SUBROUTINE integrd $ ( nq,vcovm1,ucovm1,tetam1,psm1,massem1, $ dv,du,dteta,dq,dp,vcov,ucov,teta,q,ps,masse,phis,finvmaold ) IMPLICIT NONE c======================================================================= cccccccccccccccccccccccccccccccccccccccccccc c !Mars VERSION MARTIENNE de integrd.F c c .. modification de l'integration de q . 26/04/94 .. c .... Si shema Van-leer pour advection de q , on n'integre pas q c car q a ete deja integre dans "tracvl.F" appele par vanleer ... cccccccccccccccccccccccccccccccccccccccccccc c c Auteur: P. Le Van c ------- c c objet: c ------ c c Incrementation des tendances dynamiques c c======================================================================= c----------------------------------------------------------------------- c Declarations: c ------------- #include "dimensions.h" #include "paramet.h" #include "comconst.h" #include "comgeom.h" #include "comvert.h" #include "logic.h" #include "temps.h" #include "serre.h" c Arguments: c ---------- INTEGER nq REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm),teta(ip1jmp1,llm) REAL q(ip1jmp1,llm,nq) REAL ps(ip1jmp1),masse(ip1jmp1,llm),phis(ip1jmp1) REAL vcovm1(ip1jm,llm),ucovm1(ip1jmp1,llm) REAL tetam1(ip1jmp1,llm),psm1(ip1jmp1),massem1(ip1jmp1,llm) REAL dv(ip1jm,llm),du(ip1jmp1,llm) REAL dteta(ip1jmp1,llm),dp(ip1jmp1) REAL dq(ip1jmp1,llm,nq), finvmaold(ip1jmp1,llm) c Local: c ------ REAL vscr( ip1jm ),uscr( ip1jmp1 ),hscr( ip1jmp1 ),pscr(ip1jmp1) REAL massescr( ip1jmp1,llm ), finvmasse(ip1jmp1,llm) REAL p(ip1jmp1,llmp1) REAL tpn,tps,tppn(iim),tpps(iim) REAL qpn,qps,qppn(iim),qpps(iim) REAL deltap( ip1jmp1,llm ) INTEGER l,ij,iq EXTERNAL filtreg,massdair,pression EXTERNAL SCOPY REAL SSUM EXTERNAL SSUM c----------------------------------------------------------------------- DO l = 1,llm DO ij = 1,iip1 ucov( ij , l) = 0. ucov( ij +ip1jm, l) = 0. uscr( ij ) = 0. uscr( ij +ip1jm ) = 0. ENDDO ENDDO c ............ integration de ps .............. CALL SCOPY(ip1jmp1*llm, masse, 1, massescr, 1) DO 2 ij = 1,ip1jmp1 pscr (ij) = ps(ij) ps (ij) = psm1(ij) + dt * dp(ij) 2 CONTINUE c DO ij = 1,ip1jmp1 IF( ps(ij).LT.0. ) THEN PRINT*,' Au point ij = ',ij, ' , pression sol neg. ', ps(ij) write(*,*)'psm1(ij)=',psm1(ij),' dp(ij)=',dp(ij), & 'dp(ij)*dt=',dp(ij)*dt STOP' dans integrd' ENDIF ENDDO c IF( alphax.NE.0. ) THEN DO ij = 1, iim tppn(ij) = aire( ij ) * ps( ij ) tpps(ij) = aire(ij+ip1jm) * ps(ij+ip1jm) ENDDO tpn = SSUM(iim,tppn,1)/apoln tps = SSUM(iim,tpps,1)/apols DO ij = 1, iip1 ps( ij ) = tpn ps(ij+ip1jm) = tps ENDDO ENDIF c c ... Calcul de la nouvelle masse d'air au dernier temps integre t+1 ... c CALL pression ( ip1jmp1, ap, bp, ps, p ) CALL massdair ( p , masse ) CALL SCOPY( ijp1llm , masse, 1, finvmasse, 1 ) CALL filtreg( finvmasse, jjp1, llm, -2, 2, .TRUE., 1 ) c c ............ integration de ucov, vcov, h .............. DO 10 l = 1,llm DO 4 ij = iip2,ip1jm uscr( ij ) = ucov( ij,l ) ucov( ij,l ) = ucovm1( ij,l ) + dt * du( ij,l ) 4 CONTINUE DO 5 ij = 1,ip1jm vscr( ij ) = vcov( ij,l ) vcov( ij,l ) = vcovm1( ij,l ) + dt * dv( ij,l ) 5 CONTINUE DO 6 ij = 1,ip1jmp1 hscr( ij ) = teta(ij,l) teta ( ij,l ) = tetam1(ij,l) * massem1(ij,l) / masse(ij,l) $ + dt * dteta(ij,l) / masse(ij,l) 6 CONTINUE c .... Calcul de la valeur moyenne, unique aux poles pour teta ...... c c DO ij = 1, iim tppn(ij) = aire( ij ) * teta( ij ,l) tpps(ij) = aire(ij+ip1jm) * teta(ij+ip1jm,l) ENDDO tpn = SSUM(iim,tppn,1)/apoln tps = SSUM(iim,tpps,1)/apols DO ij = 1, iip1 teta( ij ,l) = tpn teta(ij+ip1jm,l) = tps ENDDO c IF(leapf) THEN CALL SCOPY ( ip1jmp1, uscr(1), 1, ucovm1(1, l), 1 ) CALL SCOPY ( ip1jm, vscr(1), 1, vcovm1(1, l), 1 ) CALL SCOPY ( ip1jmp1, hscr(1), 1, tetam1(1, l), 1 ) END IF 10 CONTINUE c c ....... integration de q ...... c c c ..... FIN de l'integration de q ....... c ................................................................. IF( leapf ) THEN CALL SCOPY ( ip1jmp1 , pscr , 1, psm1 , 1 ) CALL SCOPY ( ip1jmp1*llm, massescr, 1, massem1, 1 ) END IF RETURN END