!------------------------ ! I Initialization ! I_a Read the "run.def" ! I_b Read the "start.nc" and "startfi.nc" ! I_c Subslope parametrisation ! I_d Read the PCM data and convert them to the physical grid ! I_e Initialization of the PEM variable and soil ! I_f Compute tendencies ! I_g Compute global surface pressure ! I_h Read the "startpem.nc" ! I_i Compute orbit criterion ! II Run ! II_a Update pressure, ice and tracers ! II_b Evolution of ice ! II_c Flow of glaciers ! II_d Update surface and soil temperatures ! II_e Outputs ! II_f Update the tendencies ! II_g Checking the stopping criterion ! III Output ! III_a Update surface value for the PCM start files ! III_b Write the "restart.nc" and "restartfi.nc" ! III_c Write the "restartpem.nc" !------------------------ PROGRAM pem use phyetat0_mod, only: phyetat0 use phyredem, only: physdem0, physdem1 use netcdf, only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close use turb_mod, only: q2, wstar use comslope_mod, only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h use logic_mod, only: iflag_phys use mod_const_mpi, only: COMM_LMDZ use infotrac use geometry_mod, only: latitude_deg use conf_pem_mod, only: conf_pem use pemredem, only: pemdem0, pemdem1 use glaciers_mod, only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, & metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2 use stopping_crit_mod, only: stopping_crit_h2o_ice, stopping_crit_co2 use constants_marspem_mod, only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2 use evol_ice_mod, only: evol_co2_ice, evol_h2o_ice use comsoil_h_PEM, only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, & TI_PEM, & ! Soil thermal inertia tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths fluxgeo ! Geothermal flux for the PEM and PCM use adsorption_mod, only: regolith_adsorption, adsorption_pem, & ! Bool to check if adsorption, main subroutine ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays co2_adsorbed_phys, h2o_adsorbed_phys ! Mass of co2 and h2O adsorbed use time_evol_mod, only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini use orbit_param_criterion_mod, only: orbit_param_criterion use recomp_orb_param_mod, only: recomp_orb_param use ice_table_mod, only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, & ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi use soil_thermalproperties_mod, only: update_soil_thermalproperties use time_phylmdz_mod, only: daysec, dtphys use abort_pem_mod, only: abort_pem use soil_settings_PEM_mod, only: soil_settings_PEM use compute_tend_mod, only: compute_tend use info_PEM_mod, only: info_PEM use get_timelen_PCM_mod, only: get_timelen_PCM use pemetat0_mod, only: pemetat0 use read_data_PCM_mod, only: read_data_PCM use recomp_tend_co2_mod, only: recomp_tend_co2 use compute_soiltemp_mod, only: compute_tsoil_pem, shift_tsoil2surf use writediagpem_mod, only: writediagpem, writediagsoilpem use co2condens_mod, only: CO2cond_ps use layering_mod, only: d_dust, ptrarray, stratum, layering, ini_layering, del_layering, make_layering, get_nb_str_max, nb_str_max, layering_algo use dyn_ss_ice_m_mod, only: dyn_ss_ice_m use version_info_mod, only: print_version_info #ifndef CPP_STD use comsoil_h, only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil use surfdat_h, only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h, & albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, & zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold, & watercap, watercaptag, perennial_co2ice, albedo_perennialco2 use dimradmars_mod, only: totcloudfrac, albedo use dust_param_mod, only: tauscaling use tracer_mod, only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master use planete_h, only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit use comcstfi_h, only: mugaz use surfini_mod, only: surfini use comconst_mod, only: pi, rad, g, r, cpp, kappa #else use tracer_h, only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT, & PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, & ALBEDO_CO2_ICE_SPECTV, phys_state_var_init use aerosol_mod, only: iniaerosol use planete_mod, only: apoastr, periastr, year_day, peri_day, obliquit use comcstfi_mod, only: pi, rad, g, mugaz, r #endif #ifndef CPP_1D use iniphysiq_mod, only: iniphysiq use control_mod, only: iphysiq, day_step, nsplit_phys #else use time_phylmdz_mod, only: iphysiq, steps_per_sol use regular_lonlat_mod, only: init_regular_lonlat use physics_distribution_mod, only: init_physics_distribution use mod_grid_phy_lmdz, only: regular_lonlat use init_testphys1d_mod, only: init_testphys1d use comvert_mod, only: ap, bp use writerestart1D_mod, only: writerestart1D #endif implicit none include "dimensions.h" include "paramet.h" include "comgeom.h" include "iniprint.h" include "callkeys.h" integer ngridmx parameter(ngridmx = 2 + (jjm - 1)*iim - 1/jjm) ! Same variable names as in the PCM integer, parameter :: nlayer = llm ! Number of vertical layer integer :: ngrid ! Number of physical grid points integer :: nq ! Number of tracer integer :: day_ini ! First day of the simulation real :: pday ! Physical day real :: time_phys ! Same as in PCM real :: ptimestep ! Same as in PCM real :: ztime_fin ! Same as in PCM ! Variables to read "start.nc" character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM ! Dynamic variables real, dimension(ip1jm,llm) :: vcov ! vents covariants real, dimension(ip1jmp1,llm) :: ucov ! vents covariants real, dimension(ip1jmp1,llm) :: teta ! Potential temperature real, dimension(:,:,:), allocatable :: q ! champs advectes real, dimension(ip1jmp1) :: ps_start_dyn ! surface pressure in the start file (dynamic grid) real, dimension(:), allocatable :: ps_start ! surface pressure in the start file real, dimension(:), allocatable :: ps_start0 ! surface pressure in the start file at the beginning real, dimension(:), allocatable :: ps_avg ! (ngrid) Averaged surface pressure real, dimension(:), allocatable :: ps_dev ! (ngrid x timelen) Surface pressure deviation real, dimension(:,:), allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure real, dimension(ip1jmp1,llm) :: masse ! Air mass real, dimension(ip1jmp1) :: phis ! geopotentiel au sol real :: time_0 ! Variables to read starfi.nc character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM character(2) :: str2 integer :: ncid, status ! Variable for handling opening of files integer :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files integer :: apvarid, bpvarid ! Variable ID for Netcdf files ! Variables to read starfi.nc and write restartfi.nc real, dimension(:), allocatable :: longitude ! Longitude read in startfi_name and written in restartfi real, dimension(:), allocatable :: latitude ! Latitude read in startfi_name and written in restartfi real, dimension(:), allocatable :: cell_area ! Cell_area read in startfi_name and written in restartfi real :: total_surface ! Total surface of the planet ! Variables for h2o_ice evolution real, dimension(:,:), allocatable :: h2o_ice ! h2o ice in the PEM real, dimension(:,:), allocatable :: d_h2oice ! physical point x slope field: Tendency of evolution of perennial h2o ice real, dimension(:,:,:), allocatable :: min_h2o_ice ! Minima of h2o ice at each point for the PCM years [kg/m^2] real :: h2oice_ini_surf ! Initial surface of sublimating h2o ice logical, dimension(:,:), allocatable :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating real :: ps_avg_global_ini ! constant: Global average pressure at initialization [Pa] real :: ps_avg_global_old ! constant: Global average pressure of previous time step real :: ps_avg_global_new ! constant: Global average pressure of current time step real, dimension(:,:), allocatable :: zplev_new ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2] real, dimension(:,:), allocatable :: zplev_start0 ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2] real, dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2] real, dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step integer :: stopPEM ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu real :: A, B, mmean ! Molar mass: intermediate A, B for computations of the mean molar mass of the layer [mol/kg] real, dimension(:,:), allocatable :: q_h2o_PEM_phys ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg] integer :: timelen ! # time samples real :: extra_mass ! Intermediate variables Extra mass of a tracer if it is greater than 1 ! Variables for co2_ice evolution real, dimension(:,:), allocatable :: co2_ice ! co2 ice in the PEM real, dimension(:,:), allocatable :: d_co2ice ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year