subroutine sponge(ucov,vcov,h,pext,dt,mode) ! Sponge routine: Quench ucov, vcov and potential temperature near the ! top of the model ! Depending on 'mode' relaxation of variables is towards: ! mode = 0 : h -> h_mean , ucov -> 0 , vcov -> 0 ! mode = 1 : h -> h_mean , ucov -> ucov_mean , vcov -> 0 ! mode >= 2 : h -> h_mean , ucov -> ucov_mean , vcov -> vcov_mean ! Number of layer over which sponge is applied is 'nsponge' (read from def file) ! Time scale for quenching at top level is given by 'tetasponge' (read from ! def file) and doubles as level indexes decrease. implicit none #include "dimensions.h" #include "paramet.h" #include "comdissip.h" #include "comvert.h" #include "comgeom2.h" #include "sponge.h" ! Arguments: !------------ real,intent(inout) :: ucov(iip1,jjp1,llm) ! covariant zonal wind real,intent(inout) :: vcov(iip1,jjm,llm) ! covariant meridional wind real,intent(inout) :: h(iip1,jjp1,llm) ! potential temperature real,intent(in) :: pext(iip1,jjp1) ! extensive pressure real,intent(in) :: dt ! time step integer,intent(in) :: mode ! sponge mode c Local: c ------ real,save :: sig_s(llm) !sigma au milieu des couches REAL vm,um,hm,ptot(jjp1) real,save :: cst(llm) INTEGER l,i,j integer,save :: l0 ! layer down to which sponge is applied real ssum real echelle,zkm logical,save :: firstcall=.true. if (firstcall) then ! build approximative sigma levels at midlayer do l=1,llm sig_s(l)=((ap(l)+ap(l+1))/preff+bp(l)+bp(l+1))/2. enddo l0=llm-nsponge+1 PRINT* print*,'sponge mode',mode print*,'nsponge tetasponge ',nsponge,tetasponge print*,'Coeffs for the sponge layer' print*,'Z (km) tau cst' do l=llm,l0,-1 ! double time scale with every level, starting from the top cst(l)=dt/(tetasponge*2**(llm-l)) enddo echelle=10. do l=l0,llm zkm=-echelle*log(sig_s(l)) print*,zkm,dt/cst(l),cst(l) enddo PRINT* firstcall=.false. endif ! of if (firstcall) c----------------------------------------------------------------------- c calcul de la dissipation: c ------------------------- do j=1,jjp1 ptot(j)=ssum(iim,pext(1,j),1) enddo c potential temperature do l=l0,llm do j=1,jjp1 hm=0. do i=1,iim hm=hm+h(i,j,l)*pext(i,j) enddo hm=hm/ptot(j) do i=1,iim h(i,j,l)=h(i,j,l)-cst(l)*(h(i,j,l)-hm) enddo h(iip1,j,l)=h(1,j,l) enddo enddo c zonal wind do l=l0,llm do j=2,jjm um=0. if(mode.ge.1) then do i=1,iim um=um+0.5*ucov(i,j,l)*(pext(i,j)+pext(i+1,j)) s /cu(i,j) enddo um=um/ptot(j) endif do i=1,iim ucov(i,j,l)=ucov(i,j,l)-cst(l)*(ucov(i,j,l)-um*cu(i,j)) enddo ucov(iip1,j,l)=ucov(1,j,l) enddo enddo c meridional wind do l=l0,llm do j=1,jjm vm=0. if(mode.ge.2) then do i=1,iim vm=vm+vcov(i,j,l)*(pext(i,j)+pext(i,j+1)) s /cv(i,j) enddo vm=vm/(ptot(j)+ptot(j+1)) endif do i=1,iim vcov(i,j,l)=vcov(i,j,l)-cst(l)*(vcov(i,j,l)-vm*cv(i,j)) enddo vcov(iip1,j,l)=vcov(1,j,l) enddo enddo end