! ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/diagphy.F,v 1.1.1.1 2004/05/19 12:53:08 lmdzadmin Exp $ ! SUBROUTINE diagphy(airephy,tit,iprt $ , tops, topl, sols, soll, sens $ , evap, rain_fall, snow_fall, ts $ , d_etp_tot, d_qt_tot, d_ec_tot $ , fs_bound, fq_bound) ! ATTENTION !! PAS DU TOUT A JOUR POUR VENUS OU TITAN... C====================================================================== C C Purpose: C Compute the thermal flux and the watter mass flux at the atmosphere c boundaries. Print them and also the atmospheric enthalpy change and C the atmospheric mass change. C C Arguments: C airephy-------input-R- grid area C tit---------input-A15- Comment to be added in PRINT (CHARACTER*15) C iprt--------input-I- PRINT level ( <=0 : no PRINT) C tops(klon)--input-R- SW rad. at TOA (W/m2), positive up. C topl(klon)--input-R- LW rad. at TOA (W/m2), positive down C sols(klon)--input-R- Net SW flux above surface (W/m2), positive up C (i.e. -1 * flux absorbed by the surface) C soll(klon)--input-R- Net LW flux above surface (W/m2), positive up C (i.e. flux emited - flux absorbed by the surface) C sens(klon)--input-R- Sensible Flux at surface (W/m2), positive down C evap(klon)--input-R- Evaporation + sublimation watter vapour mass flux C (kg/m2/s), positive up C rain_fall(klon) C --input-R- Liquid watter mass flux (kg/m2/s), positive down C snow_fall(klon) C --input-R- Solid watter mass flux (kg/m2/s), positive down C ts(klon)----input-R- Surface temperature (K) C d_etp_tot---input-R- Heat flux equivalent to atmospheric enthalpy C change (W/m2) C d_qt_tot----input-R- Mass flux equivalent to atmospheric watter mass C change (kg/m2/s) C d_ec_tot----input-R- Flux equivalent to atmospheric cinetic energy C change (W/m2) C C fs_bound---output-R- Thermal flux at the atmosphere boundaries (W/m2) C fq_bound---output-R- Watter mass flux at the atmosphere boundaries (kg/m2/s) C C J.L. Dufresne, July 2002 C====================================================================== C use dimphy implicit none #include "dimensions.h" #include "YOMCST.h" C C Input variables real airephy(klon) CHARACTER*15 tit INTEGER iprt real tops(klon),topl(klon),sols(klon),soll(klon) real sens(klon),evap(klon),rain_fall(klon),snow_fall(klon) REAL ts(klon) REAL d_etp_tot, d_qt_tot, d_ec_tot c Output variables REAL fs_bound, fq_bound C C Local variables real stops,stopl,ssols,ssoll real ssens,sfront,slat real airetot, zcpvap, zcwat, zcice REAL rain_fall_tot, snow_fall_tot, evap_tot C integer i C integer pas save pas data pas/0/ C pas=pas+1 stops=0. stopl=0. ssols=0. ssoll=0. ssens=0. sfront = 0. evap_tot = 0. rain_fall_tot = 0. snow_fall_tot = 0. airetot=0. C C Pour les chaleur specifiques de la vapeur d'eau, de l'eau et de C la glace, on travaille par difference a la chaleur specifique de l' c air sec. En effet, comme on travaille a niveau de pression donne, C toute variation de la masse d'un constituant est totalement c compense par une variation de masse d'air. C zcpvap=RCPV-RCPD zcwat=RCW-RCPD zcice=RCS-RCPD C do i=1,klon