1 | SUBROUTINE newmicro (paprs, pplay,ok_newmicro, |
---|
2 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
3 | . pch, pcl, pcm, pct, pctlwp, |
---|
4 | s xflwp, xfiwp, xflwc, xfiwc, |
---|
5 | e ok_aie, |
---|
6 | e sulfate, sulfate_pi, |
---|
7 | e bl95_b0, bl95_b1, |
---|
8 | s cldtaupi, re, fl) |
---|
9 | IMPLICIT none |
---|
10 | c====================================================================== |
---|
11 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
12 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
13 | c====================================================================== |
---|
14 | c Arguments: |
---|
15 | c t-------input-R-temperature |
---|
16 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
17 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
18 | c |
---|
19 | c ok_aie--input-L-apply aerosol indirect effect or not |
---|
20 | c sulfate-input-R-sulfate aerosol mass concentration [um/m^3] |
---|
21 | c sulfate_pi-input-R-dito, pre-industrial value |
---|
22 | c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
---|
23 | c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
---|
24 | c |
---|
25 | c cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
26 | c needed for the diagnostics of the aerosol indirect |
---|
27 | c radiative forcing (see radlwsw) |
---|
28 | c re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
29 | c fl------output-R-Denominator to re, introduced to avoid problems in |
---|
30 | c the averaging of the output. fl is the fraction of liquid |
---|
31 | c water clouds within a grid cell |
---|
32 | c pcltau--output-R-epaisseur optique des nuages |
---|
33 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
34 | c====================================================================== |
---|
35 | C |
---|
36 | #include "YOMCST.h" |
---|
37 | c |
---|
38 | #include "dimensions.h" |
---|
39 | #include "dimphy.h" |
---|
40 | #include "nuage.h" |
---|
41 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
42 | REAL t(klon,klev) |
---|
43 | c |
---|
44 | REAL pclc(klon,klev) |
---|
45 | REAL pqlwp(klon,klev) |
---|
46 | REAL pcltau(klon,klev), pclemi(klon,klev) |
---|
47 | c |
---|
48 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
49 | c |
---|
50 | LOGICAL lo |
---|
51 | c |
---|
52 | REAL cetahb, cetamb |
---|
53 | PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
54 | C |
---|
55 | INTEGER i, k |
---|
56 | cIM: 091003 REAL zflwp, zradef, zfice, zmsac |
---|
57 | REAL zflwp(klon), zradef, zfice, zmsac |
---|
58 | cIM: 091003 rajout |
---|
59 | REAL xflwp(klon), xfiwp(klon) |
---|
60 | REAL xflwc(klon,klev), xfiwc(klon,klev) |
---|
61 | c |
---|
62 | REAL radius, rad_chaud |
---|
63 | cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
64 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
65 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
66 | REAL coef, coef_froi, coef_chau |
---|
67 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
68 | REAL seuil_neb, t_glace |
---|
69 | PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) |
---|
70 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
71 | PARAMETER (nexpo=6) |
---|
72 | ccc PARAMETER (nexpo=1) |
---|
73 | |
---|
74 | c -- sb: |
---|
75 | logical ok_newmicro |
---|
76 | c parameter (ok_newmicro=.FALSE.) |
---|
77 | cIM: 091003 real rel, tc, rei, zfiwp |
---|
78 | real rel, tc, rei, zfiwp(klon) |
---|
79 | real k_liq, k_ice0, k_ice, DF |
---|
80 | parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g |
---|
81 | parameter (DF=1.66) ! diffusivity factor |
---|
82 | c sb -- |
---|
83 | cjq for the aerosol indirect effect |
---|
84 | cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
85 | cjq |
---|
86 | LOGICAL ok_aie ! Apply AIE or not? |
---|
87 | LOGICAL ok_a1lwpdep ! a1 LWP dependent? |
---|
88 | |
---|
89 | REAL sulfate(klon, klev) ! sulfate aerosol mass concentration [ug m-3] |
---|
90 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
91 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
92 | REAL sulfate_pi(klon, klev) ! sulfate aerosol mass concentration [ug m-3] (pre-industrial value) |
---|
93 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
94 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
95 | |
---|
96 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) |
---|
97 | |
---|
98 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
99 | |
---|
