! ! $Id: diagedyn.F 1279 2009-12-10 09:02:56Z fairhead $ ! C====================================================================== SUBROUTINE diagedyn(tit,iprt,idiag,idiag2,dtime e , ucov , vcov , ps, p ,pk , teta , q, ql) C====================================================================== C C Purpose: C Calcul la difference d'enthalpie et de masse d'eau entre 2 appels, C et calcul le flux de chaleur et le flux d'eau necessaire a ces C changements. Ces valeurs sont moyennees sur la surface de tout C le globe et sont exprime en W/2 et kg/s/m2 C Outil pour diagnostiquer la conservation de l'energie C et de la masse dans la dynamique. C C c====================================================================== C Arguments: C tit-----imput-A15- Comment added in PRINT (CHARACTER*15) C iprt----input-I- PRINT level ( <=1 : no PRINT) C idiag---input-I- indice dans lequel sera range les nouveaux C bilans d' entalpie et de masse C idiag2--input-I-les nouveaux bilans d'entalpie et de masse C sont compare au bilan de d'enthalpie de masse de C l'indice numero idiag2 C Cas parriculier : si idiag2=0, pas de comparaison, on c sort directement les bilans d'enthalpie et de masse C dtime----input-R- time step (s) C uconv, vconv-input-R- vents covariants (m/s) C ps-------input-R- Surface pressure (Pa) C p--------input-R- pressure at the interfaces C pk-------input-R- pk= (p/Pref)**kappa c teta-----input-R- potential temperature (K) c q--------input-R- vapeur d'eau (kg/kg) c ql-------input-R- liquid watter (kg/kg) c aire-----input-R- mesh surafce (m2) c C the following total value are computed by UNIT of earth surface C C d_h_vcol--output-R- Heat flux (W/m2) define as the Enthalpy c change (J/m2) during one time step (dtime) for the whole C atmosphere (air, watter vapour, liquid and solid) C d_qt------output-R- total water mass flux (kg/m2/s) defined as the C total watter (kg/m2) change during one time step (dtime), C d_qw------output-R- same, for the watter vapour only (kg/m2/s) C d_ql------output-R- same, for the liquid watter only (kg/m2/s) C d_ec------output-R- Cinetic Energy Budget (W/m2) for vertical air column C C C J.L. Dufresne, July 2002 c====================================================================== IMPLICIT NONE C #include "dimensions.h" #include "paramet.h" #include "comgeom.h" #include "iniprint.h" #ifdef CPP_EARTH #include "../phylmd/YOMCST.h" #include "../phylmd/YOETHF.h" #endif C INTEGER imjmp1 PARAMETER( imjmp1=iim*jjp1) c Input variables CHARACTER*15 tit INTEGER iprt,idiag, idiag2 REAL dtime REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm) ! vents covariants REAL ps(ip1jmp1) ! pression au sol REAL p (ip1jmp1,llmp1 ) ! pression aux interfac.des couches REAL pk (ip1jmp1,llm ) ! = (p/Pref)**kappa REAL teta(ip1jmp1,llm) ! temperature potentielle REAL q(ip1jmp1,llm) ! champs eau vapeur REAL ql(ip1jmp1,llm) ! champs eau liquide c Output variables REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec C C Local variables c REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot . , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot c h_vcol_tot-- total enthalpy of vertical air column C (air with watter vapour, liquid and solid) (J/m2) c h_dair_tot-- total enthalpy of dry air (J/m2) c h_qw_tot---- total enthalpy of watter vapour (J/m2) c h_ql_tot---- total enthalpy of liquid watter (J/m2) c h_qs_tot---- total enthalpy of solid watter (J/m2) c qw_tot------ total mass of watter vapour (kg/m2) c ql_tot------ total mass of liquid watter (kg/m2) c qs_tot------ total mass of solid watter (kg/m2) c ec_tot------ total cinetic energy (kg/m2) C REAL masse(ip1jmp1,llm) ! masse d'air REAL vcont(ip1jm,llm),ucont(ip1jmp1,llm) REAL ecin(ip1jmp1,llm) REAL zaire(imjmp1) REAL zps(imjmp1) REAL zairm(imjmp1,llm) REAL zecin(imjmp1,llm) REAL zpaprs(imjmp1,llm) REAL zpk(imjmp1,llm) REAL zt(imjmp1,llm) REAL zh(imjmp1,llm) REAL zqw(imjmp1,llm) REAL zql(imjmp1,llm) REAL zqs(imjmp1,llm) REAL zqw_col(imjmp1) REAL zql_col(imjmp1) REAL zqs_col(imjmp1) REAL zec_col(imjmp1) REAL zh_dair_col(imjmp1) REAL zh_qw_col(imjmp1), zh_ql_col(imjmp1), zh_qs_col(imjmp1) C REAL d_h_dair, d_h_qw, d_h_ql, d_h_qs C REAL airetot, zcpvap, zcwat, zcice C INTEGER i, k, jj, ij , l ,ip1jjm1 C INTEGER ndiag ! max number of diagnostic in parallel PARAMETER (ndiag=10) integer pas(ndiag) save pas data pas/ndiag*0/ C REAL h_vcol_pre(ndiag), h_dair_pre(ndiag), h_qw_pre(ndiag) $ , h_ql_pre(ndiag), h_qs_pre(ndiag), qw_pre(ndiag) $ , ql_pre(ndiag), qs_pre(ndiag) , ec_pre(ndiag) SAVE h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre $ , h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre #ifdef CPP_EARTH c====================================================================== C Compute Kinetic enrgy CALL covcont ( llm , ucov , vcov , ucont, vcont ) CALL enercin ( vcov , ucov , vcont , ucont , ecin ) CALL massdair( p, masse ) c====================================================================== C C print*,'MAIS POURQUOI DONC DIAGEDYN NE MARCHE PAS ?' return C On ne garde les donnees que dans les colonnes i=1,iim DO jj = 1,jjp1 ip1jjm1=iip1*(jj-1) DO ij = 1,iim i=iim*(jj-1)+ij zaire(i)=aire(ij+ip1jjm1) zps(i)=ps(ij+ip1jjm1) ENDDO ENDDO C 3D arrays DO l = 1, llm DO jj = 1,jjp1 ip1jjm1=iip1*(jj-1) DO ij = 1,iim i=iim*(jj-1)+ij zairm(i,l) = masse(ij+ip1jjm1,l) zecin(i,l) = ecin(ij+ip1jjm1,l) zpaprs(i,l) = p(ij+ip1jjm1,l) zpk(i,l) = pk(ij+ip1jjm1,l) zh(i,l) = teta(ij+ip1jjm1,l) zqw(i,l) = q(ij+ip1jjm1,l) zql(i,l) = ql(ij+ip1jjm1,l) zqs(i,l) = 0. ENDDO ENDDO ENDDO C C Reset variables DO i = 1, imjmp1 zqw_col(i)=0. zql_col(i)=0. zqs_col(i)=0. zec_col(i) = 0. zh_dair_col(i) = 0. zh_qw_col(i) = 0. zh_ql_col(i) = 0. zh_qs_col(i) = 0. ENDDO C zcpvap=RCPV zcwat=RCW zcice=RCS C C Compute vertical sum for each atmospheric column C ================================================ ! ADAPTATION GCM POUR CP(T) call tpot2t(imjmp1*llm,zh,zt,zpk) DO k = 1, llm DO i = 1, imjmp1 C Watter mass zqw_col(i) = zqw_col(i) + zqw(i,k)*zairm(i,k) zql_col(i) = zql_col(i) + zql(i,k)*zairm(i,k) zqs_col(i) = zqs_col(i) + zqs(i,k)*zairm(i,k) C Cinetic Energy zec_col(i) = zec_col(i) $ +zecin(i,k)*zairm(i,k) C Air enthalpy zh_dair_col(i) = zh_dair_col(i) < ! ADAPTATION GCM POUR CP(T) $ + cpdet(zt(i,k))*(1.