! ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/radlwsw.F,v 1.2 2004/10/27 10:14:46 lmdzadmin Exp $ ! SUBROUTINE radlwsw(dist, rmu0, fract, . paprs, pplay,tsol, t, . heat,cool,radsol, . topsw,toplw,solsw,sollw, . sollwdown, . lwnet, swnet) c c====================================================================== c Auteur(s): Z.X. Li (LMD/CNRS) date: 19960719 c Objet: interface entre le modele et les rayonnements c Arguments: c dist-----input-R- distance astronomique terre-soleil c rmu0-----input-R- cosinus de l'angle zenithal c fract----input-R- duree d'ensoleillement normalisee c solaire--input-R- constante solaire (W/m**2) (dans clesphys.h) c paprs----input-R- pression a inter-couche (Pa) c pplay----input-R- pression au milieu de couche (Pa) c tsol-----input-R- temperature du sol (en K) c t--------input-R- temperature (K) c heat-----output-R- echauffement atmospherique (visible) (K/jour) c cool-----output-R- refroidissement dans l'IR (K/jour) c radsol---output-R- bilan radiatif net au sol (W/m**2) (+ vers le bas) c topsw----output-R- flux solaire net au sommet de l'atm. (+ vers le bas) c toplw----output-R- ray. IR net au sommet de l'atmosphere (+ vers le haut) c solsw----output-R- flux solaire net a la surface (+ vers le bas) c sollw----output-R- ray. IR net a la surface (+ vers le bas) c sollwdown-output-R- ray. IR descendant a la surface (+ vers le bas) c lwnet____output-R- flux IR net (+ vers le haut) c swnet____output-R- flux solaire net (+ vers le bas) c c S. Lebonnois 12/04/2007 c VERSION NEWTONIAN COOLING pour Venus (no diurnal cycle) c====================================================================== use dimphy USE comgeomphy IMPLICIT none #include "dimensions.h" #include "YOMCST.h" #include "clesphys.h" c real rmu0(klon), fract(klon), dist c real paprs(klon,klev+1), pplay(klon,klev) real tsol(klon) real t(klon,klev) real heat(klon,klev), cool(klon,klev) real radsol(klon), topsw(klon), toplw(klon) real solsw(klon), sollw(klon) real sollwdown(klon) REAL swnet(klon,klev+1),lwnet(klon,klev+1) c INTEGER i,j,k integer nlevCLee,level parameter (nlevCLee=30) REAL pressCLee(nlevCLee+1),tempCLee(nlevCLee+1) real dt_epCLee(nlevCLee+1),etaCLee(nlevCLee+1) real tauCLee parameter (tauCLee=25*86400) ! en s real ztemp,zdt,fact real dTsdt(klev),zt_eq(klon,klev) real dureejour parameter (dureejour=10.087e6) save zt_eq data etaCLee/9.602e-1,8.679e-1,7.577e-1,6.420e-1,5.299e-1, . 4.273e-1,3.373e-1,2.610e-1,1.979e-1,1.472e-1, . 1.074e-1,7.672e-2,5.361e-2,3.657e-2,2.430e-2, . 1.569e-2,9.814e-3,5.929e-3,3.454e-3,1.934e-3, . 1.043e-3,5.400e-4,2.710e-4,1.324e-4,6.355e-5, . 3.070e-5,1.525e-5,7.950e-6,4.500e-6,2.925e-6, . 2.265e-6/ data tempCLee/728.187,715.129,697.876,677.284,654.078,628.885, . 602.225,574.542,546.104,517.339,488.560,459.932, . 431.741,404.202,377.555,352.042,327.887,305.313, . 284.556,265.697,248.844,233.771,220.368,208.247, . 197.127,187.104,178.489,171.800,167.598,165.899, . 165.676/ data dt_epCLee/6.101 , 6.136 , 6.176 , 6.410 , 6.634 , 6.678 , . 6.719 , 6.762 , 7.167 , 7.524 , 9.840 ,14.948 , . 21.370 ,28.746 ,36.373 ,43.315 ,48.534 ,51.175 , . 50.757 ,47.342 ,41.536 ,34.295 ,26.758 ,19.807 , . 14.001 , 9.599 , 6.504 , 4.439 , 3.126 , 2.370 , . 2.000/ c logical firstcall data firstcall/.true./ save firstcall c Initialisations c----------------- if (firstcall) then PRINT*,"******* ATTENTION, NEWTONIAN COOLING ********" pressCLee = etaCLee * 9.2e6 DO i = 1, klon do k = 1,klev level = 1 do j=1,nlevCLee if (pressCLee(j).gt.pplay(i,k)) level = j enddo fact = (log10(pplay(i,k))-log10(pressCLee(level))) . /(log10(pressCLee(level+1))-log10(pressCLee(level))) ztemp = tempCLee(level)*(1-fact)+tempCLee(level+1)*fact zdt = dt_epCLee(level)*(1-fact)+dt_epCLee(level+1)*fact c zt_eq(i,k) = ztemp + zdt*(cos(rlatd(i)*RPI/180.)-2./RPI) zt_eq(i,k) = ztemp + zdt*(cos(rlatd(i)*RPI/180.)-RPI/4.) enddo ENDDO !i endif ! firstcall c+++++++ BOUCLE SUR LA GRILLE +++++++++++++++++++++++++ DO j = 1,klon do k = 1,klev dTsdt(k) = -(t(j,k)-zt_eq(j,k))/tauCLee ! en K/s enddo radsol(j) = 0. ! + vers bas topsw(j) = 0. ! + vers bas toplw(j) = 0. ! + vers haut solsw(j) = 0. ! + vers bas sollw(j) = 0. ! + vers bas sollwdown(j) = 0. ! + vers bas DO k = 1, klev+1 lwnet (j,k) = 0. swnet (j,k) = 0. ENDDO DO k = 1, klev heat (j,k) = dTsdt(k)*dureejour ! K/Venusday cool (j,k) = 0. ENDDO c ENDDO !j c+++++++ FIN BOUCLE SUR LA GRILLE +++++++++++++++++++++++++ firstcall = .false. RETURN END