 1987 | ! |
---|
| 1988 | ! calcul 3 coordonnées du vent |
---|
| 1989 | ! |
---|
| 1990 | CALL atm2geo (iim , jjm + 1, wri_taux, wri_tauy, tmp_lon, tmp_lat, & |
---|
| 1991 | & wri_tauxx, wri_tauyy, wri_tauzz ) |
---|
| 1992 | ! |
---|
| 1993 | ! sortie netcdf des champs apres changement de repere et juste avant |
---|
| 1994 | ! envoi au coupleur |
---|
| 1995 | ! |
---|
[590] | 1996 | CALL histwrite(nidct,cl_writ(8),itau_w,wri_sol_ice,iim*(jjm+1),ndexct) |
---|
| 1997 | CALL histwrite(nidct,cl_writ(9),itau_w,wri_sol_sea,iim*(jjm+1),ndexct) |
---|
| 1998 | CALL histwrite(nidct,cl_writ(10),itau_w,wri_nsol_ice,iim*(jjm+1),ndexct) |
---|
| 1999 | CALL histwrite(nidct,cl_writ(11),itau_w,wri_nsol_sea,iim*(jjm+1),ndexct) |
---|
| 2000 | CALL histwrite(nidct,cl_writ(12),itau_w,wri_fder_ice,iim*(jjm+1),ndexct) |
---|
| 2001 | CALL histwrite(nidct,cl_writ(13),itau_w,wri_evap_ice,iim*(jjm+1),ndexct) |
---|
| 2002 | CALL histwrite(nidct,cl_writ(14),itau_w,wri_evap_sea,iim*(jjm+1),ndexct) |
---|
| 2003 | CALL histwrite(nidct,cl_writ(15),itau_w,wri_rain,iim*(jjm+1),ndexct) |
---|
| 2004 | CALL histwrite(nidct,cl_writ(16),itau_w,wri_snow,iim*(jjm+1),ndexct) |
---|
| 2005 | CALL histwrite(nidct,cl_writ(17),itau_w,wri_rcoa,iim*(jjm+1),ndexct) |
---|
| 2006 | CALL histwrite(nidct,cl_writ(18),itau_w,wri_rriv,iim*(jjm+1),ndexct) |
---|
| 2007 | CALL histwrite(nidct,cl_writ(19),itau_w,wri_calv,iim*(jjm+1),ndexct) |
---|
| 2008 | CALL histwrite(nidct,cl_writ(1),itau_w,wri_tauxx,iim*(jjm+1),ndexct) |
---|
| 2009 | CALL histwrite(nidct,cl_writ(2),itau_w,wri_tauyy,iim*(jjm+1),ndexct) |
---|
| 2010 | CALL histwrite(nidct,cl_writ(3),itau_w,wri_tauzz,iim*(jjm+1),ndexct) |
---|
| 2011 | CALL histwrite(nidct,cl_writ(4),itau_w,wri_tauxx,iim*(jjm+1),ndexct) |
---|
| 2012 | CALL histwrite(nidct,cl_writ(5),itau_w,wri_tauyy,iim*(jjm+1),ndexct) |
---|
| 2013 | CALL histwrite(nidct,cl_writ(6),itau_w,wri_tauzz,iim*(jjm+1),ndexct) |
---|
| 2014 | ! -- LOOP |
---|
| 2015 | CALL histwrite(nidct,cl_writ(7),itau_w,wri_windsp,iim*(jjm+1),ndexct) |
---|
| 2016 | ! -- LOOP |
---|
[524] | 2017 | CALL histsync(nidct) |
---|
| 2018 | ! pas utile IF (lafin) CALL histclo(nidct) |
---|
[557] | 2019 | #ifdef CPP_COUPLE |
---|
| 2020 | #ifdef CPP_PSMILE |
---|
| 2021 | il_time_secs=(itime-1)*dtime |
---|
| 2022 | |
---|
| 2023 | CALL intocpl(il_time_secs, iim, jjm+1, wri_sol_ice, wri_sol_sea, wri_nsol_ice,& |
---|
| 2024 | & wri_nsol_sea, wri_fder_ice, wri_evap_ice, wri_evap_sea, wri_rain, & |
---|
| 2025 | & wri_snow, wri_rcoa, wri_rriv, wri_calv, wri_tauxx, wri_tauyy, & |
---|
[590] | 2026 | & wri_tauzz, wri_tauxx, wri_tauyy, wri_tauzz, & |
---|
| 2027 | ! -- LOOP |
---|
| 2028 | & wri_windsp,lafin) |
---|
| 2029 | ! -- LOOP |
---|
[557] | 2030 | #else |
---|
[524] | 2031 | call intocpl(itime, (jjm+1)*iim, wri_sol_ice, wri_sol_sea, wri_nsol_ice,& |
---|
| 2032 | & wri_nsol_sea, wri_fder_ice, wri_evap_ice, wri_evap_sea, wri_rain, & |
---|
| 2033 | & wri_snow, wri_rcoa, wri_rriv, wri_calv, wri_tauxx, wri_tauyy, & |
---|
[590] | 2034 | & wri_tauzz, wri_tauxx, wri_tauyy, wri_tauzz, & |
---|
| 2035 | ! -- LOOP |
---|
| 2036 | & wri_windsp,lafin) |
---|
| 2037 | ! -- LOOP |
---|
[557] | 2038 | #endif |
---|
| 2039 | #endif |
---|
[524] | 2040 | ! |
---|
| 2041 | cpl_sols = 0.; cpl_nsol = 0.; cpl_rain = 0.; cpl_snow = 0. |
---|
| 2042 | cpl_evap = 0.; cpl_tsol = 0.; cpl_fder = 0.; cpl_albe = 0. |
---|
| 2043 | cpl_taux = 0.; cpl_tauy = 0.; cpl_rriv = 0.; cpl_rcoa = 0.; cpl_rlic = 0. |
---|
[590] | 2044 | ! -- LOOP |
---|
| 2045 | cpl_windsp = 0. |
---|
| 2046 | ! -- LOOP |
---|
[524] | 2047 | ! |
---|
| 2048 | ! deallocation memoire variables temporaires |
---|
| 2049 | ! |
---|
| 2050 | sum_error = 0 |
---|
| 2051 | deallocate(tmp_sols, stat=error); sum_error = sum_error + error |
---|
| 2052 | deallocate(tmp_nsol, stat=error); sum_error = sum_error + error |
---|
| 2053 | deallocate(tmp_rain, stat=error); sum_error = sum_error + error |
---|
| 2054 | deallocate(tmp_snow, stat=error); sum_error = sum_error + error |
---|
| 2055 | deallocate(tmp_evap, stat=error); sum_error = sum_error + error |
---|
| 2056 | deallocate(tmp_fder, stat=error); sum_error = sum_error + error |
---|
| 2057 | deallocate(tmp_tsol, stat=error); sum_error = sum_error + error |
---|
| 2058 | deallocate(tmp_albe, stat=error); sum_error = sum_error + error |
---|
| 2059 | deallocate(tmp_taux, stat=error); sum_error = sum_error + error |
---|
| 2060 | deallocate(tmp_tauy, stat=error); sum_error = sum_error + error |
---|
[590] | 2061 | ! -- LOOP |
---|
| 2062 | deallocate(tmp_windsp, stat=error); sum_error = sum_error + error |
---|
| 2063 | ! -- LOOP |
---|
[524] | 2064 | !!$PB |
---|
| 2065 | !!$ deallocate(tmp_rriv, stat=error); sum_error = sum_error + error |
---|
| 2066 | !!$ deallocate(tmp_rcoa, stat=error); sum_error = sum_error + error |
---|
| 2067 | if (sum_error /= 0) then |
---|
| 2068 | abort_message='Pb deallocation variables couplees' |
---|
| 2069 | call abort_gcm(modname,abort_message,1) |
---|
| 2070 | endif |
---|
| 2071 | |
---|
| 2072 | endif |
---|
| 2073 | |
---|
| 2074 | endif ! fin (mod(itime, nexca) == 0) |
---|
| 2075 | ! |
---|
| 2076 | ! on range les variables lues/sauvegardees dans les bonnes variables de sortie |
---|
| 2077 | ! |
---|
| 2078 | if (nisurf == is_oce) then |
---|
| 2079 | call cpl2gath(read_sst, tsurf_new, klon, knon,iim,jjm, knindex) |
---|
| 2080 | else if (nisurf == is_sic) then |
---|
| 2081 | call cpl2gath(read_sit, tsurf_new, klon, knon,iim,jjm, knindex) |
---|
| 2082 | call cpl2gath(read_alb_sic, alb_new, klon, knon,iim,jjm, knindex) |
---|
| 2083 | endif |
---|
| 2084 | pctsrf_new(:,nisurf) = pctsrf_sav(:,nisurf) |
---|
| 2085 | |
---|
| 2086 | ! if (lafin) call quitcpl |
---|
| 2087 | |
---|
| 2088 | END SUBROUTINE interfoce_cpl |
---|
| 2089 | ! |
---|
| 2090 | !######################################################################### |
---|
| 2091 | ! |
---|
[644] | 2092 | SUBROUTINE interfoce_slab(klon, debut, itap, dtime, ijour, & |
---|
| 2093 | & radsol, fluxo, fluxg, pctsrf, & |
---|
| 2094 | & tslab, seaice, pctsrf_slab) |
---|
[524] | 2095 | ! |
---|
[644] | 2096 | ! Cette routine calcule la temperature d'un slab ocean, la glace de mer |
---|
| 2097 | ! et les pourcentages de la maille couverte par l'ocean libre et/ou |
---|
| 2098 | ! la glace de mer pour un "slab" ocean de 50m |
---|
[524] | 2099 | ! |
---|
[686] | 2100 | ! Conception: Laurent Li |
---|
| 2101 | ! Re-ecriture + adaptation LMDZ4: I. Musat |
---|
[644] | 2102 | ! |
---|
[524] | 2103 | ! input: |
---|
[644] | 2104 | ! klon nombre total de points de grille |
---|
| 2105 | ! debut logical: 1er appel a la physique |
---|
| 2106 | ! itap numero du pas de temps |
---|
| 2107 | ! dtime pas de temps de la physique (en s) |
---|
| 2108 | ! ijour jour dans l'annee en cours |
---|
| 2109 | ! radsol rayonnement net au sol (LW + SW) |
---|
| 2110 | ! fluxo flux turbulent (sensible + latent) sur les mailles oceaniques |
---|
| 2111 | ! fluxg flux de conduction entre la surface de la glace de mer et l'ocean |
---|
| 2112 | ! pctsrf tableau des pourcentages de surface de chaque maille |
---|
| 2113 | ! output: |
---|
| 2114 | ! tslab temperature de l'ocean libre |
---|
| 2115 | ! seaice glace de mer (kg/m2) |
---|
| 2116 | ! pctsrf_slab "pourcentages" (valeurs entre 0. et 1.) surfaces issus du slab |
---|
[524] | 2117 | ! |
---|
[644] | 2118 | #include "indicesol.inc" |
---|
