c*********************************************************************** subroutine NLTEdlvr09_ZGRID (n_gcm, @ p_gcm, t_gcm, z_gcm, @ co2vmr_gcm, n2vmr_gcm, covmr_gcm, o3pvmr_gcm ,mmean_gcm, @ cpnew_gcm) c jul 2011 malv+fgg First version c*********************************************************************** implicit none include "dimensions.h" include "dimphys.h" include 'nltedefs.h' include 'nlte_atm.h' include 'tcr_15um.h' include 'nlte_data.h' include 'chimiedata.h' include 'conc.h' c Arguments integer n_gcm real p_gcm(n_gcm), t_gcm(n_gcm) real co2vmr_gcm(n_gcm), n2vmr_gcm(n_gcm) real covmr_gcm(n_gcm), o3pvmr_gcm(n_gcm) real z_gcm(n_gcm) real mmean_gcm(n_gcm) real cpnew_gcm(n_gcm) c local variables integer i, j , iz ! real distancia, meanm, gz, Hkm real zmin, zmax, deltazz, deltazzy real nt_gcm(n_gcm) real mmean_nlte(n_gcm),cpnew_nlte(n_gcm) c functions external hrkday_convert real hrkday_convert c*********************************************************************** ! Define working grid for MZ1D model (NL, ZL, ZMIN) ! y otro mas fino para M.Curtis (NZ, ZX, ZXMIN = ZMIN ! Para ello hace falta una z de ref del GCM, que voy a suponer la inferior ! Primero, construimos escala z_gcm ! z_gcm (1) = zmin_gcm ! [km] !write (*,*) ' iz, p, g, H, z =', 1, p_gcm(1), z_gcm(1) ! do iz = 2, n_gcm ! do iz=1,n_gcm ! z_gcm(iz)=zlay(iz)/1.e3 ! meanm = ( co2vmr_gcm(iz)*44. + o3pvmr_gcm(iz)*16. ! @ + n2vmr_gcm(iz)*28. + covmr_gcm(iz)*28. ) ! meanm = meanm / n_avog ! distancia = ( radio + z_gcm(iz-1) )*1.e5 ! gz = gg * masa / ( distancia * distancia ) ! Hkm = 0.5*( t_gcm(iz)+t_gcm(iz-1) ) / ( meanm * gz ) ! Hkm = kboltzman * Hkm *1e-5 ! [km] ! z_gcm(iz) = z_gcm(iz-1) - Hkm * log( p_gcm(iz)/p_gcm(iz-1) ) !write (*,*) iz, p_gcm(iz), gz, Hkm, z_gcm(iz) ! enddo ! Segundo, definimos los lĂ­mites del modelo, entre las 2 presiones clave ! Bottom boundary for NLTE model : Pbottom=2e-2mb=1.974e-5 atm jlowerboundary = 1 do while ( p_gcm(jlowerboundary) .gt. Pbottom_atm ) jlowerboundary = jlowerboundary + 1 enddo zmin = z_gcm(jlowerboundary) ! write (*,*) ' jlowerboundary, Pmin, zmin =', ! @ jlowerboundary, p_gcm(jlowerboundary), zmin ! Top boundary for NLTE model : Ptop=2e-7mb = 1.974e-5 atm jtopboundary = jlowerboundary do while ( p_gcm(jtopboundary) .gt. Ptop_atm ) jtopboundary = jtopboundary + 1 enddo zmax = z_gcm(jtopboundary) ! write (*,*) ' jtopboundary, Pmax, zmax =', ! @ jtopboundary, p_gcm(jtopboundary),zmax deltaz = (zmax-zmin) / (nl-1) do i=1,nl zl(i) = zmin + (i-1) * deltaz enddo ! write (*,*) ' ZL grid: dz,zmin,zmax ', deltaz, zl(1),zl(nl) ! Creamos el perfil interpolando call intersp ( pl,zl,nl, p_gcm,z_gcm,n_gcm, 2) ! [atm] call intersp ( t,zl,nl, t_gcm,z_gcm,n_gcm, 1) do i = 1, n_gcm nt_gcm(i) = 7.339e+21 * p_gcm(i) / t_gcm(i) ! [cm-3] enddo call intersp ( nt,zl,nl, nt_gcm,z_gcm,n_gcm, 2) call intersp (co2vmr,zl,nl, co2vmr_gcm,z_gcm,n_gcm, 1) call intersp ( n2vmr,zl,nl, n2vmr_gcm,z_gcm,n_gcm, 1) call intersp ( covmr,zl,nl, covmr_gcm,z_gcm,n_gcm, 1) call intersp (o3pvmr,zl,nl, o3pvmr_gcm,z_gcm,n_gcm, 1) call intersp (mmean_nlte,zl,nl,mmean_gcm,z_gcm,n_gcm,1) call intersp (cpnew_nlte,zl,nl,cpnew_gcm,z_gcm,n_gcm,1) do i = 1, nl co2(i) = nt(i) * co2vmr(i) n2(i) = nt(i) * n2vmr(i) co(i) = nt(i) * covmr(i) o3p(i) = nt(i) * o3pvmr(i) ! hrkday_factor(i) = hrkday_convert( t(i), ! @ co2vmr(i), o3pvmr(i), n2vmr(i), covmr(i) ) hrkday_factor(i) = hrkday_convert (mmean_nlte(i),cpnew_nlte(i)) enddo c Fine grid for transmittance calculations deltazy = (zmax-zmin) / (nzy-1) do i=1,nzy zy(i) = zmin + (i-1) * deltazy enddo ! write (*,*) ' ZY grid: nzy,dzy,zmin,zmax ', ! @ nzy, deltazy, zy(1),zy(nzy) call intersp ( py,zy,nzy, p_gcm,z_gcm,n_gcm, 2) ! [atm] call intersp ( ty,zy,nzy, t_gcm,z_gcm,n_gcm, 1) call intersp ( nty,zy,nzy, nt_gcm,z_gcm,n_gcm, 2) call intersp ( co2y,zy,nzy, co2vmr_gcm,z_gcm,n_gcm, 1) do i=1,nzy co2y(i) = co2y(i) * nty(i) enddo c end return end