real, dimension(:,:), allocatable :: d_co2ice_ini ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM logical, dimension(:,:), allocatable :: is_co2ice_ini ! Was there co2 ice initially in the PEM? real, dimension(:,:,:), allocatable :: min_co2_ice ! Minimum of co2 ice at each point for the first year [kg/m^2] real :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini ! Logical array to know if co2 ice is sublimating real, dimension(:,:), allocatable :: vmr_co2_PCM ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3] real, dimension(:,:), allocatable :: vmr_co2_PEM_phys ! Grid points x Times co2 volume mixing ratio used in the PEM real, dimension(:,:), allocatable :: q_co2_PEM_phys ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg] ! Variables for stratification (layering) evolution type(layering), dimension(:,:), allocatable :: stratif ! Layering (linked list of "stratum") for each grid point and slope type(ptrarray), dimension(:,:), allocatable :: current1, current2 ! Current active stratum in the layering logical, dimension(:,:), allocatable :: new_str, new_lag1, new_lag2 ! Flags for the layering algorithm ! Variables for slopes integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow ! Variables for surface and soil real, dimension(:,:), allocatable :: tsurf_avg ! Grid points x Slope field: Averaged surface temperature [K] real, dimension(:,:), allocatable :: tsurf_dev ! ngrid x Slope x Times field: Surface temperature deviation [K] real, dimension(:,:), allocatable :: tsurf_avg_yr1 ! Grid points x Slope field: Averaged surface temperature of first call of the PCM [K] real, dimension(:,:,:), allocatable :: tsoil_avg ! Grid points x Soil x Slope field: Averaged Soil Temperature [K] real, dimension(:,:), allocatable :: tsoil_avg_old ! Grid points x Soil field: Averaged Soil Temperature at the previous time step [K] real, dimension(:,:,:), allocatable :: tsoil_dev ! Grid points x Soil x Slope field: Soil temperature deviation [K] real, dimension(:,:,:,:), allocatable :: tsoil_timeseries ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K] real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K] real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3] real, dimension(:,:), allocatable :: watersurf_density_avg ! Grid points x Slope: Averaged water surface density [kg/m^3] real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3] real, dimension(:,:,:), allocatable :: watersoil_density_PEM_avg ! Grid points x Soil x Slopes: Averaged water soil density [kg/m^3] real, dimension(:), allocatable :: delta_co2_adsorbed ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2] real, dimension(:), allocatable :: delta_h2o_adsorbed ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2] real :: totmassco2_adsorbed ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg] real :: totmassh2o_adsorbed ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg] logical, dimension(:,:), allocatable :: co2ice_disappeared ! logical to check if a co2 ice reservoir already disappeared at a previous timestep real, dimension(:,:), allocatable :: icetable_thickness_old ! ngrid x nslope: Thickness of the ice table at the previous iteration [m] real, dimension(:,:,:), allocatable :: ice_porefilling_old ! ngrid x nslope: Ice pore filling at the previous iteration [m] real, dimension(:), allocatable :: delta_h2o_icetablesublim ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg] real, dimension(:), allocatable :: porefill ! Pore filling (output) to compute the dynamic ice table real :: ssi_depth ! Ice table depth (output) to compute the dynamic ice table real, dimension(:,:), allocatable :: zshift_surf ! Elevation shift for the surface [m] real, dimension(:,:), allocatable :: zlag ! Newly built lag thickness [m] ! Some variables for the PEM run real, parameter :: year_step = 1 ! Timestep for the pem real :: i_myear_leg ! Number of iteration real :: n_myear_leg ! Maximum number of iterations before stopping real :: i_myear ! Global number of Martian years of the chained simulations real :: n_myear ! Maximum number of Martian years of the chained simulations real :: timestep ! Timestep [s] character(100) :: arg ! To read command-line arguments program was invoked logical :: timewall ! Flag to use the time limit stopping criterion in case