| 2119 | #include "clesphys.inc" |
---|
| 2120 | ! Parametres d'entree |
---|
| 2121 | integer, intent(IN) :: klon |
---|
| 2122 | logical, intent(IN) :: debut |
---|
| 2123 | INTEGER, intent(IN) :: itap |
---|
| 2124 | REAL, intent(IN) :: dtime |
---|
| 2125 | INTEGER, intent(IN) :: ijour |
---|
| 2126 | REAL, dimension(klon), intent(IN) :: radsol |
---|
| 2127 | REAL, dimension(klon), intent(IN) :: fluxo |
---|
| 2128 | REAL, dimension(klon), intent(IN) :: fluxg |
---|
| 2129 | real, dimension(klon, nbsrf), intent(IN) :: pctsrf |
---|
| 2130 | ! Parametres de sortie |
---|
| 2131 | real, dimension(klon), intent(INOUT) :: tslab |
---|
| 2132 | real, dimension(klon), intent(INOUT) :: seaice ! glace de mer (kg/m2) |
---|
| 2133 | real, dimension(klon, nbsrf), intent(OUT) :: pctsrf_slab |
---|
[524] | 2134 | ! |
---|
[644] | 2135 | ! Variables locales : |
---|
[686] | 2136 | REAL :: amn, amx |
---|
[644] | 2137 | INTEGER, save :: lmt_pas, julien, idayvrai |
---|
| 2138 | REAL, parameter :: unjour=86400. |
---|
| 2139 | real, allocatable, dimension(:), save :: tmp_tslab, tmp_seaice |
---|
| 2140 | REAL, allocatable, dimension(:), save :: slab_bils |
---|
| 2141 | REAL, allocatable, dimension(:), save :: lmt_bils |
---|
| 2142 | logical,save :: check = .false. |
---|
| 2143 | ! |
---|
| 2144 | REAL, parameter :: cyang=50.0 * 4.228e+06 ! capacite calorifique volumetrique de l'eau J/(m2 K) |
---|
| 2145 | REAL, parameter :: cbing=0.334e+05 ! J/kg |
---|
| 2146 | real, dimension(klon) :: siceh !hauteur de la glace de mer (m) |
---|
| 2147 | INTEGER :: i |
---|
| 2148 | integer :: sum_error, error |
---|
| 2149 | REAL :: zz, za, zb |
---|
| 2150 | ! |
---|
| 2151 | character (len = 80) :: abort_message |
---|
| 2152 | character (len = 20) :: modname = 'interfoce_slab' |
---|
| 2153 | ! |
---|
| 2154 | julien = MOD(ijour,360) |
---|
| 2155 | sum_error = 0 |
---|
| 2156 | IF (debut) THEN |
---|
| 2157 | allocate(slab_bils(klon), stat = error); sum_error = sum_error + error |
---|
| 2158 | allocate(lmt_bils(klon), stat = error); sum_error = sum_error + error |
---|
| 2159 | allocate(tmp_tslab(klon), stat = error); sum_error = sum_error + error |
---|
| 2160 | allocate(tmp_seaice(klon), stat = error); sum_error = sum_error + error |
---|
| 2161 | if (sum_error /= 0) then |
---|
| 2162 | abort_message='Pb allocation var. slab_bils,lmt_bils,tmp_tslab,tmp_seaice' |
---|
| 2163 | call abort_gcm(modname,abort_message,1) |
---|
| 2164 | endif |
---|
| 2165 | tmp_tslab=tslab |
---|
| 2166 | tmp_seaice=seaice |
---|
| 2167 | lmt_pas = nint(86400./dtime * 1.0) ! pour une lecture une fois par jour |
---|
| 2168 | ! |
---|
| 2169 | IF (check) THEN |
---|
| 2170 | PRINT*,'interfoce_slab klon, debut, itap, dtime, ijour, & |
---|
| 2171 | & lmt_pas ', klon, debut, itap, dtime, ijour, & |
---|
| 2172 | & lmt_pas |
---|
| 2173 | ENDIF !check |
---|
| 2174 | ! |
---|
| 2175 | PRINT*, '************************' |
---|
| 2176 | PRINT*, 'SLAB OCEAN est actif, prenez precautions !' |
---|
| 2177 | PRINT*, '************************' |
---|
| 2178 | ! |
---|
| 2179 | ! a mettre un slab_bils aussi en force !!! |
---|
| 2180 | ! |
---|
| 2181 | DO i = 1, klon |
---|
| 2182 | slab_bils(i) = 0.0 |
---|
| 2183 | ENDDO |
---|
| 2184 | ! |
---|
| 2185 | ENDIF !debut |
---|
[686] | 2186 | ! |
---|
| 2187 | IF (check ) THEN |
---|
| 2188 | amn=MIN(tmp_tslab(1),1000.) |
---|
| 2189 | amx=MAX(tmp_tslab(1),-1000.) |
---|
| 2190 | DO i=2, klon |
---|
| 2191 | amn=MIN(tmp_tslab(i),amn) |
---|
| 2192 | amx=MAX(tmp_tslab(i),amx) |
---|
| 2193 | ENDDO |
---|
| 2194 | ! |
---|
| 2195 | PRINT*,' debut min max tslab',amn,amx |
---|
| 2196 | ! |
---|
| 2197 | !! |
---|
| 2198 | PRINT*,' itap,lmt_pas unjour',itap,lmt_pas,unjour |
---|
| 2199 | ENDIF |
---|
| 2200 | !! |
---|
| 2201 | ! |
---|
[644] | 2202 | pctsrf_slab(1:klon,1:nbsrf) = pctsrf(1:klon,1:nbsrf) |
---|
| 2203 | ! |
---|
| 2204 | ! lecture du bilan au sol lmt_bils issu d'une simulation forcee en debut de journee |
---|
| 2205 | ! |
---|
| 2206 | IF (MOD(itap,lmt_pas) .EQ. 1) THEN !1er pas de temps de la journee |
---|
| 2207 | idayvrai = ijour |
---|
| 2208 | CALL condsurf(julien,idayvrai, lmt_bils) |
---|
| 2209 | ENDIF !(MOD(itap-1,lmt_pas) .EQ. 0) THEN |
---|
[524] | 2210 | |
---|
[644] | 2211 | DO i = 1, klon |
---|
| 2212 | IF((pctsrf_slab(i,is_oce).GT.epsfra).OR. & |
---|
| 2213 | & (pctsrf_slab(i,is_sic).GT.epsfra)) THEN |
---|
| 2214 | ! |
---|
| 2215 | ! fabriquer de la glace si congelation atteinte: |
---|
| 2216 | ! |
---|
| 2217 | IF (tmp_tslab(i).LT.(RTT-1.8)) THEN |
---|
| 2218 | zz = (RTT-1.8)-tmp_tslab(i) |
---|
| 2219 | tmp_seaice(i) = tmp_seaice(i) + cyang/cbing * zz |
---|
| 2220 | seaice(i) = tmp_seaice(i) |
---|
| 2221 | tmp_tslab(i) = RTT-1.8 |
---|
| 2222 | ENDIF |
---|
| 2223 | ! |
---|
| 2224 | ! faire fondre de la glace si temperature est superieure a 0: |
---|
| 2225 | ! |
---|
| 2226 | IF ((tmp_tslab(i).GT.RTT) .AND. (tmp_seaice(i).GT.0.0)) THEN |
---|
| 2227 | zz = cyang/cbing * (tmp_tslab(i)-RTT) |
---|
| 2228 | zz = MIN(zz,tmp_seaice(i)) |
---|
| 2229 | tmp_seaice(i) = tmp_seaice(i) - zz |
---|
| 2230 | seaice(i) = tmp_seaice(i) |
---|
| 2231 | tmp_tslab(i) = tmp_tslab(i) - zz*cbing/cyang |
---|
| 2232 | ENDIF |
---|
| 2233 | ! |
---|
| 2234 | ! limiter la glace de mer a 10 metres (10000 kg/m2) |
---|
| 2235 | ! |
---|
| 2236 | IF(tmp_seaice(i).GT.45.) THEN |
---|
| 2237 | tmp_seaice(i) = MIN(tmp_seaice(i),10000.0) |
---|
| 2238 | ELSE |
---|
| 2239 | tmp_seaice(i) = 0. |
---|
| 2240 | ENDIF |
---|
| 2241 | seaice(i) = tmp_seaice(i) |
---|
| 2242 | siceh(i)=tmp_seaice(i)/1000. !en metres |
---|
| 2243 | ! |
---|
| 2244 | ! determiner la nature du sol (glace de mer ou ocean libre): |
---|
| 2245 | ! |
---|
| 2246 | ! on fait dependre la fraction de seaice "pctsrf(i,is_sic)" |
---|
| 2247 | ! de l'epaisseur de seaice : |
---|
| 2248 | ! pctsrf(i,is_sic)=1. si l'epaisseur de la glace de mer est >= a 20cm |
---|
| 2249 | ! et pctsrf(i,is_sic) croit lineairement avec seaice de 0. a 20cm d'epaisseur |
---|
| 2250 | ! |
---|
[686] | 2251 | |
---|
| 2252 | IF(.NOT.ok_slab_sicOBS) then |
---|
[644] | 2253 | pctsrf_slab(i,is_sic)=MIN(siceh(i)/0.20, & |
---|
| 2254 | & 1.-(pctsrf_slab(i,is_ter)+pctsrf_slab(i,is_lic))) |
---|
| 2255 | pctsrf_slab(i,is_oce)=1.0 - & |
---|
| 2256 | & (pctsrf_slab(i,is_ter)+pctsrf_slab(i,is_lic)+pctsrf_slab(i,is_sic)) |
---|
[686] | 2257 | ELSE |
---|
| 2258 | IF (i.EQ.1) print*,'cas ok_slab_sicOBS TRUE : passe sur la modif.' |
---|
| 2259 | ENDIF !(.NOT.ok_slab_sicOBS) then |
---|
[644] | 2260 | ENDIF !pctsrf |
---|
| 2261 | ENDDO |
---|
| 2262 | ! |
---|
| 2263 | ! Calculer le bilan du flux de chaleur au sol : |
---|
| 2264 | ! |
---|
| 2265 | DO i = 1, klon |
---|
| 2266 | za = radsol(i) + fluxo(i) |
---|
| 2267 | zb = fluxg(i) |
---|
| 2268 | IF((pctsrf_slab(i,is_oce).GT.epsfra).OR. & |
---|
| 2269 | & (pctsrf_slab(i,is_sic).GT.epsfra)) THEN |
---|
| 2270 | slab_bils(i)=slab_bils(i)+(za*pctsrf_slab(i,is_oce) & |
---|
| 2271 | & +zb*pctsrf_slab(i,is_sic))/ FLOAT(lmt_pas) |
---|
| 2272 | ENDIF |
---|
| 2273 | ENDDO !klon |
---|
| 2274 | ! |
---|
| 2275 | ! calcul tslab |
---|
| 2276 | ! |
---|
| 2277 | IF (MOD(itap,lmt_pas).EQ.0) THEN !fin de journee |
---|
[686] | 2278 | ! |
---|
| 2279 | ! calcul tslab |
---|
| 2280 | amn=MIN(tmp_tslab(1),1000.) |
---|
| 2281 | amx=MAX(tmp_tslab(1),-1000.) |
---|
[644] | 2282 | DO i = 1, klon |
---|
