subroutine largescale(ngrid,nq,ptimestep, pplev, pplay, pt, pq, & pdt, pdq, pdtlsc, pdqvaplsc, pdqliqlsc, rneb) use watercommon_h, only : RLVTT, RCPD, RVTMP2, & T_h2O_ice_clouds,T_h2O_ice_liq,Psat_water,Lcpdqsat_water USE tracer_h IMPLICIT none !================================================================== ! ! Purpose ! ------- ! Calculates large-scale (stratiform) H2O condensation. ! ! Authors ! ------- ! Adapted from the LMDTERRE code by R. Wordsworth (2009) ! Original author Z. X. Li (1993) ! !================================================================== #include "dimensions.h" #include "dimphys.h" #include "comcstfi.h" #include "callkeys.h" INTEGER ngrid,nq ! Arguments REAL ptimestep ! intervalle du temps (s) REAL pplev(ngrid,nlayermx+1) ! pression a inter-couche REAL pplay(ngrid,nlayermx) ! pression au milieu de couche REAL pt(ngrid,nlayermx) ! temperature (K) real pq(ngrid,nlayermx,nq) ! tracer mixing ratio (kg/kg) REAL pdt(ngrid,nlayermx) ! physical temperature tenedency (K/s) REAL pdq(ngrid,nlayermx,nq)! physical tracer tenedency (K/s) REAL pdtlsc(ngrid,nlayermx) ! incrementation de la temperature (K) REAL pdqvaplsc(ngrid,nlayermx) ! incrementation de la vapeur d'eau REAL pdqliqlsc(ngrid,nlayermx) ! incrementation de l'eau liquide REAL rneb(ngrid,nlayermx) ! fraction nuageuse ! Options du programme REAL ratqs ! determine largeur de la distribution de vapeur PARAMETER (ratqs=0.2) ! Variables locales REAL CBRT EXTERNAL CBRT INTEGER i, k , nn INTEGER,PARAMETER :: nitermax=1000 REAL,PARAMETER :: alpha=.5,qthreshold=1.e-6 REAL zt(ngrid), zq(ngrid) REAL zcond(ngrid),zcond_iter REAL zdelq(ngrid) REAL zqs(ngrid), zdqs(ngrid) REAL psat_tmp ! evaporation calculations REAL dqevap(ngrid,nlayermx),dtevap(ngrid,nlayermx) REAL qevap(ngrid,nlayermx,nq) REAL tevap(ngrid,nlayermx) REAL zcor(ngrid), zdelta(ngrid), zcvm5(ngrid) REAL zx_q(ngrid) REAL Nmix_local,zfice ! GCM -----> subroutine variables, initialisation of outputs pdtlsc(1:ngrid,1:nlayermx) = 0.0 pdqvaplsc(1:ngrid,1:nlayermx) = 0.0 pdqliqlsc(1:ngrid,1:nlayermx) = 0.0 rneb(1:ngrid,1:nlayermx) = 0.0 ! Evaporate cloud water/ice call evap(ngrid,nq,ptimestep,pt,pq,pdq,pdt,dqevap,dtevap,qevap,tevap) ! note: we use qevap but not tevap in largescale/moistadj ! otherwise is a big mess ! Boucle verticale (du haut vers le bas) DO k = nlayermx, 1, -1 zt(1:ngrid)=pt(1:ngrid,k)+(pdt(1:ngrid,k)+dtevap(1:ngrid,k))*ptimestep zq(1:ngrid)=qevap(1:ngrid,k,igcm_h2o_vap) !liquid water is included in qevap ! Calculer la vapeur d'eau saturante et ! determiner la condensation partielle DO i = 1, ngrid if(zt(i).le.15.) then print*,'in lsc',i,k,zt(i) ! zt(i)=15. ! check too low temperatures endif call Psat_water(zt(i),pplay(i,k),psat_tmp,zqs(i)) zdelq(i) = MAX(MIN(ratqs * zq(i),1.-zq(i)),1.e-12) rneb(i,k) = (zq(i)+zdelq(i)-zqs(i)) / (2.0*zdelq(i)) ! print*,zq(i),zdelq(i),zqs(i),rneb(i,k) if (rneb(i,k).lt.0.) then !no clouds rneb(i,k)=0. zcond(i)=0. else if (rneb(i,k).gt.1.) then !complete cloud cover, we start without evaporating rneb(i,k)=1. zt(i)=pt(i,k)+pdt(i,k)*ptimestep zx_q(i) = pq(i,k,igcm_h2o_vap)+pdq(i,k,igcm_h2o_vap)*ptimestep dqevap(i,k)=0. ! iterative process to stabilize the scheme when large water amounts JL12 zcond(i) = 0.0 Do nn=1,nitermax call Psat_water(zt(i),pplay(i,k),psat_tmp,zqs(i)) call Lcpdqsat_water(zt(i),pplay(i,k),psat_tmp,zqs(i),zdqs(i)) zcond_iter = alpha*(zx_q(i)-zqs(i))/(1.+zdqs(i)) !zcond can be negative here zx_q(i) = zx_q(i) - zcond_iter zcond(i) = zcond(i) + zcond_iter zt(i) = zt(i) + zcond_iter*RLVTT/RCPD if (ABS(zcond_iter/alpha).lt.qthreshold) exit End do ! niter zcond(i)=MAX(zcond(i),-(pq(i,k,igcm_h2o_ice)+pdq(i,k,igcm_h2o_ice)*ptimestep)) else !standard case zx_q(i) = (zq(i)+zdelq(i)+zqs(i))/2.0 !water vapor in cloudy sky ! iterative process to stabilize the scheme when large water amounts JL12 zcond(i) = 0.0 Do nn=1,nitermax call Lcpdqsat_water(zt(i),pplay(i,k),psat_tmp,zqs(i),zdqs(i)) zcond_iter = MAX(0.0,alpha*(zx_q(i)-zqs(i))/(1.+zdqs(i))) !zcond always postive! cannot evaporate clouds! !this is why we must reevaporate before largescale zx_q(i) = zx_q(i) - zcond_iter zcond(i) = zcond(i) + zcond_iter if (ABS(zcond_iter/alpha).lt.qthreshold) exit zt(i) = zt(i) + zcond_iter*RLVTT/RCPD call Psat_water(zt(i),pplay(i,k),psat_tmp,zqs(i)) End do ! niter Endif zcond(i) = zcond(i)*rneb(i,k)/ptimestep ! JL12 ENDDO ! Tendances de t et q pdqvaplsc(1:ngrid,k) = dqevap(1:ngrid,k) - zcond(1:ngrid) pdqliqlsc(1:ngrid,k) = - pdqvaplsc(1:ngrid,k) pdtlsc(1:ngrid,k) = pdqliqlsc(1:ngrid,k)*RLVTT/RCPD Enddo ! k= nlayermx, 1, -1 !print*,'qsat=',zqs !print*,'q=',q !print*,'dq=',pdqvaplsc*ptimestep !print*,'dT in LS=',pdtlsc*ptimestep !print*,'rice=',rice !print*,'rneb=',rneb return end