-zqw(i,k)-zql(i,k)-zqs(i,k)) $ *zairm(i,k)*zt(i,k) zh_qw_col(i) = zh_qw_col(i) $ + zcpvap*zqw(i,k)*zairm(i,k)*zt(i,k) zh_ql_col(i) = zh_ql_col(i) $ + zcwat*zql(i,k)*zairm(i,k)*zt(i,k) $ - RLVTT*zql(i,k)*zairm(i,k) zh_qs_col(i) = zh_qs_col(i) $ + zcice*zqs(i,k)*zairm(i,k)*zt(i,k) $ - RLSTT*zqs(i,k)*zairm(i,k) END DO ENDDO C C Mean over the planete surface C ============================= qw_tot = 0. ql_tot = 0. qs_tot = 0. ec_tot = 0. h_vcol_tot = 0. h_dair_tot = 0. h_qw_tot = 0. h_ql_tot = 0. h_qs_tot = 0. airetot=0. C do i=1,imjmp1 qw_tot = qw_tot + zqw_col(i) ql_tot = ql_tot + zql_col(i) qs_tot = qs_tot + zqs_col(i) ec_tot = ec_tot + zec_col(i) h_dair_tot = h_dair_tot + zh_dair_col(i) h_qw_tot = h_qw_tot + zh_qw_col(i) h_ql_tot = h_ql_tot + zh_ql_col(i) h_qs_tot = h_qs_tot + zh_qs_col(i) airetot=airetot+zaire(i) END DO C qw_tot = qw_tot/airetot ql_tot = ql_tot/airetot qs_tot = qs_tot/airetot ec_tot = ec_tot/airetot h_dair_tot = h_dair_tot/airetot h_qw_tot = h_qw_tot/airetot h_ql_tot = h_ql_tot/airetot h_qs_tot = h_qs_tot/airetot C h_vcol_tot = h_dair_tot+h_qw_tot+h_ql_tot+h_qs_tot C C Compute the change of the atmospheric state compare to the one C stored in "idiag2", and convert it in flux. THis computation C is performed IF idiag2 /= 0 and IF it is not the first CALL c for "idiag" C =================================== C IF ( (idiag2.gt.0) .and. (pas(idiag2) .ne. 0) ) THEN d_h_vcol = (h_vcol_tot - h_vcol_pre(idiag2) )/dtime d_h_dair = (h_dair_tot- h_dair_pre(idiag2))/dtime d_h_qw = (h_qw_tot - h_qw_pre(idiag2) )/dtime d_h_ql = (h_ql_tot - h_ql_pre(idiag2) )/dtime d_h_qs = (h_qs_tot - h_qs_pre(idiag2) )/dtime d_qw = (qw_tot - qw_pre(idiag2) )/dtime d_ql = (ql_tot - ql_pre(idiag2) )/dtime d_qs = (qs_tot - qs_pre(idiag2) )/dtime d_ec = (ec_tot - ec_pre(idiag2) )/dtime d_qt = d_qw + d_ql + d_qs ELSE d_h_vcol = 0. d_h_dair = 0. d_h_qw = 0. d_h_ql = 0. d_h_qs = 0. d_qw = 0. d_ql = 0. d_qs = 0. d_ec = 0. d_qt = 0. ENDIF C IF (iprt.ge.2) THEN WRITE(6,9000) tit,pas(idiag),d_qt,d_qw,d_ql,d_qs 9000 format('Dyn3d. Watter Mass Budget (kg/m2/s)',A15 $ ,1i6,10(1pE14.6)) WRITE(6,9001) tit,pas(idiag), d_h_vcol 9001 format('Dyn3d. Enthalpy Budget (W/m2) ',A15,1i6,10(F8.2)) WRITE(6,9002) tit,pas(idiag), d_ec 9002 format('Dyn3d. Cinetic Energy Budget (W/m2) ',A15,1i6,10(F8.2)) C WRITE(6,9003) tit,pas(idiag), ec_tot 9003 format('Dyn3d. Cinetic Energy (W/m2) ',A15,1i6,10(E15.6)) WRITE(6,9004) tit,pas(idiag), d_h_vcol+d_ec 9004 format('Dyn3d. Total Energy Budget (W/m2) ',A15,1i6,10(F8.2)) END IF C C Store the new atmospheric state in "idiag" C pas(idiag)=pas(idiag)+1 h_vcol_pre(idiag) = h_vcol_tot h_dair_pre(idiag) = h_dair_tot h_qw_pre(idiag) = h_qw_tot h_ql_pre(idiag) = h_ql_tot h_qs_pre(idiag) = h_qs_tot qw_pre(idiag) = qw_tot ql_pre(idiag) = ql_tot qs_pre(idiag) = qs_tot ec_pre (idiag) = ec_tot C #else write(lunout,*)'diagedyn: Needs Earth physics to function' #endif ! #endif of #ifdef CPP_EARTH RETURN END