| 2283 | IF ((pctsrf_slab(i,is_oce).GT.epsfra).OR. & |
---|
| 2284 | & (pctsrf_slab(i,is_sic).GT.epsfra)) THEN |
---|
| 2285 | tmp_tslab(i) = tmp_tslab(i) + & |
---|
| 2286 | & (slab_bils(i)-lmt_bils(i)) & |
---|
| 2287 | & /cyang*unjour |
---|
| 2288 | ! on remet l'accumulation a 0 |
---|
| 2289 | slab_bils(i) = 0. |
---|
| 2290 | ENDIF !pctsrf |
---|
[686] | 2291 | ! |
---|
| 2292 | IF (check) THEN |
---|
| 2293 | IF(i.EQ.1) THEN |
---|
| 2294 | PRINT*,'i tmp_tslab MOD(itap,lmt_pas).EQ.0 sicINTER',i,itap, & |
---|
| 2295 | & tmp_tslab(i), tmp_seaice(i) |
---|
| 2296 | ENDIF |
---|
| 2297 | ! |
---|
| 2298 | amn=MIN(tmp_tslab(i),amn) |
---|
| 2299 | amx=MAX(tmp_tslab(i),amx) |
---|
| 2300 | ENDIF |
---|
[644] | 2301 | ENDDO !klon |
---|
| 2302 | ENDIF !(MOD(itap,lmt_pas).EQ.0) THEN |
---|
| 2303 | ! |
---|
[686] | 2304 | IF ( check ) THEN |
---|
| 2305 | PRINT*,'fin min max tslab',amn,amx |
---|
| 2306 | ENDIF |
---|
| 2307 | ! |
---|
[644] | 2308 | tslab = tmp_tslab |
---|
| 2309 | seaice = tmp_seaice |
---|
[524] | 2310 | END SUBROUTINE interfoce_slab |
---|
| 2311 | ! |
---|
| 2312 | !######################################################################### |
---|
| 2313 | ! |
---|
| 2314 | SUBROUTINE interfoce_lim(itime, dtime, jour, & |
---|
| 2315 | & klon, nisurf, knon, knindex, & |
---|
| 2316 | & debut, & |
---|
| 2317 | & lmt_sst, pctsrf_new) |
---|
| 2318 | |
---|
| 2319 | ! Cette routine sert d'interface entre le modele atmospherique et un fichier |
---|
| 2320 | ! de conditions aux limites |
---|
| 2321 | ! |
---|
| 2322 | ! L. Fairhead 02/2000 |
---|
| 2323 | ! |
---|
| 2324 | ! input: |
---|
| 2325 | ! itime numero du pas de temps courant |
---|
| 2326 | ! dtime pas de temps de la physique (en s) |
---|
| 2327 | ! jour jour a lire dans l'annee |
---|
| 2328 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
| 2329 | ! knon nombre de points dans le domaine a traiter |
---|
| 2330 | ! knindex index des points de la surface a traiter |
---|
| 2331 | ! klon taille de la grille |
---|
| 2332 | ! debut logical: 1er appel a la physique (initialisation) |
---|
| 2333 | ! |
---|
| 2334 | ! output: |
---|
| 2335 | ! lmt_sst SST lues dans le fichier de CL |
---|
| 2336 | ! pctsrf_new sous-maille fractionnelle |
---|
| 2337 | ! |
---|
| 2338 | |
---|
| 2339 | |
---|
| 2340 | ! Parametres d'entree |
---|
| 2341 | integer, intent(IN) :: itime |
---|
| 2342 | real , intent(IN) :: dtime |
---|
| 2343 | integer, intent(IN) :: jour |
---|
| 2344 | integer, intent(IN) :: nisurf |
---|
| 2345 | integer, intent(IN) :: knon |
---|
| 2346 | integer, intent(IN) :: klon |
---|
| 2347 | integer, dimension(klon), intent(in) :: knindex |
---|
| 2348 | logical, intent(IN) :: debut |
---|
| 2349 | |
---|
| 2350 | ! Parametres de sortie |
---|
| 2351 | real, intent(out), dimension(klon) :: lmt_sst |
---|
| 2352 | real, intent(out), dimension(klon,nbsrf) :: pctsrf_new |
---|
| 2353 | |
---|
| 2354 | ! Variables locales |
---|
| 2355 | integer :: ii |
---|
| 2356 | INTEGER,save :: lmt_pas ! frequence de lecture des conditions limites |
---|
| 2357 | ! (en pas de physique) |
---|
| 2358 | logical,save :: deja_lu ! pour indiquer que le jour a lire a deja |
---|
| 2359 | ! lu pour une surface precedente |
---|
| 2360 | integer,save :: jour_lu |
---|
| 2361 | integer :: ierr |
---|
| 2362 | character (len = 20) :: modname = 'interfoce_lim' |
---|
| 2363 | character (len = 80) :: abort_message |
---|
| 2364 | character (len = 20),save :: fich ='limit.nc' |
---|
| 2365 | logical, save :: newlmt = .TRUE. |
---|
| 2366 | logical, save :: check = .FALSE. |
---|
| 2367 | ! Champs lus dans le fichier de CL |
---|
| 2368 | real, allocatable , save, dimension(:) :: sst_lu, rug_lu, nat_lu |
---|
| 2369 | real, allocatable , save, dimension(:,:) :: pct_tmp |
---|
| 2370 | ! |
---|
| 2371 | ! quelques variables pour netcdf |
---|
| 2372 | ! |
---|
| 2373 | #include "netcdf.inc" |
---|
| 2374 | integer :: nid, nvarid |
---|
| 2375 | integer, dimension(2) :: start, epais |
---|
| 2376 | ! |
---|
| 2377 | ! Fin déclaration |
---|
| 2378 | ! |
---|
| 2379 | |
---|
| 2380 | if (debut .and. .not. allocated(sst_lu)) then |
---|
| 2381 | lmt_pas = nint(86400./dtime * 1.0) ! pour une lecture une fois par jour |
---|
| 2382 | jour_lu = jour - 1 |
---|
| 2383 | allocate(sst_lu(klon)) |
---|
| 2384 | allocate(nat_lu(klon)) |
---|
| 2385 | allocate(pct_tmp(klon,nbsrf)) |
---|
| 2386 | endif |
---|
| 2387 | |
---|
| 2388 | if ((jour - jour_lu) /= 0) deja_lu = .false. |
---|
| 2389 | |
---|
| 2390 | if (check) write(*,*)modname,' :: jour, jour_lu, deja_lu', jour, jour_lu, deja_lu |
---|
| 2391 | if (check) write(*,*)modname,' :: itime, lmt_pas ', itime, lmt_pas,dtime |
---|
| 2392 | |
---|
| 2393 | ! Tester d'abord si c'est le moment de lire le fichier |
---|
| 2394 | if (mod(itime-1, lmt_pas) == 0 .and. .not. deja_lu) then |
---|
| 2395 | ! |
---|
| 2396 | ! Ouverture du fichier |
---|
| 2397 | ! |
---|
| 2398 | fich = trim(fich) |
---|
| 2399 | ierr = NF_OPEN (fich, NF_NOWRITE,nid) |
---|
| 2400 | if (ierr.NE.NF_NOERR) then |
---|
| 2401 | abort_message = 'Pb d''ouverture du fichier de conditions aux limites' |
---|
| 2402 | call abort_gcm(modname,abort_message,1) |
---|
| 2403 | endif |
---|
| 2404 | ! |
---|
| 2405 | ! La tranche de donnees a lire: |
---|
| 2406 | ! |
---|
| 2407 | start(1) = 1 |
---|
| 2408 | start(2) = jour |
---|
| 2409 | epais(1) = klon |
---|
| 2410 | epais(2) = 1 |
---|
| 2411 | ! |
---|
| 2412 | if (newlmt) then |
---|
| 2413 | ! |
---|
| 2414 | ! Fraction "ocean" |
---|
| 2415 | ! |
---|
| 2416 | ierr = NF_INQ_VARID(nid, 'FOCE', nvarid) |
---|
| 2417 | if (ierr /= NF_NOERR) then |
---|
| 2418 | abort_message = 'Le champ <FOCE> est absent' |
---|
| 2419 | call abort_gcm(modname,abort_message,1) |
---|
| 2420 | endif |
---|
| 2421 | #ifdef NC_DOUBLE |
---|
| 2422 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais,pct_tmp(1,is_oce)) |
---|
| 2423 | #else |
---|
| 2424 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais,pct_tmp(1,is_oce)) |
---|
| 2425 | #endif |
---|
| 2426 | if (ierr /= NF_NOERR) then |
---|
| 2427 | abort_message = 'Lecture echouee pour <FOCE>' |
---|
| 2428 | call abort_gcm(modname,abort_message,1) |
---|
| 2429 | endif |
---|
| 2430 | ! |
---|
| 2431 | ! Fraction "glace de mer" |
---|
| 2432 | ! |
---|
| 2433 | ierr = NF_INQ_VARID(nid, 'FSIC', nvarid) |
---|
| 2434 | if (ierr /= NF_NOERR) then |
---|
| 2435 | abort_message = 'Le champ <FSIC> est absent' |
---|
| 2436 | call abort_gcm(modname,abort_message,1) |
---|
| 2437 | endif |
---|
| 2438 | #ifdef NC_DOUBLE |
---|
| 2439 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais,pct_tmp(1,is_sic)) |
---|
| 2440 | #else |
---|
| 2441 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais,pct_tmp(1,is_sic)) |
---|
| 2442 | #endif |
---|
| 2443 | if (ierr /= NF_NOERR) then |
---|
| 2444 | abort_message = 'Lecture echouee pour <FSIC>' |
---|
| 2445 | call abort_gcm(modname,abort_message,1) |
---|
| 2446 | endif |
---|
| 2447 | ! |
---|
| 2448 | ! Fraction "terre" |
---|
| 2449 | ! |
---|
| 2450 | ierr = NF_INQ_VARID(nid, 'FTER', nvarid) |
---|
| 2451 | if (ierr /= NF_NOERR) then |
---|
| 2452 | abort_message = 'Le champ <FTER> est absent' |
---|
| 2453 | call abort_gcm(modname,abort_message,1) |
---|
| 2454 | endif |
---|
| 2455 | #ifdef NC_DOUBLE |
---|
| 2456 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais,pct_tmp(1,is_ter)) |
---|