stops=stops+tops(i)*airephy(i) stopl=stopl+topl(i)*airephy(i) ssols=ssols+sols(i)*airephy(i) ssoll=ssoll+soll(i)*airephy(i) ssens=ssens+sens(i)*airephy(i) sfront = sfront $ + ( evap(i)*zcpvap-rain_fall(i)*zcwat-snow_fall(i)*zcice $ ) *ts(i) *airephy(i) evap_tot = evap_tot + evap(i)*airephy(i) rain_fall_tot = rain_fall_tot + rain_fall(i)*airephy(i) snow_fall_tot = snow_fall_tot + snow_fall(i)*airephy(i) airetot=airetot+airephy(i) enddo stops=stops/airetot stopl=stopl/airetot ssols=ssols/airetot ssoll=ssoll/airetot ssens=ssens/airetot sfront = sfront/airetot evap_tot = evap_tot /airetot rain_fall_tot = rain_fall_tot/airetot snow_fall_tot = snow_fall_tot/airetot C slat = RLVTT * rain_fall_tot + RLSTT * snow_fall_tot C Heat flux at atm. boundaries fs_bound = stops-stopl - (ssols+ssoll)+ssens+sfront $ + slat C Watter flux at atm. boundaries fq_bound = evap_tot - rain_fall_tot -snow_fall_tot C IF (iprt.ge.1) write(6,6666) $ tit, pas, fs_bound, d_etp_tot, fq_bound, d_qt_tot C IF (iprt.ge.1) write(6,6668) $ tit, pas, d_etp_tot+d_ec_tot-fs_bound, d_qt_tot-fq_bound C IF (iprt.ge.2) write(6,6667) $ tit, pas, stops,stopl,ssols,ssoll,ssens,slat,evap_tot $ ,rain_fall_tot+snow_fall_tot return 6666 format('Phys. Flux Budget ',a15,1i6,x,2(f10.2,x),2(1pE13.5)) 6667 format('Phys. Boundary Flux ',a15,1i6,x,6(f10.2,x),2(1pE13.5)) 6668 format('Phys. Total Budget ',a15,1i6,x,f10.2,2(1pE13.5)) end C====================================================================== SUBROUTINE diagetpq(airephy,tit,iprt,idiag,idiag2,dtime e ,t,q,ql,qs,u,v,paprs,pplay s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) C====================================================================== C C Purpose: C Calcul la difference d'enthalpie et de masse d'eau entre 2 appels, C et calcul le flux de chaleur et le flux d'eau necessaire a ces C changements. Ces valeurs sont moyennees sur la surface de tout C le globe et sont exprime en W/2 et kg/s/m2 C Outil pour diagnostiquer la conservation de l'energie C et de la masse dans la physique. Suppose que les niveau de c pression entre couche ne varie pas entre 2 appels. C C Plusieurs de ces diagnostics peuvent etre fait en parallele: les c bilans sont sauvegardes dans des tableaux indices. On parlera C "d'indice de diagnostic" c C c====================================================================== C Arguments: C airephy-------input-R- grid area C tit-----imput-A15- Comment added in PRINT (CHARACTER*15) C iprt----input-I- PRINT level ( <=1 : no PRINT) C idiag---input-I- indice dans lequel sera range les nouveaux C bilans d' entalpie et de masse C idiag2--input-I-les nouveaux bilans d'entalpie et de masse C sont compare au bilan de d'enthalpie de masse de C l'indice numero idiag2 C Cas parriculier : si idiag2=0, pas de comparaison, on c sort directement les bilans d'enthalpie et de masse C dtime----input-R- time step (s) c t--------input-R- temperature (K) c q--------input-R- vapeur d'eau (kg/kg) c ql-------input-R- liquid watter (kg/kg) c qs-------input-R- solid watter (kg/kg) c u--------input-R- vitesse u c v--------input-R- vitesse v c paprs----input-R- pression a intercouche (Pa) c pplay----input-R- pression au milieu de couche (Pa) c C the following total value are computed by UNIT of earth surface C C d_h_vcol--output-R- Heat flux (W/m2) define as the Enthalpy c change (J/m2) during one time step (dtime) for the whole C atmosphere (air, watter vapour, liquid and solid) C d_qt------output-R- total water mass flux (kg/m2/s) defined as the C total watter (kg/m2) change during one time step (dtime), C d_qw------output-R- same, for the watter vapour only (kg/m2/s) C d_ql------output-R- same, for the liquid watter only (kg/m2/s) C d_qs------output-R- same, for the solid watter only (kg/m2/s) C d_ec------output-R- Cinetic Energy Budget (W/m2) for vertical air column C C other (COMMON...) C RCPD, RCPV, .... C C J.L. Dufresne, July 2002 c====================================================================== use dimphy IMPLICIT NONE C #include "dimensions.h" #include "YOMCST.h" C c Input variables real airephy(klon) CHARACTER*15 tit INTEGER iprt,idiag, idiag2 REAL dtime REAL t(klon,klev), q(klon,klev), ql(klon,klev), qs(klon,klev) REAL u(klon,klev), v(klon,klev) REAL paprs(klon,klev+1), pplay(klon,klev) c Output variables REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec C C Local variables c REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot . , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot c h_vcol_tot-- total enthalpy of vertical air column C (air with watter vapour, liquid and solid) (J/m2) c h_dair_tot-- total enthalpy of dry air (J/m2) c h_qw_tot---- total enthalpy of watter vapour (J/m2) c h_ql_tot---- total enthalpy of liquid watter (J/m2) c h_qs_tot---- total enthalpy of solid watter (J/m2) c qw_tot------ total mass of watter vapour (kg/m2) c ql_tot------ total mass of liquid watter (kg/m2) c qs_tot------ total mass of solid watter (kg/m2) c ec_tot------ total cinetic energy (kg/m2) C REAL zairm(klon,klev) ! layer air mass (kg/m2) REAL zqw_col(klon) REAL zql_col(klon) REAL zqs_col(klon) REAL zec_col(klon) REAL zh_dair_col(klon) REAL zh_qw_col(klon), zh_ql_col(klon), zh_qs_col(klon) C REAL d_h_dair, d_h_qw, d_h_ql, d_h_qs C REAL airetot, zcpvap, zcwat, zcice C INTEGER i, k C INTEGER ndiag ! max number of diagnostic in parallel PARAMETER (ndiag=10) integer pas(ndiag) save pas data pas/ndiag*0/ C REAL h_vcol_pre(ndiag), h_dair_pre(ndiag), h_qw_pre(ndiag) $ , h_ql_pre(ndiag), h_qs_pre(ndiag), qw_pre(ndiag) $ , ql_pre(ndiag), qs_pre(ndiag) , ec_pre(ndiag) SAVE h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre $ , h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre c====================================================================== C DO k = 1, klev DO i = 1, klon C layer air mass zairm(i,k) = (paprs(i,k)-paprs(i,k+1))/RG ENDDO END DO C C Reset variables DO i = 1, klon zqw_col(i)=0. zql_col(i)=0. zqs_col(i)=0. zec_col(i) = 0. zh_dair_col(i) = 0. zh_qw_col(i) = 0. zh_ql_col(i) = 0. zh_qs_col(i) = 0. ENDDO C zcpvap=RCPV zcwat=RCW zcice=RCS C C Compute vertical sum for each atmospheric column C ================================================ DO k = 1, klev DO i = 1, klon C Watter mass zqw_col(i) = zqw_col(i) + q(i,k)*zairm(i,k) zql_col(i) = zql_col(i) + ql(i,k)*zairm(i,k) zqs_col(i) = zqs_col(i) + qs(i,k)*zairm(i,k) C Cinetic Energy zec_col(i) = zec_col(i) $ +0.5*(u(i,k)**2+v(i,k)**2)*zairm(i,k) C Air enthalpy ! ADAPTATION GCM POUR CP(T) zh_dair_col(i) = zh_dair_col(i) $ + cpdet(t(i,k))*(1.