of a PEM job integer(kind = 8) :: cr ! Number of clock ticks per second (count rate) integer(kind = 8) :: c1, c2 ! Counts of processor clock character(100) :: chtimelimit ! Time limit for the PEM job outputted by the SLURM command real :: timelimit ! Time limit for the PEM job in seconds real, parameter :: antetime = 1200 ! Anticipation time to prevent reaching the time limit: 1200 s = 20 min by default integer :: cstat, days, hours, minutes, seconds character(1) :: sep #ifdef CPP_STD real :: frost_albedo_threshold = 0.05 ! Frost albedo threeshold to convert fresh frost to old ice real :: albedo_h2o_frost ! Albedo of h2o frost real, dimension(:), allocatable :: tsurf_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic real, dimension(:,:), allocatable :: qsurf_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic real, dimension(:,:), allocatable :: tsoil_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic real, dimension(:), allocatable :: emis_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic real, dimension(:,:), allocatable :: albedo_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic real, dimension(:,:), allocatable :: tsurf ! Subslope variable, only needed in the GENERIC case real, dimension(:,:,:), allocatable :: qsurf ! Subslope variable, only needed in the GENERIC case real, dimension(:,:,:), allocatable :: tsoil ! Subslope variable, only needed in the GENERIC case real, dimension(:,:), allocatable :: emis ! Subslope variable, only needed in the GENERIC case real, dimension(:,:), allocatable :: watercap ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model logical, dimension(:), allocatable :: watercaptag ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model real, dimension(:,:,:), allocatable :: albedo ! Subslope variable, only needed in the GENERIC case real, dimension(:,:,:), allocatable :: inertiesoil ! Subslope variable, only needed in the GENERIC case #endif #ifdef CPP_1D integer :: nsplit_phys integer, parameter :: jjm_value = jjm - 1 integer :: day_step ! Dummy variables to use the subroutine 'init_testphys1d' logical :: therestart1D, therestartfi integer :: ndt, day0 real :: ptif, pks, day, gru, grv, atm_wat_profile, atm_wat_tau real, dimension(:), allocatable :: zqsat real, dimension(:,:,:), allocatable :: dq, dqdyn real, dimension(nlayer) :: play, w real, dimension(nlayer + 1) :: plev #else integer, parameter :: jjm_value = jjm real, dimension(:), allocatable :: ap ! Coefficient ap read in start_name and written in restart real, dimension(:), allocatable :: bp ! Coefficient bp read in start_name and written in restart real, dimension(:,:), allocatable :: p ! Grid points x Atmosphere: pressure to recompute and write in restart (ngrid,llmp1) #endif ! Loop variables integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap ! Elapsed time with system clock call system_clock(count_rate = cr) call system_clock(c1) timewall = .true. timelimit = 86400 ! 86400 seconds = 24 h by default timewall = .false. if (command_argument_count() > 0) then ! Get the number of command-line arguments call get_command_argument(1,arg) ! Read the argument given to the program select case (trim(adjustl(arg))) case('version') call print_version_info() stop case default ! This is the job id ! Execute the system command call execute_command_line('squeue -j '//trim(adjustl(arg))//' -h --Format TimeLimit > tmp_cmdout.txt',cmdstat = cstat) if (cstat /= 0) then call execute_command_line('qstat -f '//trim(adjustl(arg))//' | grep "Walltime" | awk ''{print $3}'' > tmp_cmdout.txt',cmdstat = cstat) if (cstat > 0) then error stop 'pem: command execution failed!' else if (cstat < 0) then error stop 'pem: command execution not supported (neither SLURM nor PBS/TORQUE is installed)!' endif endif ! Read the output open(1,file = 'tmp_cmdout.txt',status = 'old') read(1,'(a)') chtimelimit close(1) chtimelimit = trim(adjustl(chtimelimit)) call execute_command_line('rm tmp_cmdout.txt',cmdstat = cstat) if (cstat > 0) then error stop 'pem: command execution failed!' else if (cstat < 0) then error stop 'pem: command execution not supported!' endif if (index(chtimelimit,'-') > 0) then ! 'chtimelimit' format is "D-HH:MM:SS" read(chtimelimit,'(i1,a1,i2,a1,i2,a1,i2)') days, sep, hours, sep, minutes, sep, seconds timelimit = days*86400 + hours*3600 + minutes*60 + seconds else if (index(chtimelimit,':') > 0 .and. len_trim(chtimelimit) > 5) then ! 