| 2457 | #else |
---|
| 2458 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais,pct_tmp(1,is_ter)) |
---|
| 2459 | #endif |
---|
| 2460 | if (ierr /= NF_NOERR) then |
---|
| 2461 | abort_message = 'Lecture echouee pour <FTER>' |
---|
| 2462 | call abort_gcm(modname,abort_message,1) |
---|
| 2463 | endif |
---|
| 2464 | ! |
---|
| 2465 | ! Fraction "glacier terre" |
---|
| 2466 | ! |
---|
| 2467 | ierr = NF_INQ_VARID(nid, 'FLIC', nvarid) |
---|
| 2468 | if (ierr /= NF_NOERR) then |
---|
| 2469 | abort_message = 'Le champ <FLIC> est absent' |
---|
| 2470 | call abort_gcm(modname,abort_message,1) |
---|
| 2471 | endif |
---|
| 2472 | #ifdef NC_DOUBLE |
---|
| 2473 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais,pct_tmp(1,is_lic)) |
---|
| 2474 | #else |
---|
| 2475 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais,pct_tmp(1,is_lic)) |
---|
| 2476 | #endif |
---|
| 2477 | if (ierr /= NF_NOERR) then |
---|
| 2478 | abort_message = 'Lecture echouee pour <FLIC>' |
---|
| 2479 | call abort_gcm(modname,abort_message,1) |
---|
| 2480 | endif |
---|
| 2481 | ! |
---|
| 2482 | else ! on en est toujours a rnatur |
---|
| 2483 | ! |
---|
| 2484 | ierr = NF_INQ_VARID(nid, 'NAT', nvarid) |
---|
| 2485 | if (ierr /= NF_NOERR) then |
---|
| 2486 | abort_message = 'Le champ <NAT> est absent' |
---|
| 2487 | call abort_gcm(modname,abort_message,1) |
---|
| 2488 | endif |
---|
| 2489 | #ifdef NC_DOUBLE |
---|
| 2490 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais, nat_lu) |
---|
| 2491 | #else |
---|
| 2492 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais, nat_lu) |
---|
| 2493 | #endif |
---|
| 2494 | if (ierr /= NF_NOERR) then |
---|
| 2495 | abort_message = 'Lecture echouee pour <NAT>' |
---|
| 2496 | call abort_gcm(modname,abort_message,1) |
---|
| 2497 | endif |
---|
| 2498 | ! |
---|
| 2499 | ! Remplissage des fractions de surface |
---|
| 2500 | ! nat = 0, 1, 2, 3 pour ocean, terre, glacier, seaice |
---|
| 2501 | ! |
---|
| 2502 | pct_tmp = 0.0 |
---|
| 2503 | do ii = 1, klon |
---|
| 2504 | pct_tmp(ii,nint(nat_lu(ii)) + 1) = 1. |
---|
| 2505 | enddo |
---|
| 2506 | |
---|
| 2507 | ! |
---|
| 2508 | ! On se retrouve avec ocean en 1 et terre en 2 alors qu'on veut le contraire |
---|
| 2509 | ! |
---|
| 2510 | pctsrf_new = pct_tmp |
---|
| 2511 | pctsrf_new (:,2)= pct_tmp (:,1) |
---|
| 2512 | pctsrf_new (:,1)= pct_tmp (:,2) |
---|
| 2513 | pct_tmp = pctsrf_new |
---|
| 2514 | endif ! fin test sur newlmt |
---|
| 2515 | ! |
---|
| 2516 | ! Lecture SST |
---|
| 2517 | ! |
---|
| 2518 | ierr = NF_INQ_VARID(nid, 'SST', nvarid) |
---|
| 2519 | if (ierr /= NF_NOERR) then |
---|
| 2520 | abort_message = 'Le champ <SST> est absent' |
---|
| 2521 | call abort_gcm(modname,abort_message,1) |
---|
| 2522 | endif |
---|
| 2523 | #ifdef NC_DOUBLE |
---|
| 2524 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais, sst_lu) |
---|
| 2525 | #else |
---|
| 2526 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais, sst_lu) |
---|
| 2527 | #endif |
---|
| 2528 | if (ierr /= NF_NOERR) then |
---|
| 2529 | abort_message = 'Lecture echouee pour <SST>' |
---|
| 2530 | call abort_gcm(modname,abort_message,1) |
---|
| 2531 | endif |
---|
| 2532 | |
---|
| 2533 | ! |
---|
| 2534 | ! Fin de lecture |
---|
| 2535 | ! |
---|
| 2536 | ierr = NF_CLOSE(nid) |
---|
| 2537 | deja_lu = .true. |
---|
| 2538 | jour_lu = jour |
---|
| 2539 | endif |
---|
| 2540 | ! |
---|
| 2541 | ! Recopie des variables dans les champs de sortie |
---|
| 2542 | ! |
---|
| 2543 | lmt_sst = 999999999. |
---|
| 2544 | do ii = 1, knon |
---|
| 2545 | lmt_sst(ii) = sst_lu(knindex(ii)) |
---|
| 2546 | enddo |
---|
| 2547 | |
---|
| 2548 | pctsrf_new(:,is_oce) = pct_tmp(:,is_oce) |
---|
| 2549 | pctsrf_new(:,is_sic) = pct_tmp(:,is_sic) |
---|
| 2550 | |
---|
| 2551 | END SUBROUTINE interfoce_lim |
---|
| 2552 | |
---|
| 2553 | ! |
---|
| 2554 | !######################################################################### |
---|
| 2555 | ! |
---|
| 2556 | SUBROUTINE interfsur_lim(itime, dtime, jour, & |
---|
| 2557 | & klon, nisurf, knon, knindex, & |
---|
| 2558 | & debut, & |
---|
| 2559 | & lmt_alb, lmt_rug) |
---|
| 2560 | |
---|
| 2561 | ! Cette routine sert d'interface entre le modele atmospherique et un fichier |
---|
| 2562 | ! de conditions aux limites |
---|
| 2563 | ! |
---|
| 2564 | ! L. Fairhead 02/2000 |
---|
| 2565 | ! |
---|
| 2566 | ! input: |
---|
| 2567 | ! itime numero du pas de temps courant |
---|
| 2568 | ! dtime pas de temps de la physique (en s) |
---|
| 2569 | ! jour jour a lire dans l'annee |
---|
| 2570 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
| 2571 | ! knon nombre de points dans le domaine a traiter |
---|
| 2572 | ! knindex index des points de la surface a traiter |
---|
| 2573 | ! klon taille de la grille |
---|
| 2574 | ! debut logical: 1er appel a la physique (initialisation) |
---|
| 2575 | ! |
---|
| 2576 | ! output: |
---|
| 2577 | ! lmt_sst SST lues dans le fichier de CL |
---|
| 2578 | ! lmt_alb Albedo lu |
---|
| 2579 | ! lmt_rug longueur de rugosité lue |
---|
| 2580 | ! pctsrf_new sous-maille fractionnelle |
---|
| 2581 | ! |
---|
| 2582 | |
---|
| 2583 | |
---|
| 2584 | ! Parametres d'entree |
---|
| 2585 | integer, intent(IN) :: itime |
---|
| 2586 | real , intent(IN) :: dtime |
---|
| 2587 | integer, intent(IN) :: jour |
---|
| 2588 | integer, intent(IN) :: nisurf |
---|
| 2589 | integer, intent(IN) :: knon |
---|
| 2590 | integer, intent(IN) :: klon |
---|
| 2591 | integer, dimension(klon), intent(in) :: knindex |
---|
| 2592 | logical, intent(IN) :: debut |
---|
| 2593 | |
---|
| 2594 | ! Parametres de sortie |
---|
| 2595 | real, intent(out), dimension(klon) :: lmt_alb |
---|
| 2596 | real, intent(out), dimension(klon) :: lmt_rug |
---|
| 2597 | |
---|
| 2598 | ! Variables locales |
---|
| 2599 | integer :: ii |
---|
| 2600 | integer,save :: lmt_pas ! frequence de lecture des conditions limites |
---|
| 2601 | ! (en pas de physique) |
---|
| 2602 | logical,save :: deja_lu_sur! pour indiquer que le jour a lire a deja |
---|
| 2603 | ! lu pour une surface precedente |
---|
| 2604 | integer,save :: jour_lu_sur |
---|
| 2605 | integer :: ierr |
---|
| 2606 | character (len = 20) :: modname = 'interfsur_lim' |
---|
| 2607 | character (len = 80) :: abort_message |
---|
| 2608 | character (len = 20),save :: fich ='limit.nc' |
---|
| 2609 | logical,save :: newlmt = .false. |
---|
| 2610 | logical,save :: check = .false. |
---|
| 2611 | ! Champs lus dans le fichier de CL |
---|
| 2612 | real, allocatable , save, dimension(:) :: alb_lu, rug_lu |
---|
| 2613 | ! |
---|
| 2614 | ! quelques variables pour netcdf |
---|
| 2615 | ! |
---|
| 2616 | #include "netcdf.inc" |
---|
| 2617 | integer ,save :: nid, nvarid |
---|
| 2618 | integer, dimension(2),save :: start, epais |
---|
| 2619 | ! |
---|
| 2620 | ! Fin déclaration |
---|
| 2621 | ! |
---|
| 2622 | |
---|
| 2623 | if (debut) then |
---|
| 2624 | lmt_pas = nint(86400./dtime * 1.0) ! pour une lecture une fois par jour |
---|
| 2625 | jour_lu_sur = jour - 1 |
---|
| 2626 | allocate(alb_lu(klon)) |
---|
| 2627 | allocate(rug_lu(klon)) |
---|
| 2628 | endif |
---|
| 2629 | |
---|
| 2630 | if ((jour - jour_lu_sur) /= 0) deja_lu_sur = .false. |
---|
| 2631 | |
---|
| 2632 | if (check) write(*,*)modname,':: jour_lu_sur, deja_lu_sur', jour_lu_sur, deja_lu_sur |
---|
| 2633 | if (check) write(*,*)modname,':: itime, lmt_pas', itime, lmt_pas |
---|