100 | REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
---|
101 | cjq-end |
---|
102 | c |
---|
103 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
104 | c |
---|
105 | cIM inversion des DO |
---|
106 | DO i = 1, klon |
---|
107 | xflwp(i)=0. |
---|
108 | xfiwp(i)=0. |
---|
109 | DO k = 1, klev |
---|
110 | c |
---|
111 | xflwc(i,k)=0. |
---|
112 | xfiwc(i,k)=0. |
---|
113 | c |
---|
114 | rad_chaud = rad_chau1 |
---|
115 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
116 | pclc(i,k) = MAX(pclc(i,k), seuil_neb) |
---|
117 | zflwp(i) = 1000.*pqlwp(i,k)/RG/pclc(i,k) |
---|
118 | . *(paprs(i,k)-paprs(i,k+1)) |
---|
119 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
120 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
121 | zfice = zfice**nexpo |
---|
122 | radius = rad_chaud * (1.-zfice) + rad_froid * zfice |
---|
123 | coef = coef_chau * (1.-zfice) + coef_froi * zfice |
---|
124 | pcltau(i,k) = 3.0/2.0 * zflwp(i) / radius |
---|
125 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp(i)) |
---|
126 | |
---|
127 | if (ok_newmicro) then |
---|
128 | |
---|
129 | c -- liquid/ice cloud water paths: |
---|
130 | |
---|
131 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
132 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
133 | |
---|
134 | zflwp(i) = 1000.*(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
135 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
136 | zfiwp(i) = 1000.*zfice*pqlwp(i,k)/pclc(i,k) |
---|
137 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
138 | |
---|
139 | xflwp(i) = xflwp(i)+ (1.-zfice)*pqlwp(i,k) |
---|
140 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
141 | xfiwp(i) = xfiwp(i)+ zfice*pqlwp(i,k) |
---|
142 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
143 | |
---|
144 | cIM Total Liquid/Ice water content |
---|
145 | xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k) |
---|
146 | xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k) |
---|
147 | cIM In-Cloud Liquid/Ice water content |
---|
148 | c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
149 | c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) |
---|
150 | |
---|
151 | c -- effective cloud droplet radius (microns): |
---|
152 | |
---|
153 | c for liquid water clouds: |
---|
154 | IF (ok_aie) THEN |
---|
155 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
156 | ! |
---|
157 | cdnc(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
158 | . log(MAX(sulfate(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
159 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
160 | ! to be within [20, 1000 cm^3] |
---|
161 | ! |
---|
162 | cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) |
---|
163 | ! |
---|
164 | ! |
---|
165 | cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
166 | . log(MAX(sulfate_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
167 | cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) |
---|
168 | ! |
---|
169 | ! |
---|
170 | ! air density: pplay(i,k) / (RD * zT(i,k)) |
---|
171 | ! factor 1.1: derive effective radius from volume-mean radius |
---|
172 | ! factor 1000 is the water density |
---|
173 | ! _chaud means that this is the CDR for liquid water clouds |
---|
174 | ! |
---|
175 | rad_chaud = |
---|
176 | . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) |
---|
177 | . / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.) |
---|
178 | ! |
---|
179 | ! Convert to um. CDR shall be at least 3 um. |
---|
180 | ! |
---|
181 | c rad_chaud = MAX(rad_chaud*1.e6, 3.) |
---|
182 | rad_chaud = MAX(rad_chaud*1.e6, 5.) |
---|
183 | |
---|
184 | ! Pre-industrial cloud opt thickness |
---|
185 | ! |
---|
186 | ! "radius" is calculated as rad_chaud above (plus the |
---|
187 | ! ice cloud contribution) but using cdnc_pi instead of |
---|
188 | ! cdnc. |
---|
189 | radius = |
---|
190 | . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) |
---|
191 | . / (4./3. * RPI * 1000. * cdnc_pi(i,k)) )**(1./3.) |
---|
192 | radius = MAX(radius*1.e6, 3.) |
---|
193 | |
---|
194 | tc = t(i,k)-273.15 |
---|
195 | rei = 0.71*tc + 61.29 |
---|
196 | if (tc.le.-81.4) rei = 3.5 |
---|
197 | if (zflwp(i).eq.0.) radius = 1. |
---|
198 | if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. |
---|
199 | cldtaupi(i,k) = 3.0/2.0 * zflwp(i) / radius |
---|
200 | . + zfiwp(i) * (3.448e-03 + 2.431/rei) |
---|
201 | ENDIF ! ok_aie |
---|
