SUBROUTINE param_slope_full( & ! ! INPUTS ! & ls, localtime, latitude, taudust, albedo & & ,theta_s, psi_s & & ,ftot_0 & ! ! OUTPUTS ! & ,ftot & ) !!***************************************************************************************** ! ! SUBROUTINE: ! param_slope ! ! ! PURPOSE: ! computes total solar irradiance on a given Martian slope ! ! ! INPUTS: ! ls aerocentric longitude (deg) ! localtime local true solar time (Martian hours) ! latitude latitude (deg) ! taudust dust optical depth at reference wavelength 0.67 mic. ! albedo spectrally integrated surface Lambertian reflection albedo ! theta_s slope inclination angle (deg) ! 0 is horizontal, 90 is vertical ! phi_s slope azimuth (deg) ! 0 >> Northward ! 90 >> Eastward ! 180 >> Southward ! 270 >> Westward ! ftot_0 spectrally integrated total irradiance on an horizontal surface (W/m2) ! ! ! OUTPUTS: ! ftot spectrally integrated total irradiance on the slope (W/m2) ! ! REFERENCE: ! "Fast and accurate estimation of irradiance on Martian slopes" ! A. Spiga & F. Forget ! ..... ! ! AUTHOR: ! A. Spiga (spiga@lmd.jussieu.fr) ! March 2008 ! !!***************************************************************************************** IMPLICIT NONE !! !! INPUT !! REAL, INTENT(IN) :: ls, localtime, latitude, taudust, theta_s, psi_s, albedo, ftot_0 !! !! LOCAL !! REAL :: pi, deg2rad, dist_sol, cste_mars REAL, PARAMETER :: p = 1.510404 ! Semi-latus rectum of Martian elliptic orbit (AU) REAL, PARAMETER :: e = 9.3357898E-02 ! Eccentricity of Martian elliptic orbit REAL, PARAMETER :: t = 1.908231 ! Angle from Ls=0 to the perihelion (radian) REAL, PARAMETER :: so = 0.4256214 ! sin(Obliquity of Martian axis) REAL :: rho, sdec, dec, cdec, csza, sza, ssza, psi0 REAL :: px, py REAL :: a REAL :: mu_s, sigma_s REAL :: fdir, fdir_0, fscat, fscat_0, fref REAL, DIMENSION(4,2) :: mat_M, mat_N, mat_T REAL, DIMENSION(2) :: g_vector REAL, DIMENSION(4) :: s_vector REAL :: ratio !! !! OUTPUT !! REAL, INTENT(OUT) :: ftot !!***************************************************************************************** ! ! Prerequisite ! pi = 2.*asin(1.) deg2rad = pi/180. if ((theta_s > 90.) .or. (theta_s < 0.)) then print *, 'please set theta_s between 0 and 90', theta_s stop endif ! ! Sun right ascension (radian) ! rho = pi*(1.0-localtime/12.0) ! ! Distance to sun (AU) ! dist_sol = p/(1.0+e*cos(deg2rad*Ls+t)) !! ellipse polar equation ! ! Incident flux @ top of the atmosphere (Mars solar constant, W m-2) ! cste_mars=1370./(dist_sol*dist_sol) !! 1370 W.m-2 is the solar constant at 1 AU. !!!!!!!!!!!!!!!!!!!!!!!!!!! !!! pour comparer avec spectres ESA !!!!!!!!!!!!!!!!!!!!!!!!!!! !cste_mars=cste_mars*0.92 ! ! Sun declination (radian) [= subsolar point latitude] ! sdec = sin(deg2rad*Ls)*so dec = asin(sdec) cdec = cos(dec) ! ! Solar Zenith angle (radian) ! csza = sin(deg2rad*latitude)*sdec + cos(deg2rad*latitude)*cdec*cos(rho) sza = acos(csza) ssza = sin(sza) if (csza < 0.01) then !print *, 'sun below horizon' fdir_0=0. fdir=0. fscat_0=0. fscat=0. fref=0. else ! ! 'Slope vs Sun' azimuth (radian) ! if ( ( (cdec*sin(rho)) .eq. 0.0 ) .and. ( ( sin(deg2rad*latitude)*cdec*cos(rho)-cos(deg2rad*latitude)*sdec ) .eq. 0.0 ) ) then a = deg2rad*psi_s ! some compilator need specfying value for atan2(0,0) else a = deg2rad*psi_s + atan2(cdec*sin(rho),sin(deg2rad*latitude)*cdec*cos(rho)-cos(deg2rad*latitude)*sdec) end if ! ! Cosine of slope-sun phase angle ! mu_s = csza*cos(deg2rad*theta_s) - cos(a)*sin(deg2rad*theta_s)*sqrt(1-csza**2) if (mu_s .le. 0.) mu_s=0. ! ! Sky-view factor ! sigma_s=0.5*(1.+cos(deg2rad*theta_s)) ! ! Direct flux on a flat surface ! fdir_0 = cste_mars*csza*exp(-taudust/csza) ! ! Direct flux on the slope ! fdir = fdir_0 * mu_s/csza ! ! Reflected flux on the slope ! fref = albedo * (1-sigma_s) * ftot_0 ! ! Scattered flux on a flat surface ! fscat_0 = ftot_0 - fdir_0 ! ! Scattering vector (slope vs sky) ! s_vector=(/ 1., exp(-taudust) , sin(deg2rad*theta_s), sin(deg2rad*theta_s)*exp(-taudust) /) ! ! Geometry vector (slope vs sun) ! g_vector=(/ mu_s/csza, 1. /) ! ! Coupling matrix ! if (csza .ge. 0.5) then mat_M(:,1) = (/ -0.264, 1.309, 0.208, -0.828 /) mat_M(:,2) = (/ 1.291*sigma_s, -1.371*sigma_s, -0.581, 1.641 /) mat_N(:,1) = (/ 0.911, -0.777, -0.223, 0.623 /) mat_N(:,2) = (/ -0.933*sigma_s, 0.822*sigma_s, 0.514, -1.195 /) else mat_M(:,1) = (/ -0.373, 0.792, -0.095, 0.398 /) mat_M(:,2) = (/ 1.389*sigma_s, -0.794*sigma_s, -0.325, 0.183 /) mat_N(:,1) = (/ 1.079, 0.275, 0.419, -1.855 /) mat_N(:,2) = (/ -1.076*sigma_s, -0.357*sigma_s, -0.075, 1.844 /) endif ! mat_T = mat_M + csza*mat_N ! ! Scattered flux slope ratio ! if (deg2rad*theta_s <= 0.0872664626) then ! ! low angles ! s_vector = (/ 1., exp(-taudust) , sin(0.0872664626), sin(0.0872664626)*exp(-taudust) /) ratio = DOT_PRODUCT ( MATMUL( s_vector, mat_T), g_vector ) ratio = 1. + (ratio - 1.)*deg2rad*theta_s/0.0872664626 else ! ! general case ! ratio= DOT_PRODUCT ( MATMUL( s_vector, mat_T), g_vector ) ! ! NB: ratio= DOT_PRODUCT ( s_vector, MATMUL( mat_T, g_vector ) ) is equivalent endif ! ! Scattered flux on the slope ! fscat = ratio * fscat_0 endif !! if (csza < 0.01) ! ! Total flux on the slope ! ftot = fdir + fref + fscat !! !! Display results !! ! print *, 'scattered component ', fscat ! print *, 'direct component ', fdir ! print *, 'reflected component ', fref END SUBROUTINE param_slope_full