SUBROUTINE newmicro (paprs, pplay,ok_newmicro, . t, pqlwp, pclc, pcltau, pclemi, . pch, pcl, pcm, pct, pctlwp, s xflwp, xfiwp, xflwc, xfiwc, e ok_aie, e sulfate, sulfate_pi, e bl95_b0, bl95_b1, s cldtaupi, re, fl) IMPLICIT none c====================================================================== c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 c Objet: Calculer epaisseur optique et emmissivite des nuages c====================================================================== c Arguments: c t-------input-R-temperature c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) c c ok_aie--input-L-apply aerosol indirect effect or not c sulfate-input-R-sulfate aerosol mass concentration [um/m^3] c sulfate_pi-input-R-dito, pre-industrial value c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) c c cldtaupi-output-R-pre-industrial value of cloud optical thickness, c needed for the diagnostics of the aerosol indirect c radiative forcing (see radlwsw) c re------output-R-Cloud droplet effective radius multiplied by fl [um] c fl------output-R-Denominator to re, introduced to avoid problems in c the averaging of the output. fl is the fraction of liquid c water clouds within a grid cell c pcltau--output-R-epaisseur optique des nuages c pclemi--output-R-emissivite des nuages (0 a 1) c====================================================================== C #include "YOMCST.h" c #include "dimensions.h" #include "dimphy.h" #include "nuage.h" REAL paprs(klon,klev+1), pplay(klon,klev) REAL t(klon,klev) c REAL pclc(klon,klev) REAL pqlwp(klon,klev) REAL pcltau(klon,klev), pclemi(klon,klev) c REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) c LOGICAL lo c REAL cetahb, cetamb PARAMETER (cetahb = 0.45, cetamb = 0.80) C INTEGER i, k cIM: 091003 REAL zflwp, zradef, zfice, zmsac REAL zflwp(klon), zradef, zfice, zmsac cIM: 091003 rajout REAL xflwp(klon), xfiwp(klon) REAL xflwc(klon,klev), xfiwc(klon,klev) c REAL radius, rad_chaud cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) REAL coef, coef_froi, coef_chau PARAMETER (coef_chau=0.13, coef_froi=0.09) REAL seuil_neb, t_glace PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) INTEGER nexpo ! exponentiel pour glace/eau PARAMETER (nexpo=6) ccc PARAMETER (nexpo=1) c -- sb: logical ok_newmicro c parameter (ok_newmicro=.FALSE.) cIM: 091003 real rel, tc, rei, zfiwp real rel, tc, rei, zfiwp(klon) real k_liq, k_ice0, k_ice, DF parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g parameter (DF=1.66) ! diffusivity factor c sb -- cjq for the aerosol indirect effect cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 cjq LOGICAL ok_aie ! Apply AIE or not? LOGICAL ok_a1lwpdep ! a1 LWP dependent? REAL sulfate(klon, klev) ! sulfate aerosol mass concentration [ug m-3] REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] REAL re(klon, klev) ! cloud droplet effective radius [um] REAL sulfate_pi(klon, klev) ! sulfate aerosol mass concentration [ug m-3] (pre-industrial value) REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag cjq-end c c Calculer l'epaisseur optique et l'emmissivite des nuages c cIM inversion des DO DO i = 1, klon xflwp(i)=0. xfiwp(i)=0. DO k = 1, klev c xflwc(i,k)=0. xfiwc(i,k)=0. c rad_chaud = rad_chau1 IF (k.LE.3) rad_chaud = rad_chau2 pclc(i,k) = MAX(pclc(i,k), seuil_neb) zflwp(i) = 1000.*pqlwp(i,k)/RG/pclc(i,k) . *(paprs(i,k)-paprs(i,k+1)) zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) zfice = MIN(MAX(zfice,0.0),1.0) zfice = zfice**nexpo radius = rad_chaud * (1.-zfice) + rad_froid * zfice coef = coef_chau * (1.-zfice) + coef_froi * zfice pcltau(i,k) = 3.0/2.0 * zflwp(i) / radius pclemi(i,k) = 1.0 - EXP( - coef * zflwp(i)) if (ok_newmicro) then c -- liquid/ice cloud water paths: zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) zfice = MIN(MAX(zfice,0.0),1.0) zflwp(i) = 1000.*(1.-zfice)*pqlwp(i,k)/pclc(i,k) : *(paprs(i,k)-paprs(i,k+1))/RG zfiwp(i) = 1000.*zfice*pqlwp(i,k)/pclc(i,k) : *(paprs(i,k)-paprs(i,k+1))/RG xflwp(i) = xflwp(i)+ (1.-zfice)*pqlwp(i,k) : *(paprs(i,k)-paprs(i,k+1))/RG xfiwp(i) = xfiwp(i)+ zfice*pqlwp(i,k) : *(paprs(i,k)-paprs(i,k+1))/RG cIM Total Liquid/Ice water content xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k) xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k) cIM In-Cloud Liquid/Ice water content c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) c -- effective cloud droplet radius (microns): c for liquid water clouds: IF (ok_aie) THEN ! Formula "D" of Boucher and Lohmann, Tellus, 1995 ! cdnc(i,k) = 10.