-q(i,k)-ql(i,k)-qs(i,k))*zairm(i,k)*t(i,k) zh_qw_col(i) = zh_qw_col(i) $ + zcpvap*q(i,k)*zairm(i,k)*t(i,k) zh_ql_col(i) = zh_ql_col(i) $ + zcwat*ql(i,k)*zairm(i,k)*t(i,k) $ - RLVTT*ql(i,k)*zairm(i,k) zh_qs_col(i) = zh_qs_col(i) $ + zcice*qs(i,k)*zairm(i,k)*t(i,k) $ - RLSTT*qs(i,k)*zairm(i,k) END DO ENDDO C C Mean over the planete surface C ============================= qw_tot = 0. ql_tot = 0. qs_tot = 0. ec_tot = 0. h_vcol_tot = 0. h_dair_tot = 0. h_qw_tot = 0. h_ql_tot = 0. h_qs_tot = 0. airetot=0. C do i=1,klon qw_tot = qw_tot + zqw_col(i)*airephy(i) ql_tot = ql_tot + zql_col(i)*airephy(i) qs_tot = qs_tot + zqs_col(i)*airephy(i) ec_tot = ec_tot + zec_col(i)*airephy(i) h_dair_tot = h_dair_tot + zh_dair_col(i)*airephy(i) h_qw_tot = h_qw_tot + zh_qw_col(i)*airephy(i) h_ql_tot = h_ql_tot + zh_ql_col(i)*airephy(i) h_qs_tot = h_qs_tot + zh_qs_col(i)*airephy(i) airetot=airetot+airephy(i) END DO C qw_tot = qw_tot/airetot ql_tot = ql_tot/airetot qs_tot = qs_tot/airetot ec_tot = ec_tot/airetot h_dair_tot = h_dair_tot/airetot h_qw_tot = h_qw_tot/airetot h_ql_tot = h_ql_tot/airetot h_qs_tot = h_qs_tot/airetot C h_vcol_tot = h_dair_tot+h_qw_tot+h_ql_tot+h_qs_tot c print*,'airetot=',airetot,' h_dair_tot=',h_dair_tot C C Compute the change of the atmospheric state compare to the one C stored in "idiag2", and convert it in flux. THis computation C is performed IF idiag2 /= 0 and IF it is not the first CALL c for "idiag" C =================================== C IF ( (idiag2.gt.0) .and. (pas(idiag2) .ne. 0) ) THEN d_h_vcol = (h_vcol_tot - h_vcol_pre(idiag2) )/dtime d_h_dair = (h_dair_tot- h_dair_pre(idiag2))/dtime d_h_qw = (h_qw_tot - h_qw_pre(idiag2) )/dtime d_h_ql = (h_ql_tot - h_ql_pre(idiag2) )/dtime d_h_qs = (h_qs_tot - h_qs_pre(idiag2) )/dtime d_qw = (qw_tot - qw_pre(idiag2) )/dtime d_ql = (ql_tot - ql_pre(idiag2) )/dtime d_qs = (qs_tot - qs_pre(idiag2) )/dtime d_ec = (ec_tot - ec_pre(idiag2) )/dtime d_qt = d_qw + d_ql + d_qs ELSE d_h_vcol = 0. d_h_dair = 0. d_h_qw = 0. d_h_ql = 0. d_h_qs = 0. d_qw = 0. d_ql = 0. d_qs = 0. d_ec = 0. d_qt = 0. ENDIF C IF (iprt.ge.2) THEN WRITE(6,9000) tit,pas(idiag),d_qt,d_qw,d_ql,d_qs 9000 format('Phys. Watter Mass Budget (kg/m2/s)',A15 $ ,1i6,10(1pE14.6)) WRITE(6,9001) tit,pas(idiag), d_h_vcol, h_vcol_tot/dtime 9001 format('Phys. Enthalpy Budget (W/m2) ',A15,1i6,10(E14.6,x)) WRITE(6,9002) tit,pas(idiag), d_ec 9002 format('Phys. Cinetic Energy Budget (W/m2) ',A15,1i6,10(F10.2)) END IF C C Store the new atmospheric state in "idiag" C pas(idiag)=pas(idiag)+1 h_vcol_pre(idiag) = h_vcol_tot h_dair_pre(idiag) = h_dair_tot h_qw_pre(idiag) = h_qw_tot h_ql_pre(idiag) = h_ql_tot h_qs_pre(idiag) = h_qs_tot qw_pre(idiag) = qw_tot ql_pre(idiag) = ql_tot qs_pre(idiag) = qs_tot ec_pre (idiag) = ec_tot C RETURN END