| 2634 | if (check) call flush(6) |
---|
| 2635 | |
---|
| 2636 | ! Tester d'abord si c'est le moment de lire le fichier |
---|
| 2637 | if (mod(itime-1, lmt_pas) == 0 .and. .not. deja_lu_sur) then |
---|
| 2638 | ! |
---|
| 2639 | ! Ouverture du fichier |
---|
| 2640 | ! |
---|
| 2641 | fich = trim(fich) |
---|
| 2642 | IF (check) WRITE(*,*)modname,' ouverture fichier ',fich |
---|
| 2643 | if (check) CALL flush(6) |
---|
| 2644 | ierr = NF_OPEN (fich, NF_NOWRITE,nid) |
---|
| 2645 | if (ierr.NE.NF_NOERR) then |
---|
| 2646 | abort_message = 'Pb d''ouverture du fichier de conditions aux limites' |
---|
| 2647 | call abort_gcm(modname,abort_message,1) |
---|
| 2648 | endif |
---|
| 2649 | ! |
---|
| 2650 | ! La tranche de donnees a lire: |
---|
| 2651 | |
---|
| 2652 | start(1) = 1 |
---|
| 2653 | start(2) = jour |
---|
| 2654 | epais(1) = klon |
---|
| 2655 | epais(2) = 1 |
---|
| 2656 | ! |
---|
| 2657 | ! Lecture Albedo |
---|
| 2658 | ! |
---|
| 2659 | ierr = NF_INQ_VARID(nid, 'ALB', nvarid) |
---|
| 2660 | if (ierr /= NF_NOERR) then |
---|
| 2661 | abort_message = 'Le champ <ALB> est absent' |
---|
| 2662 | call abort_gcm(modname,abort_message,1) |
---|
| 2663 | endif |
---|
| 2664 | #ifdef NC_DOUBLE |
---|
| 2665 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais, alb_lu) |
---|
| 2666 | #else |
---|
| 2667 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais, alb_lu) |
---|
| 2668 | #endif |
---|
| 2669 | if (ierr /= NF_NOERR) then |
---|
| 2670 | abort_message = 'Lecture echouee pour <ALB>' |
---|
| 2671 | call abort_gcm(modname,abort_message,1) |
---|
| 2672 | endif |
---|
| 2673 | ! |
---|
| 2674 | ! Lecture rugosité |
---|
| 2675 | ! |
---|
| 2676 | ierr = NF_INQ_VARID(nid, 'RUG', nvarid) |
---|
| 2677 | if (ierr /= NF_NOERR) then |
---|
| 2678 | abort_message = 'Le champ <RUG> est absent' |
---|
| 2679 | call abort_gcm(modname,abort_message,1) |
---|
| 2680 | endif |
---|
| 2681 | #ifdef NC_DOUBLE |
---|
| 2682 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais, rug_lu) |
---|
| 2683 | #else |
---|
| 2684 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais, rug_lu) |
---|
| 2685 | #endif |
---|
| 2686 | if (ierr /= NF_NOERR) then |
---|
| 2687 | abort_message = 'Lecture echouee pour <RUG>' |
---|
| 2688 | call abort_gcm(modname,abort_message,1) |
---|
| 2689 | endif |
---|
| 2690 | |
---|
| 2691 | ! |
---|
| 2692 | ! Fin de lecture |
---|
| 2693 | ! |
---|
| 2694 | ierr = NF_CLOSE(nid) |
---|
| 2695 | deja_lu_sur = .true. |
---|
| 2696 | jour_lu_sur = jour |
---|
| 2697 | endif |
---|
| 2698 | ! |
---|
| 2699 | ! Recopie des variables dans les champs de sortie |
---|
| 2700 | ! |
---|
| 2701 | !!$ lmt_alb(:) = 0.0 |
---|
| 2702 | !!$ lmt_rug(:) = 0.0 |
---|
| 2703 | lmt_alb(:) = 999999. |
---|
| 2704 | lmt_rug(:) = 999999. |
---|
| 2705 | DO ii = 1, knon |
---|
| 2706 | lmt_alb(ii) = alb_lu(knindex(ii)) |
---|
| 2707 | lmt_rug(ii) = rug_lu(knindex(ii)) |
---|
| 2708 | enddo |
---|
| 2709 | |
---|
| 2710 | END SUBROUTINE interfsur_lim |
---|
| 2711 | |
---|
| 2712 | ! |
---|
| 2713 | !######################################################################### |
---|
| 2714 | ! |
---|
| 2715 | |
---|
| 2716 | SUBROUTINE calcul_fluxs( klon, knon, nisurf, dtime, & |
---|
| 2717 | & tsurf, p1lay, cal, beta, coef1lay, ps, & |
---|
| 2718 | & precip_rain, precip_snow, snow, qsurf, & |
---|
| 2719 | & radsol, dif_grnd, t1lay, q1lay, u1lay, v1lay, & |
---|
| 2720 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 2721 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
| 2722 | |
---|
| 2723 | ! Cette routine calcule les fluxs en h et q a l'interface et eventuellement |
---|
| 2724 | ! une temperature de surface (au cas ou ok_veget = false) |
---|
| 2725 | ! |
---|
| 2726 | ! L. Fairhead 4/2000 |
---|
| 2727 | ! |
---|
| 2728 | ! input: |
---|
| 2729 | ! knon nombre de points a traiter |
---|
| 2730 | ! nisurf surface a traiter |
---|
| 2731 | ! tsurf temperature de surface |
---|
| 2732 | ! p1lay pression 1er niveau (milieu de couche) |
---|
| 2733 | ! cal capacite calorifique du sol |
---|
| 2734 | ! beta evap reelle |
---|
| 2735 | ! coef1lay coefficient d'echange |
---|
| 2736 | ! ps pression au sol |
---|
| 2737 | ! precip_rain precipitations liquides |
---|
| 2738 | ! precip_snow precipitations solides |
---|
| 2739 | ! snow champs hauteur de neige |
---|
| 2740 | ! runoff runoff en cas de trop plein |
---|
| 2741 | ! petAcoef coeff. A de la resolution de la CL pour t |
---|
| 2742 | ! peqAcoef coeff. A de la resolution de la CL pour q |
---|
| 2743 | ! petBcoef coeff. B de la resolution de la CL pour t |
---|
| 2744 | ! peqBcoef coeff. B de la resolution de la CL pour q |
---|
| 2745 | ! radsol rayonnement net aus sol (LW + SW) |
---|
| 2746 | ! dif_grnd coeff. diffusion vers le sol profond |
---|
| 2747 | ! |
---|
| 2748 | ! output: |
---|
| 2749 | ! tsurf_new temperature au sol |
---|
| 2750 | ! qsurf humidite de l'air au dessus du sol |
---|
| 2751 | ! fluxsens flux de chaleur sensible |
---|
| 2752 | ! fluxlat flux de chaleur latente |
---|
| 2753 | ! dflux_s derivee du flux de chaleur sensible / Ts |
---|
| 2754 | ! dflux_l derivee du flux de chaleur latente / Ts |
---|
| 2755 | ! |
---|
| 2756 | |
---|
| 2757 | #include "YOETHF.inc" |
---|
| 2758 | #include "FCTTRE.inc" |
---|
| 2759 | #include "indicesol.inc" |
---|
| 2760 | |
---|
| 2761 | ! Parametres d'entree |
---|
| 2762 | integer, intent(IN) :: knon, nisurf, klon |
---|
| 2763 | real , intent(IN) :: dtime |
---|
| 2764 | real, dimension(klon), intent(IN) :: petAcoef, peqAcoef |
---|
| 2765 | real, dimension(klon), intent(IN) :: petBcoef, peqBcoef |
---|
| 2766 | real, dimension(klon), intent(IN) :: ps, q1lay |
---|
| 2767 | real, dimension(klon), intent(IN) :: tsurf, p1lay, cal, beta, coef1lay |
---|
| 2768 | real, dimension(klon), intent(IN) :: precip_rain, precip_snow |
---|
| 2769 | real, dimension(klon), intent(IN) :: radsol, dif_grnd |
---|
| 2770 | real, dimension(klon), intent(IN) :: t1lay, u1lay, v1lay |
---|
| 2771 | real, dimension(klon), intent(INOUT) :: snow, qsurf |
---|
| 2772 | |
---|
| 2773 | ! Parametres sorties |
---|
| 2774 | real, dimension(klon), intent(OUT):: tsurf_new, evap, fluxsens, fluxlat |
---|
| 2775 | real, dimension(klon), intent(OUT):: dflux_s, dflux_l |
---|
| 2776 | |
---|
| 2777 | ! Variables locales |
---|
| 2778 | integer :: i |
---|
| 2779 | real, dimension(klon) :: zx_mh, zx_nh, zx_oh |
---|
| 2780 | real, dimension(klon) :: zx_mq, zx_nq, zx_oq |
---|
| 2781 | real, dimension(klon) :: zx_pkh, zx_dq_s_dt, zx_qsat, zx_coef |
---|
| 2782 | real, dimension(klon) :: zx_sl, zx_k1 |
---|
| 2783 | real, dimension(klon) :: zx_q_0 , d_ts |
---|
| 2784 | real :: zdelta, zcvm5, zx_qs, zcor, zx_dq_s_dh |
---|
| 2785 | real :: bilan_f, fq_fonte |
---|
| 2786 | REAL :: subli, fsno |
---|
| 2787 | REAL :: qsat_new, q1_new |
---|
| 2788 | real, parameter :: t_grnd = 271.35, t_coup = 273.15 |
---|
| 2789 | !! PB temporaire en attendant mieux pour le modele de neige |
---|
| 2790 | REAL, parameter :: chasno = 3.334E+05/(2.3867E+06*0.15) |
---|
| 2791 | ! |
---|
| 2792 | logical, save :: check = .false. |
---|
| 2793 | character (len = 20) :: modname = 'calcul_fluxs' |
---|
| 2794 | logical, save :: fonte_neige = .false. |
---|
| 2795 | real, save :: max_eau_sol = 150.0 |
---|
| 2796 | character (len = 80) :: abort_message |
---|
| 2797 | logical,save :: first = .true.,second=.false. |
---|
| 2798 | |