202 | ! For output diagnostics |
---|
203 | ! |
---|
204 | ! Cloud droplet effective radius [um] |
---|
205 | ! |
---|
206 | ! we multiply here with f * xl (fraction of liquid water |
---|
207 | ! clouds in the grid cell) to avoid problems in the |
---|
208 | ! averaging of the output. |
---|
209 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
210 | ! effective radius as re/fl |
---|
211 | ! |
---|
212 | fl(i,k) = pclc(i,k)*(1.-zfice) |
---|
213 | re(i,k) = rad_chaud*fl(i,k) |
---|
214 | |
---|
215 | c-jq end |
---|
216 | |
---|
217 | rel = rad_chaud |
---|
218 | c for ice clouds: as a function of the ambiant temperature |
---|
219 | c [formula used by Iacobellis and Somerville (2000), with an |
---|
220 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
221 | c consistent with observations of Heymsfield et al. 1986]: |
---|
222 | tc = t(i,k)-273.15 |
---|
223 | rei = 0.71*tc + 61.29 |
---|
224 | if (tc.le.-81.4) rei = 3.5 |
---|
225 | |
---|
226 | c -- cloud optical thickness : |
---|
227 | |
---|
228 | c [for liquid clouds, traditional formula, |
---|
229 | c for ice clouds, Ebert & Curry (1992)] |
---|
230 | |
---|
231 | if (zflwp(i).eq.0.) rel = 1. |
---|
232 | if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. |
---|
233 | pcltau(i,k) = 3.0/2.0 * ( zflwp(i)/rel ) |
---|
234 | . + zfiwp(i) * (3.448e-03 + 2.431/rei) |
---|
235 | |
---|
236 | c -- cloud infrared emissivity: |
---|
237 | |
---|
238 | c [the broadband infrared absorption coefficient is parameterized |
---|
239 | c as a function of the effective cld droplet radius] |
---|
240 | |
---|
241 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
242 | k_ice = k_ice0 + 1.0/rei |
---|
243 | |
---|
244 | pclemi(i,k) = 1.0 |
---|
245 | . - EXP( - coef_chau*zflwp(i) - DF*k_ice*zfiwp(i) ) |
---|
246 | |
---|
247 | endif ! ok_newmicro |
---|
248 | |
---|
249 | lo = (pclc(i,k) .LE. seuil_neb) |
---|
250 | IF (lo) pclc(i,k) = 0.0 |
---|
251 | IF (lo) pcltau(i,k) = 0.0 |
---|
252 | IF (lo) pclemi(i,k) = 0.0 |
---|
253 | |
---|
254 | IF (lo) cldtaupi(i,k) = 0.0 |
---|
255 | IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k) |
---|
256 | ENDDO |
---|
257 | ENDDO |
---|
258 | ccc DO k = 1, klev |
---|
259 | ccc DO i = 1, klon |
---|
260 | ccc t(i,k) = t(i,k) |
---|
261 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
262 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
263 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
264 | ccc . /(rg*pclc(i,k)) |
---|
265 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
266 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
267 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
268 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
269 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
270 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
271 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
272 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
273 | ccc ENDDO |
---|
274 | ccc ENDDO |
---|
275 | cccccc print*, 'pas de nuage dans le rayonnement' |
---|
276 | cccccc DO k = 1, klev |
---|
277 | cccccc DO i = 1, klon |
---|
278 | cccccc pclc(i,k) = 0.0 |
---|
279 | cccccc pcltau(i,k) = 0.0 |
---|
280 | cccccc pclemi(i,k) = 0.0 |
---|
281 | cccccc ENDDO |
---|
282 | cccccc ENDDO |
---|
283 | C |
---|
284 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
285 | C |
---|
286 | DO i = 1, klon |
---|
287 | pct(i)=1.0 |
---|
288 | pch(i)=1.0 |
---|
289 | pcm(i) = 1.0 |
---|
290 | pcl(i) = 1.0 |
---|
291 | pctlwp(i) = 0.0 |
---|
292 | ENDDO |
---|
293 | C |
---|
294 | DO k = klev, 1, -1 |
---|
295 | DO i = 1, klon |
---|
296 | pctlwp(i) = pctlwp(i) |
---|
297 | . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
298 | pct(i) = pct(i)*(1.0-pclc(i,k)) |
---|
299 | if (pplay(i,k).LE.cetahb*paprs(i,1)) |
---|
300 | . pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
301 | if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
302 | . pplay(i,k).LE.cetamb*paprs(i,1)) |
---|
303 | . pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
304 | if (pplay(i,k).GT.cetamb*paprs(i,1)) |
---|
305 | . pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
306 | ENDDO |
---|
307 | ENDDO |
---|
308 | C |
---|
309 | DO i = 1, klon |
---|
310 | pct(i)=1.-pct(i) |
---|
311 | pch(i)=1.-pch(i) |
---|
312 | pcm(i)=1.-pcm(i) |
---|
313 | pcl(i)=1.-pcl(i) |
---|
314 | ENDDO |
---|
315 | C |
---|
316 | RETURN |
---|
317 | END |
---|