**(bl95_b0+bl95_b1* . log(MAX(sulfate(i,k),1.e-4))/log(10.))*1.e6 !-m-3 ! Cloud droplet number concentration (CDNC) is restricted ! to be within [20, 1000 cm^3] ! cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) ! ! cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* . log(MAX(sulfate_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) ! ! ! air density: pplay(i,k) / (RD * zT(i,k)) ! factor 1.1: derive effective radius from volume-mean radius ! factor 1000 is the water density ! _chaud means that this is the CDR for liquid water clouds ! rad_chaud = . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) . / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.) ! ! Convert to um. CDR shall be at least 3 um. ! c rad_chaud = MAX(rad_chaud*1.e6, 3.) rad_chaud = MAX(rad_chaud*1.e6, 5.) ! Pre-industrial cloud opt thickness ! ! "radius" is calculated as rad_chaud above (plus the ! ice cloud contribution) but using cdnc_pi instead of ! cdnc. radius = . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) . / (4./3. * RPI * 1000. * cdnc_pi(i,k)) )**(1./3.) radius = MAX(radius*1.e6, 3.) tc = t(i,k)-273.15 rei = 0.71*tc + 61.29 if (tc.le.-81.4) rei = 3.5 if (zflwp(i).eq.0.) radius = 1. if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. cldtaupi(i,k) = 3.0/2.0 * zflwp(i) / radius . + zfiwp(i) * (3.448e-03 + 2.431/rei) ENDIF ! ok_aie ! For output diagnostics ! ! Cloud droplet effective radius [um] ! ! we multiply here with f * xl (fraction of liquid water ! clouds in the grid cell) to avoid problems in the ! averaging of the output. ! In the output of IOIPSL, derive the real cloud droplet ! effective radius as re/fl ! fl(i,k) = pclc(i,k)*(1.-zfice) re(i,k) = rad_chaud*fl(i,k) c-jq end rel = rad_chaud c for ice clouds: as a function of the ambiant temperature c [formula used by Iacobellis and Somerville (2000), with an c asymptotical value of 3.5 microns at T<-81.4 C added to be c consistent with observations of Heymsfield et al. 1986]: tc = t(i,k)-273.15 rei = 0.71*tc + 61.29 if (tc.le.-81.4) rei = 3.5 c -- cloud optical thickness : c [for liquid clouds, traditional formula, c for ice clouds, Ebert & Curry (1992)] if (zflwp(i).eq.0.) rel = 1. if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. pcltau(i,k) = 3.0/2.0 * ( zflwp(i)/rel ) . + zfiwp(i) * (3.448e-03 + 2.431/rei) c -- cloud infrared emissivity: c [the broadband infrared absorption coefficient is parameterized c as a function of the effective cld droplet radius] c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): k_ice = k_ice0 + 1.0/rei pclemi(i,k) = 1.0 . - EXP( - coef_chau*zflwp(i) - DF*k_ice*zfiwp(i) ) endif ! ok_newmicro lo = (pclc(i,k) .LE. seuil_neb) IF (lo) pclc(i,k) = 0.0 IF (lo) pcltau(i,k) = 0.0 IF (lo) pclemi(i,k) = 0.0 IF (lo) cldtaupi(i,k) = 0.0 IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k) ENDDO ENDDO ccc DO k = 1, klev ccc DO i = 1, klon ccc t(i,k) = t(i,k) ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) ccc lo = pclc(i,k) .GT. (2.*1.e-5) ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) ccc . /(rg*pclc(i,k)) ccc zradef = 10.0 + (1.-sigs(k))*45.0 ccc pcltau(i,k) = 1.5 * zflwp / zradef ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) ccc if (.NOT.lo) pclc(i,k) = 0.0 ccc if (.NOT.lo) pcltau(i,k) = 0.0 ccc if (.NOT.lo) pclemi(i,k) = 0.0 ccc ENDDO ccc ENDDO cccccc print*, 'pas de nuage dans le rayonnement' cccccc DO k = 1, klev cccccc DO i = 1, klon cccccc pclc(i,k) = 0.0 cccccc pcltau(i,k) = 0.0 cccccc pclemi(i,k) = 0.0 cccccc ENDDO cccccc ENDDO C C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS C DO i = 1, klon pct(i)=1.0 pch(i)=1.0 pcm(i) = 1.0 pcl(i) = 1.0 pctlwp(i) = 0.0 ENDDO C DO k = klev, 1, -1 DO i = 1, klon pctlwp(i) = pctlwp(i) . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG pct(i) = pct(i)*(1.0-pclc(i,k)) if (pplay(i,k).LE.cetahb*paprs(i,1)) . pch(i) = pch(i)*(1.0-pclc(i,k)) if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. . pplay(i,k).LE.cetamb*paprs(i,1)) . pcm(i) = pcm(i)*(1.0-pclc(i,k)) if (pplay(i,k).GT.cetamb*paprs(i,1)) . pcl(i) = pcl(i)*(1.0-pclc(i,k)) ENDDO ENDDO C DO i = 1, klon pct(i)=1.-pct(i) pch(i)=1.-pch(i) pcm(i)=1.-pcm(i) pcl(i)=1.-pcl(i) ENDDO C RETURN END