---|
| 2799 | if (check) write(*,*)'Entree ', modname,' surface = ',nisurf |
---|
| 2800 | |
---|
| 2801 | IF (check) THEN |
---|
| 2802 | WRITE(*,*)' radsol (min, max)' & |
---|
| 2803 | & , MINVAL(radsol(1:knon)), MAXVAL(radsol(1:knon)) |
---|
| 2804 | CALL flush(6) |
---|
| 2805 | ENDIF |
---|
| 2806 | |
---|
| 2807 | if (size(coastalflow) /= knon .AND. nisurf == is_ter) then |
---|
| 2808 | write(*,*)'Bizarre, le nombre de points continentaux' |
---|
| 2809 | write(*,*)'a change entre deux appels. J''arrete ...' |
---|
| 2810 | abort_message='Pb run_off' |
---|
| 2811 | call abort_gcm(modname,abort_message,1) |
---|
| 2812 | endif |
---|
| 2813 | ! |
---|
| 2814 | ! Traitement neige et humidite du sol |
---|
| 2815 | ! |
---|
| 2816 | !!$ WRITE(*,*)'test calcul_flux, surface ', nisurf |
---|
| 2817 | !!PB test |
---|
| 2818 | !!$ if (nisurf == is_oce) then |
---|
| 2819 | !!$ snow = 0. |
---|
| 2820 | !!$ qsol = max_eau_sol |
---|
| 2821 | !!$ else |
---|
| 2822 | !!$ where (precip_snow > 0.) snow = snow + (precip_snow * dtime) |
---|
| 2823 | !!$ where (snow > epsilon(snow)) snow = max(0.0, snow - (evap * dtime)) |
---|
| 2824 | !!$! snow = max(0.0, snow + (precip_snow - evap) * dtime) |
---|
| 2825 | !!$ where (precip_rain > 0.) qsol = qsol + (precip_rain - evap) * dtime |
---|
| 2826 | !!$ endif |
---|
| 2827 | !!$ IF (nisurf /= is_ter) qsol = max_eau_sol |
---|
| 2828 | |
---|
| 2829 | |
---|
| 2830 | ! |
---|
| 2831 | ! Initialisation |
---|
| 2832 | ! |
---|
| 2833 | evap = 0. |
---|
| 2834 | fluxsens=0. |
---|
| 2835 | fluxlat=0. |
---|
| 2836 | dflux_s = 0. |
---|
| 2837 | dflux_l = 0. |
---|
| 2838 | ! |
---|
| 2839 | ! zx_qs = qsat en kg/kg |
---|
| 2840 | ! |
---|
| 2841 | DO i = 1, knon |
---|
| 2842 | zx_pkh(i) = (ps(i)/ps(i))**RKAPPA |
---|
| 2843 | IF (thermcep) THEN |
---|
| 2844 | zdelta=MAX(0.,SIGN(1.,rtt-tsurf(i))) |
---|
| 2845 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
| 2846 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q1lay(i)) |
---|
| 2847 | zx_qs= r2es * FOEEW(tsurf(i),zdelta)/ps(i) |
---|
| 2848 | zx_qs=MIN(0.5,zx_qs) |
---|
| 2849 | zcor=1./(1.-retv*zx_qs) |
---|
| 2850 | zx_qs=zx_qs*zcor |
---|
| 2851 | zx_dq_s_dh = FOEDE(tsurf(i),zdelta,zcvm5,zx_qs,zcor) & |
---|
| 2852 | & /RLVTT / zx_pkh(i) |
---|
| 2853 | ELSE |
---|
| 2854 | IF (tsurf(i).LT.t_coup) THEN |
---|
| 2855 | zx_qs = qsats(tsurf(i)) / ps(i) |
---|
| 2856 | zx_dq_s_dh = dqsats(tsurf(i),zx_qs)/RLVTT & |
---|
| 2857 | & / zx_pkh(i) |
---|
| 2858 | ELSE |
---|
| 2859 | zx_qs = qsatl(tsurf(i)) / ps(i) |
---|
| 2860 | zx_dq_s_dh = dqsatl(tsurf(i),zx_qs)/RLVTT & |
---|
| 2861 | & / zx_pkh(i) |
---|
| 2862 | ENDIF |
---|
| 2863 | ENDIF |
---|
| 2864 | zx_dq_s_dt(i) = RCPD * zx_pkh(i) * zx_dq_s_dh |
---|
| 2865 | zx_qsat(i) = zx_qs |
---|
| 2866 | zx_coef(i) = coef1lay(i) & |
---|
| 2867 | & * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2)) & |
---|
| 2868 | & * p1lay(i)/(RD*t1lay(i)) |
---|
| 2869 | |
---|
| 2870 | ENDDO |
---|
| 2871 | |
---|
| 2872 | |
---|
| 2873 | ! === Calcul de la temperature de surface === |
---|
| 2874 | ! |
---|
| 2875 | ! zx_sl = chaleur latente d'evaporation ou de sublimation |
---|
| 2876 | ! |
---|
| 2877 | do i = 1, knon |
---|
| 2878 | zx_sl(i) = RLVTT |
---|
| 2879 | if (tsurf(i) .LT. RTT) zx_sl(i) = RLSTT |
---|
| 2880 | zx_k1(i) = zx_coef(i) |
---|
| 2881 | enddo |
---|
| 2882 | |
---|
| 2883 | |
---|
| 2884 | do i = 1, knon |
---|
| 2885 | ! Q |
---|
| 2886 | zx_oq(i) = 1. - (beta(i) * zx_k1(i) * peqBcoef(i) * dtime) |
---|
| 2887 | zx_mq(i) = beta(i) * zx_k1(i) * & |
---|
| 2888 | & (peqAcoef(i) - zx_qsat(i) & |
---|
| 2889 | & + zx_dq_s_dt(i) * tsurf(i)) & |
---|
| 2890 | & / zx_oq(i) |
---|
| 2891 | zx_nq(i) = beta(i) * zx_k1(i) * (-1. * zx_dq_s_dt(i)) & |
---|
| 2892 | & / zx_oq(i) |
---|
| 2893 | |
---|
| 2894 | ! H |
---|
| 2895 | zx_oh(i) = 1. - (zx_k1(i) * petBcoef(i) * dtime) |
---|
| 2896 | zx_mh(i) = zx_k1(i) * petAcoef(i) / zx_oh(i) |
---|
| 2897 | zx_nh(i) = - (zx_k1(i) * RCPD * zx_pkh(i))/ zx_oh(i) |
---|
| 2898 | |
---|
| 2899 | ! Tsurface |
---|
| 2900 | tsurf_new(i) = (tsurf(i) + cal(i)/(RCPD * zx_pkh(i)) * dtime * & |
---|
| 2901 | & (radsol(i) + zx_mh(i) + zx_sl(i) * zx_mq(i)) & |
---|
| 2902 | & + dif_grnd(i) * t_grnd * dtime)/ & |
---|
| 2903 | & ( 1. - dtime * cal(i)/(RCPD * zx_pkh(i)) * ( & |
---|
| 2904 | & zx_nh(i) + zx_sl(i) * zx_nq(i)) & |
---|
| 2905 | & + dtime * dif_grnd(i)) |
---|
| 2906 | |
---|
| 2907 | ! |
---|
| 2908 | ! Y'a-t-il fonte de neige? |
---|
| 2909 | ! |
---|
| 2910 | ! fonte_neige = (nisurf /= is_oce) .AND. & |
---|
| 2911 | ! & (snow(i) > epsfra .OR. nisurf == is_sic .OR. nisurf == is_lic) & |
---|
| 2912 | ! & .AND. (tsurf_new(i) >= RTT) |
---|
| 2913 | ! if (fonte_neige) tsurf_new(i) = RTT |
---|
| 2914 | d_ts(i) = tsurf_new(i) - tsurf(i) |
---|
| 2915 | ! zx_h_ts(i) = tsurf_new(i) * RCPD * zx_pkh(i) |
---|
| 2916 | ! zx_q_0(i) = zx_qsat(i) + zx_dq_s_dt(i) * d_ts(i) |
---|
| 2917 | !== flux_q est le flux de vapeur d'eau: kg/(m**2 s) positive vers bas |
---|
| 2918 | !== flux_t est le flux de cpt (energie sensible): j/(m**2 s) |
---|
| 2919 | evap(i) = - zx_mq(i) - zx_nq(i) * tsurf_new(i) |
---|
| 2920 | fluxlat(i) = - evap(i) * zx_sl(i) |
---|
| 2921 | fluxsens(i) = zx_mh(i) + zx_nh(i) * tsurf_new(i) |
---|
| 2922 | ! Derives des flux dF/dTs (W m-2 K-1): |
---|
| 2923 | dflux_s(i) = zx_nh(i) |
---|
| 2924 | dflux_l(i) = (zx_sl(i) * zx_nq(i)) |
---|
| 2925 | ! Nouvelle valeure de l'humidite au dessus du sol |
---|
| 2926 | qsat_new=zx_qsat(i) + zx_dq_s_dt(i) * d_ts(i) |
---|
| 2927 | q1_new = peqAcoef(i) - peqBcoef(i)*evap(i)*dtime |
---|
| 2928 | qsurf(i)=q1_new*(1.-beta(i)) + beta(i)*qsat_new |
---|
| 2929 | ! |
---|
| 2930 | ! en cas de fonte de neige |
---|
| 2931 | ! |
---|
| 2932 | ! if (fonte_neige) then |
---|
| 2933 | ! bilan_f = radsol(i) + fluxsens(i) - (zx_sl(i) * evap (i)) - & |
---|
| 2934 | ! & dif_grnd(i) * (tsurf_new(i) - t_grnd) - & |
---|
| 2935 | ! & RCPD * (zx_pkh(i))/cal(i)/dtime * (tsurf_new(i) - tsurf(i)) |
---|
| 2936 | ! bilan_f = max(0., bilan_f) |
---|
| 2937 | ! fq_fonte = bilan_f / zx_sl(i) |
---|
| 2938 | ! snow(i) = max(0., snow(i) - fq_fonte * dtime) |
---|
| 2939 | ! qsol(i) = qsol(i) + (fq_fonte * dtime) |
---|
| 2940 | ! endif |
---|
| 2941 | !!$ if (nisurf == is_ter) & |
---|
| 2942 | !!$ & run_off(i) = run_off(i) + max(qsol(i) - max_eau_sol, 0.0) |
---|
| 2943 | !!$ qsol(i) = min(qsol(i), max_eau_sol) |
---|
| 2944 | ENDDO |
---|
| 2945 | |
---|
| 2946 | END SUBROUTINE calcul_fluxs |
---|
| 2947 | ! |
---|
| 2948 | !######################################################################### |
---|
| 2949 | ! |
---|
| 2950 | SUBROUTINE gath2cpl(champ_in, champ_out, klon, knon, iim, jjm, knindex) |
---|
| 2951 | |
---|
| 2952 | ! Cette routine ecrit un champ 'gathered' sur la grille 2D pour le passer |
---|
| 2953 | ! au coupleur. |
---|
| 2954 | ! |
---|
| 2955 | ! |
---|
| 2956 | ! input: |
---|
| 2957 | ! champ_in champ sur la grille gathere |
---|
| 2958 | ! knon nombre de points dans le domaine a traiter |
---|
| 2959 | ! knindex index des points de la surface a traiter |
---|
| 2960 | ! klon taille de la grille |
---|
| 2961 | ! iim,jjm dimension de la grille 2D |
---|
| 2962 | ! |
---|
| 2963 | ! output: |
---|
| 2964 | ! champ_out champ sur la grille 2D |
---|
| 2965 | ! |
---|
| 2966 | ! input |
---|
| 2967 | integer :: klon, knon, iim, jjm |
---|
