c $Header: /users/lmdz/cvsroot/LMDZ.3.3/libf/dyn3d/coefpoly.F,v 1.1 2001/04/23 08:43:28 lmdz Exp $ SUBROUTINE coefpoly ( Xf1, Xf2, Xprim1, Xprim2, xtild1,xtild2 , , a0,a1,a2,a3 ) IMPLICIT NONE c c ... Auteur : P. Le Van ... c c c Calcul des coefficients a0, a1, a2, a3 du polynome de degre 3 qui c satisfait aux 4 equations suivantes : c a0 + a1*xtild1 + a2*xtild1*xtild1 + a3*xtild1*xtild1*xtild1 = Xf1 c a0 + a1*xtild2 + a2*xtild2*xtild2 + a3*xtild2*xtild2*xtild2 = Xf2 c a1 + 2.*a2*xtild1 + 3.*a3*xtild1*xtild1 = Xprim1 c a1 + 2.*a2*xtild2 + 3.*a3*xtild2*xtild2 = Xprim2 c On en revient a resoudre un systeme de 4 equat.a 4 inconnues a0,a1,a2,a3 REAL*8 Xf1, Xf2,Xprim1,Xprim2, xtild1,xtild2, xi REAL*8 Xfout, Xprim REAL*8 a1,a2,a3,a0, xtil1car, xtil2car,derr,x1x2car xtil1car = xtild1 * xtild1 xtil2car = xtild2 * xtild2 derr= 2. *(Xf2-Xf1)/( xtild1-xtild2) x1x2car = ( xtild1-xtild2)*(xtild1-xtild2) a3 = (derr + Xprim1+Xprim2 )/x1x2car a2 = ( Xprim1 - Xprim2 + 3.* a3 * ( xtil2car-xtil1car ) ) / / ( 2.* ( xtild1 - xtild2 ) ) a1 = Xprim1 -3.* a3 * xtil1car -2.* a2 * xtild1 a0 = Xf1 - a3 * xtild1* xtil1car -a2 * xtil1car - a1 *xtild1 RETURN END