cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc subroutine sol2ls(sol,ls) c convert a given martian day number (sol) c into corresponding solar longitude, Ls (in degr.), c where sol=0=Ls=0 is the c northern hemisphere spring equinox. implicit none c input real sol c output real ls c local variables double precision year_day,peri_day,timeperi,e_elips double precision pi,radtodeg c number of martian days (sols) in a martian year parameter (year_day=668.6d0) c perihelion date (in sols) parameter (peri_day=485.35d0) c orbital eccentricity parameter (e_elips=0.09340d0) parameter (pi=3.14159265358979d0) c radtodeg: 180/pi parameter (radtodeg=57.2957795130823d0) c timeperi: 2*pi*( 1 - Ls(perihelion)/ 360 ); Ls(perihelion)=250.99 parameter (timeperi=1.90258341759902d0) double precision zanom,xref,zx0,zdx,zteta,zz c xref: mean anomaly, zx0: eccentric anomaly, zteta: true anomaly integer iter zz=(sol-peri_day)/year_day zanom=2.*pi*(zz-nint(zz)) xref=dabs(zanom) c The equation zx0 - e * sin (zx0) = xref, solved by Newton zx0=xref+e_elips*dsin(xref) do 110 iter=1,10 zdx=-(zx0-e_elips*dsin(zx0)-xref)/(1.-e_elips*dcos(zx0)) if(dabs(zdx).le.(1.d-7)) then ! typically, 2 or 3 iterations are enough goto 120 endif zx0=zx0+zdx 110 continue 120 continue zx0=zx0+zdx if(zanom.lt.0.) zx0=-zx0 c compute true anomaly zteta, now that eccentric anomaly zx0 is known zteta=2.*datan(dsqrt((1.+e_elips)/(1.-e_elips))*dtan(zx0/2.)) c compute Ls ls=real(zteta-timeperi) if(ls.lt.0.) ls=ls+2.*real(pi) if(ls.gt.2.*pi) ls=ls-2.*real(pi) c convert Ls in deg. ls=real(radtodeg)*ls return end cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc real function ls2sol(ls) c Returns solar longitude, Ls (in deg.), from day number (in sol), c where sol=0=Ls=0 at the northern hemisphere spring equinox implicit none c Arguments: real ls c Local: double precision xref,zx0,zteta,zz c xref: mean anomaly, zteta: true anomaly, zx0: eccentric anomaly double precision year_day double precision peri_day,timeperi,e_elips double precision pi,degrad parameter (year_day=668.6d0) ! number of sols in a amartian year c data peri_day /485.0/ parameter (peri_day=485.35d0) ! date (in sols) of perihelion c timeperi: 2*pi*( 1 - Ls(perihelion)/ 360 ); Ls(perihelion)=250.99 parameter (timeperi=1.90258341759902d0) parameter (e_elips=0.0934d0) ! eccentricity of orbit parameter (pi=3.14159265358979d0) parameter (degrad=57.2957795130823d0) if (abs(ls).lt.1.0e-5) then if (ls.ge.0.0) then ls2sol = 0.0 else ls2sol = real(year_day) end if return end if zteta = ls/degrad + timeperi zx0 = 2.0*datan(dtan(0.5*zteta)/dsqrt((1.+e_elips)/(1.-e_elips))) xref = zx0-e_elips*dsin(zx0) zz = xref/(2.*pi) ls2sol = real(zz*year_day + peri_day) if (ls2sol.lt.0.0) ls2sol = ls2sol + real(year_day) if (ls2sol.ge.year_day) ls2sol = ls2sol - real(year_day) return end