| 2968 | real, dimension(klon) :: champ_in |
---|
| 2969 | integer, dimension(klon) :: knindex |
---|
| 2970 | ! output |
---|
| 2971 | real, dimension(iim,jjm+1) :: champ_out |
---|
| 2972 | ! local |
---|
| 2973 | integer :: i, ig, j |
---|
| 2974 | real, dimension(klon) :: tamp |
---|
| 2975 | |
---|
| 2976 | tamp = 0. |
---|
| 2977 | do i = 1, knon |
---|
| 2978 | ig = knindex(i) |
---|
| 2979 | tamp(ig) = champ_in(i) |
---|
| 2980 | enddo |
---|
| 2981 | ig = 1 |
---|
| 2982 | champ_out(:,1) = tamp(ig) |
---|
| 2983 | do j = 2, jjm |
---|
| 2984 | do i = 1, iim |
---|
| 2985 | ig = ig + 1 |
---|
| 2986 | champ_out(i,j) = tamp(ig) |
---|
| 2987 | enddo |
---|
| 2988 | enddo |
---|
| 2989 | ig = ig + 1 |
---|
| 2990 | champ_out(:,jjm+1) = tamp(ig) |
---|
| 2991 | |
---|
| 2992 | END SUBROUTINE gath2cpl |
---|
| 2993 | ! |
---|
| 2994 | !######################################################################### |
---|
| 2995 | ! |
---|
| 2996 | SUBROUTINE cpl2gath(champ_in, champ_out, klon, knon, iim, jjm, knindex) |
---|
| 2997 | |
---|
| 2998 | ! Cette routine ecrit un champ 'gathered' sur la grille 2D pour le passer |
---|
| 2999 | ! au coupleur. |
---|
| 3000 | ! |
---|
| 3001 | ! |
---|
| 3002 | ! input: |
---|
| 3003 | ! champ_in champ sur la grille gathere |
---|
| 3004 | ! knon nombre de points dans le domaine a traiter |
---|
| 3005 | ! knindex index des points de la surface a traiter |
---|
| 3006 | ! klon taille de la grille |
---|
| 3007 | ! iim,jjm dimension de la grille 2D |
---|
| 3008 | ! |
---|
| 3009 | ! output: |
---|
| 3010 | ! champ_out champ sur la grille 2D |
---|
| 3011 | ! |
---|
| 3012 | ! input |
---|
| 3013 | integer :: klon, knon, iim, jjm |
---|
| 3014 | real, dimension(iim,jjm+1) :: champ_in |
---|
| 3015 | integer, dimension(klon) :: knindex |
---|
| 3016 | ! output |
---|
| 3017 | real, dimension(klon) :: champ_out |
---|
| 3018 | ! local |
---|
| 3019 | integer :: i, ig, j |
---|
| 3020 | real, dimension(klon) :: tamp |
---|
| 3021 | logical ,save :: check = .false. |
---|
| 3022 | |
---|
| 3023 | ig = 1 |
---|
| 3024 | tamp(ig) = champ_in(1,1) |
---|
| 3025 | do j = 2, jjm |
---|
| 3026 | do i = 1, iim |
---|
| 3027 | ig = ig + 1 |
---|
| 3028 | tamp(ig) = champ_in(i,j) |
---|
| 3029 | enddo |
---|
| 3030 | enddo |
---|
| 3031 | ig = ig + 1 |
---|
| 3032 | tamp(ig) = champ_in(1,jjm+1) |
---|
| 3033 | |
---|
| 3034 | do i = 1, knon |
---|
| 3035 | ig = knindex(i) |
---|
| 3036 | champ_out(i) = tamp(ig) |
---|
| 3037 | enddo |
---|
| 3038 | |
---|
| 3039 | END SUBROUTINE cpl2gath |
---|
| 3040 | ! |
---|
| 3041 | !######################################################################### |
---|
| 3042 | ! |
---|
| 3043 | SUBROUTINE albsno(klon, knon,dtime,agesno,alb_neig_grid, precip_snow) |
---|
| 3044 | IMPLICIT none |
---|
| 3045 | |
---|
| 3046 | INTEGER :: klon, knon |
---|
| 3047 | INTEGER, PARAMETER :: nvm = 8 |
---|
| 3048 | REAL :: dtime |
---|
| 3049 | REAL, dimension(klon,nvm) :: veget |
---|
| 3050 | REAL, DIMENSION(klon) :: alb_neig_grid, agesno, precip_snow |
---|
| 3051 | |
---|
| 3052 | INTEGER :: i, nv |
---|
| 3053 | |
---|
| 3054 | REAL, DIMENSION(nvm),SAVE :: init, decay |
---|
| 3055 | REAL :: as |
---|
| 3056 | DATA init /0.55, 0.14, 0.18, 0.29, 0.15, 0.15, 0.14, 0./ |
---|
| 3057 | DATA decay/0.30, 0.67, 0.63, 0.45, 0.40, 0.14, 0.06, 1./ |
---|
| 3058 | |
---|
| 3059 | veget = 0. |
---|
| 3060 | veget(:,1) = 1. ! desert partout |
---|
| 3061 | DO i = 1, knon |
---|
| 3062 | alb_neig_grid(i) = 0.0 |
---|
| 3063 | ENDDO |
---|
| 3064 | DO nv = 1, nvm |
---|
| 3065 | DO i = 1, knon |
---|
| 3066 | as = init(nv)+decay(nv)*EXP(-agesno(i)/5.) |
---|
| 3067 | alb_neig_grid(i) = alb_neig_grid(i) + veget(i,nv)*as |
---|
| 3068 | ENDDO |
---|
| 3069 | ENDDO |
---|
| 3070 | ! |
---|
| 3071 | !! modilation en fonction de l'age de la neige |
---|
| 3072 | ! |
---|
| 3073 | DO i = 1, knon |
---|
| 3074 | agesno(i) = (agesno(i) + (1.-agesno(i)/50.)*dtime/86400.)& |
---|
| 3075 | & * EXP(-1.*MAX(0.0,precip_snow(i))*dtime/0.3) |
---|
| 3076 | agesno(i) = MAX(agesno(i),0.0) |
---|
| 3077 | ENDDO |
---|
| 3078 | |
---|
| 3079 | END SUBROUTINE albsno |
---|
| 3080 | ! |
---|
| 3081 | !######################################################################### |
---|
| 3082 | ! |
---|
| 3083 | |
---|
| 3084 | SUBROUTINE fonte_neige( klon, knon, nisurf, dtime, & |
---|
| 3085 | & tsurf, p1lay, cal, beta, coef1lay, ps, & |
---|
| 3086 | & precip_rain, precip_snow, snow, qsol, & |
---|
| 3087 | & radsol, dif_grnd, t1lay, q1lay, u1lay, v1lay, & |
---|
| 3088 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
| 3089 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & |
---|
| 3090 | & fqcalving,ffonte,run_off_lic_0) |
---|
| 3091 | |
---|
| 3092 | ! Routine de traitement de la fonte de la neige dans le cas du traitement |
---|
| 3093 | ! de sol simplifié |
---|
| 3094 | ! |
---|
| 3095 | ! LF 03/2001 |
---|
| 3096 | ! input: |
---|
| 3097 | ! knon nombre de points a traiter |
---|
| 3098 | ! nisurf surface a traiter |
---|
| 3099 | ! tsurf temperature de surface |
---|
| 3100 | ! p1lay pression 1er niveau (milieu de couche) |
---|
| 3101 | ! cal capacite calorifique du sol |
---|
| 3102 | ! beta evap reelle |
---|
| 3103 | ! coef1lay coefficient d'echange |
---|
| 3104 | ! ps pression au sol |
---|
| 3105 | ! precip_rain precipitations liquides |
---|
| 3106 | ! precip_snow precipitations solides |
---|
| 3107 | ! snow champs hauteur de neige |
---|
| 3108 | ! qsol hauteur d'eau contenu dans le sol |
---|
| 3109 | ! runoff runoff en cas de trop plein |
---|
| 3110 | ! petAcoef coeff. A de la resolution de la CL pour t |
---|
| 3111 | ! peqAcoef coeff. A de la resolution de la CL pour q |
---|
| 3112 | ! petBcoef coeff. B de la resolution de la CL pour t |
---|
| 3113 | ! peqBcoef coeff. B de la resolution de la CL pour q |
---|
| 3114 | ! radsol rayonnement net aus sol (LW + SW) |
---|
| 3115 | ! dif_grnd coeff. diffusion vers le sol profond |
---|
| 3116 | ! |
---|
| 3117 | ! output: |
---|
| 3118 | ! tsurf_new temperature au sol |
---|
| 3119 | ! fluxsens flux de chaleur sensible |
---|
| 3120 | ! fluxlat flux de chaleur latente |
---|
| 3121 | ! dflux_s derivee du flux de chaleur sensible / Ts |
---|
| 3122 | ! dflux_l derivee du flux de chaleur latente / Ts |
---|
| 3123 | ! in/out: |
---|
| 3124 | ! run_off_lic_0 run off glacier du pas de temps précedent |
---|
| 3125 | ! |
---|
| 3126 | |
---|
| 3127 | #include "YOETHF.inc" |
---|
[557] | 3128 | !rv#include "FCTTRE.inc" |
---|
[524] | 3129 | #include "indicesol.inc" |
---|
| 3130 | !IM cf JLD |
---|
| 3131 | #include "YOMCST.inc" |
---|
| 3132 | |
---|
| 3133 | ! Parametres d'entree |
---|
| 3134 | integer, intent(IN) :: knon, nisurf, klon |
---|
| 3135 | real , intent(IN) :: dtime |
---|
| 3136 | real, dimension(klon), intent(IN) :: petAcoef, peqAcoef |
---|
| 3137 | real, dimension(klon), intent(IN) :: petBcoef, peqBcoef |
---|
| 3138 | real, dimension(klon), intent(IN) :: ps, q1lay |
---|
| 3139 | real, dimension(klon), intent(IN) :: tsurf, p1lay, cal, beta, coef1lay |
---|
| 3140 | real, dimension(klon), intent(IN) :: precip_rain, precip_snow |
---|
| 3141 | real, dimension(klon), intent(IN) :: radsol, dif_grnd |
---|
| 3142 | real, dimension(klon), intent(IN) :: t1lay, u1lay, v1lay |
---|
| 3143 | real, dimension(klon), intent(INOUT) :: snow, qsol |
---|
| 3144 | |
---|
| 3145 | ! Parametres sorties |
---|
| 3146 | real, dimension(klon), intent(INOUT):: tsurf_new, evap, fluxsens, fluxlat |
---|
| 3147 | real, dimension(klon), intent(INOUT):: dflux_s, dflux_l |
---|
| 3148 | ! Flux thermique utiliser pour fondre la neige |
---|
| 3149 | real, dimension(klon), intent(INOUT):: ffonte |
---|
| 3150 | ! Flux d'eau "perdue" par la surface et necessaire pour que limiter la |
---|
| 3151 | ! hauteur de neige, en kg/m2/s |
---|
| 3152 | real, dimension(klon), intent(INOUT):: fqcalving |
---|
| 3153 | real, dimension(klon), intent(INOUT):: run_off_lic_0 |
---|
| 3154 | ! Variables locales |
---|
| 3155 | ! Masse maximum de neige (kg/m2). Au dessus de ce seuil, la neige |
---|
| 3156 | ! en exces "s'ecoule" (calving) |
---|
| 3157 | ! real, parameter :: snow_max=1. |
---|
| 3158 | !IM cf JLD/GK |
---|
| 3159 | real, parameter :: snow_max=3000. |
---|
| 3160 | integer :: i |
---|
| 3161 | real, dimension(klon) :: zx_mh, zx_nh, zx_oh |
---|
| 3162 | real, dimension(klon) :: zx_mq, zx_nq, zx_oq |
---|
| 3163 | real, dimension(klon) :: zx_pkh, zx_dq_s_dt, zx_qsat, zx_coef |
---|
| 3164 | real, dimension(klon) :: zx_sl, zx_k1 |
---|
| 3165 | real, dimension(klon) :: zx_q_0 , d_ts |
---|
| 3166 | real :: zdelta, zcvm5, zx_qs, zcor, zx_dq_s_dh |
---|
| 3167 | real :: bilan_f, fq_fonte |
---|
| 3168 | REAL :: subli, fsno |
---|
| 3169 | REAL, DIMENSION(klon) :: bil_eau_s, snow_evap |
---|
| 3170 | real, parameter :: t_grnd = 271.35, t_coup = 273.15 |
---|
| 3171 | !! PB temporaire en attendant mieux pour le modele de neige |
---|
| 3172 | ! REAL, parameter :: chasno = RLMLT/(2.3867E+06*0.15) |
---|
| 3173 | REAL, parameter :: chasno = 3.334E+05/(2.3867E+06*0.15) |
---|
| 3174 | !IM cf JLD/ GKtest |
---|
| 3175 | REAL, parameter :: chaice = 3.334E+05/(2.3867E+06*0.15) |
---|
| 3176 | ! fin GKtest |
---|
| 3177 | ! |
---|
| 3178 | logical, save :: check = .FALSE. |
---|
| 3179 | character (len = 20) :: modname = 'fonte_neige' |
---|
| 3180 | logical, save :: neige_fond = .false. |
---|
| 3181 | real, save :: max_eau_sol = 150.0 |
---|
| 3182 | character (len = 80) :: abort_message |
---|
| 3183 | logical,save :: first = .true.,second=.false. |
---|
| 3184 | real :: coeff_rel |
---|
[557] | 3185 | #include "FCTTRE.inc" |
---|
[524] | 3186 | |
---|
| 3187 | |
---|
| 3188 | if (check) write(*,*)'Entree ', modname,' surface = ',nisurf |
---|
| 3189 | |
---|
| 3190 | ! Initialisations |
---|
| 3191 | coeff_rel = dtime/(tau_calv * rday) |
---|
| 3192 | bil_eau_s(:) = 0. |
---|
| 3193 | DO i = 1, knon |
---|
| 3194 | zx_pkh(i) = (ps(i)/ps(i))**RKAPPA |
---|
| 3195 | IF (thermcep) THEN |
---|
| 3196 | zdelta=MAX(0.,SIGN(1.,rtt-tsurf(i))) |
---|
| 3197 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
| 3198 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q1lay(i)) |
---|
| 3199 | zx_qs= r2es * FOEEW(tsurf(i),zdelta)/ps(i) |
---|
| 3200 | zx_qs=MIN(0.5,zx_qs) |
---|
| 3201 | zcor=1./(1.-retv*zx_qs) |
---|
| 3202 | zx_qs=zx_qs*zcor |
---|
| 3203 | zx_dq_s_dh = FOEDE(tsurf(i),zdelta,zcvm5,zx_qs,zcor) & |
---|
| 3204 | & /RLVTT / zx_pkh(i) |
---|
| 3205 | ELSE |
---|
| 3206 | IF (tsurf(i).LT.t_coup) THEN |
---|
| 3207 | zx_qs = qsats(tsurf(i)) / ps(i) |
---|
| 3208 | zx_dq_s_dh = dqsats(tsurf(i),zx_qs)/RLVTT & |
---|
| 3209 | & / zx_pkh(i) |
---|
| 3210 | ELSE |
---|
| 3211 | zx_qs = qsatl(tsurf(i)) / ps(i) |
---|
| 3212 | zx_dq_s_dh = dqsatl(tsurf(i),zx_qs)/RLVTT & |
---|
| 3213 | & / zx_pkh(i) |
---|
| 3214 | ENDIF |
---|
| 3215 | ENDIF |
---|
| 3216 | zx_dq_s_dt(i) = RCPD * zx_pkh(i) * zx_dq_s_dh |
---|
| 3217 | zx_qsat(i) = zx_qs |
---|
| 3218 | zx_coef(i) = coef1lay(i) & |
---|
| 3219 | & * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2)) & |
---|
| 3220 | & * p1lay(i)/(RD*t1lay(i)) |
---|
| 3221 | ENDDO |
---|
| 3222 | |
---|
| 3223 | |
---|
| 3224 | ! === Calcul de la temperature de surface === |
---|
| 3225 | ! |
---|
| 3226 | ! zx_sl = chaleur latente d'evaporation ou de sublimation |
---|
| 3227 | ! |
---|
| 3228 | do i = 1, knon |
---|
| 3229 | zx_sl(i) = RLVTT |
---|
| 3230 | if (tsurf(i) .LT. RTT) zx_sl(i) = RLSTT |
---|
| 3231 | zx_k1(i) = zx_coef(i) |
---|
| 3232 | enddo |
---|
| 3233 | |
---|
| 3234 | |
---|
| 3235 | do i = 1, knon |
---|
| 3236 | ! Q |
---|
| 3237 | zx_oq(i) = 1. - (beta(i) * zx_k1(i) * peqBcoef(i) * dtime) |
---|
| 3238 | zx_mq(i) = beta(i) * zx_k1(i) * & |
---|
| 3239 | & (peqAcoef(i) - zx_qsat(i) & |
---|
| 3240 | & + zx_dq_s_dt(i) * tsurf(i)) & |
---|
| 3241 | & / zx_oq(i) |
---|
| 3242 | zx_nq(i) = beta(i) * zx_k1(i) * (-1. * zx_dq_s_dt(i)) & |
---|
| 3243 | & / zx_oq(i) |
---|
| 3244 | |
---|
| 3245 | ! H |
---|
| 3246 | zx_oh(i) = 1. - (zx_k1(i) * petBcoef(i) * dtime) |
---|
| 3247 | zx_mh(i) = zx_k1(i) * petAcoef(i) / zx_oh(i) |
---|
| 3248 | zx_nh(i) = - (zx_k1(i) * RCPD * zx_pkh(i))/ zx_oh(i) |
---|
| 3249 | enddo |
---|
| 3250 | |
---|
| 3251 | |
---|
| 3252 | WHERE (precip_snow > 0.) snow = snow + (precip_snow * dtime) |
---|
| 3253 | snow_evap = 0. |
---|
| 3254 | WHERE (evap > 0. ) |
---|
| 3255 | snow_evap = MIN (snow / dtime, evap) |
---|
| 3256 | snow = snow - snow_evap * dtime |
---|
| 3257 | snow = MAX(0.0, snow) |
---|
| 3258 | end where |
---|
| 3259 | |
---|
| 3260 | ! bil_eau_s = bil_eau_s + (precip_rain * dtime) - (evap - snow_evap) * dtime |
---|
| 3261 | bil_eau_s = (precip_rain * dtime) - (evap - snow_evap) * dtime |
---|
| 3262 | |
---|
| 3263 | ! |
---|
| 3264 | ! Y'a-t-il fonte de neige? |
---|
| 3265 | ! |
---|
| 3266 | ffonte=0. |
---|
| 3267 | do i = 1, knon |
---|
| 3268 | neige_fond = ((snow(i) > epsfra .OR. nisurf == is_sic .OR. nisurf == is_lic) & |
---|
| 3269 | & .AND. tsurf_new(i) >= RTT) |
---|
| 3270 | if (neige_fond) then |
---|
| 3271 | fq_fonte = MIN( MAX((tsurf_new(i)-RTT )/chasno,0.0),snow(i)) |
---|
| 3272 | ffonte(i) = fq_fonte * RLMLT/dtime |
---|
| 3273 | snow(i) = max(0., snow(i) - fq_fonte) |
---|
| 3274 | bil_eau_s(i) = bil_eau_s(i) + fq_fonte |
---|
| 3275 | tsurf_new(i) = tsurf_new(i) - fq_fonte * chasno |
---|
| 3276 | !IM cf JLD OK |
---|
| 3277 | !IM cf JLD/ GKtest fonte aussi pour la glace |
---|
| 3278 | IF (nisurf == is_sic .OR. nisurf == is_lic ) THEN |
---|
| 3279 | fq_fonte = MAX((tsurf_new(i)-RTT )/chaice,0.0) |
---|
| 3280 | ffonte(i) = ffonte(i) + fq_fonte * RLMLT/dtime |
---|
| 3281 | bil_eau_s(i) = bil_eau_s(i) + fq_fonte |
---|
| 3282 | tsurf_new(i) = RTT |
---|
| 3283 | ENDIF |
---|
| 3284 | d_ts(i) = tsurf_new(i) - tsurf(i) |
---|
| 3285 | endif |
---|
| 3286 | ! |
---|
| 3287 | ! s'il y a une hauteur trop importante de neige, elle s'coule |
---|
| 3288 | fqcalving(i) = max(0., snow(i) - snow_max)/dtime |
---|
| 3289 | snow(i)=min(snow(i),snow_max) |
---|
| 3290 | ! |
---|
| 3291 | IF (nisurf == is_ter) then |
---|
| 3292 | qsol(i) = qsol(i) + bil_eau_s(i) |
---|
| 3293 | run_off(i) = run_off(i) + MAX(qsol(i) - max_eau_sol, 0.0) |
---|
| 3294 | qsol(i) = MIN(qsol(i), max_eau_sol) |
---|
| 3295 | else if (nisurf == is_lic) then |
---|
| 3296 | run_off_lic(i) = (coeff_rel * fqcalving(i)) + & |
---|
| 3297 | & (1. - coeff_rel) * run_off_lic_0(i) |
---|
| 3298 | run_off_lic_0(i) = run_off_lic(i) |
---|
| 3299 | run_off_lic(i) = run_off_lic(i) + bil_eau_s(i)/dtime |
---|
| 3300 | endif |
---|
| 3301 | enddo |
---|
| 3302 | |
---|
| 3303 | END SUBROUTINE fonte_neige |
---|
| 3304 | ! |
---|
| 3305 | !######################################################################### |
---|
| 3306 | ! |
---|
| 3307 | END MODULE interface_surf |
---|