'chtimelimit' format is "HH:MM:SS" read(chtimelimit,'(i2,a1,i2,a1,i2)') hours, sep, minutes, sep, seconds timelimit = hours*3600 + minutes*60 + seconds else ! 'chtimelimit' format is "MM:SS" read(chtimelimit,'(i2,a1,i2)') minutes, sep, seconds timelimit = minutes*60 + seconds endif end select endif ! Parallel variables #ifndef CPP_STD is_sequential = .true. is_parallel = .false. is_mpi_root = .true. is_omp_root = .true. is_master = .true. #endif ! Some constants day_ini = 0 time_phys = 0. ngrid = ngridmx A = (1./m_co2 - 1./m_noco2) B = 1./m_noco2 year_day = 669 daysec = 88775. timestep = year_day*daysec*year_step !----------------------------- INITIALIZATION -------------------------- !------------------------ ! I Initialization ! I_a Read the "run.def" !------------------------ #ifndef CPP_1D dtphys = daysec/48. ! Dummy value (overwritten in phyetat0) call conf_gcm(99,.true.) call infotrac_init nq = nqtot allocate(q(ip1jmp1,llm,nqtot)) allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid)) #else allocate(q(1,llm,nqtot)) allocate(longitude(1),latitude(1),cell_area(1)) therestart1D = .false. ! Default value inquire(file = 'start1D.txt',exist = therestart1D) if (.not. therestart1D) then write(*,*) 'There is no "start1D.txt" file!' error stop 'Initialization cannot be done for the 1D PEM.' endif therestartfi = .false. ! Default value inquire(file = 'startfi.nc',exist = therestartfi) if (.not. therestartfi) then write(*,*) 'There is no "startfi.nc" file!' error stop 'Initialization cannot be done for the 1D PEM.' endif call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q, & time_0,ps_start_dyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, & play,plev,latitude,longitude,cell_area,atm_wat_profile,atm_wat_tau) ps_start_dyn(2) = ps_start_dyn(1) nsplit_phys = 1 day_step = steps_per_sol #endif call conf_pem(i_myear,n_myear) !------------------------ ! I Initialization ! I_b Read of the "start.nc" and "starfi.nc" !------------------------ ! I_b.1 Read "start.nc" allocate(ps_start0(ngrid)) #ifndef CPP_1D call dynetat0(start_name,vcov,ucov,teta,q,masse,ps_start_dyn,phis,time_0) call gr_dyn_fi(1,iip1,jjp1,ngridmx,ps_start_dyn,ps_start0) call iniconst ! Initialization of dynamical constants (comconst_mod) call inigeom ! Initialization of geometry allocate(ap(nlayer + 1)) allocate(bp(nlayer + 1)) status = nf90_open(start_name,NF90_NOWRITE,ncid) status = nf90_inq_varid(ncid,"ap",apvarid) status = nf90_get_var(ncid,apvarid,ap) status = nf90_inq_varid(ncid,"bp",bpvarid) status = nf90_get_var(ncid,bpvarid,bp) status = nf90_close(ncid) ! Initialization of physics constants and variables (comcstfi_h) call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys) #else ps_start0(1) = ps_start_dyn(1) #endif ! In the PCM, these values are given to the physic by the dynamic. ! Here we simply read them in the "startfi.nc" file status = nf90_open(startfi_name,NF90_NOWRITE,ncid) status = nf90_inq_varid(ncid,"longitude",lonvarid) status = nf90_get_var(ncid,lonvarid,longitude) status = nf90_inq_varid(ncid,"latitude",latvarid) status = nf90_get_var(ncid,latvarid,latitude) status = nf90_inq_varid(ncid,"area",areavarid) status = nf90_get_var(ncid,areavarid,cell_area) status = nf90_inq_varid(ncid,"soildepth",sdvarid) status = nf90_get_var(ncid,sdvarid,mlayer) status = nf90_close(ncid) ! I_b.2 Read the "startfi.nc" ! First we read the initial state (starfi.nc) #ifndef CPP_STD call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, & tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar, & watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist) ! Remove unphysical values of surface tracer where (qsurf < 0.) qsurf = 0. call surfini(ngrid,nslope,qsurf) #else call phys_state_var_init(nq) if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on) call initracer(ngrid,nq) call iniaerosol() allocate(tsurf_read_generic(ngrid)) allocate(qsurf_read_generic(ngrid,nq)) allocate(tsoil_read_generic(ngrid,nsoilmx)) allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope)) allocate(emis_read_generic(ngrid)) allocate(albedo_read_generic(ngrid,2)) allocate(qsurf(ngrid,nq,1)) allocate(tsurf(ngrid,1)) allocate(tsoil(ngrid,nsoilmx,1)) allocate(emis(ngrid,1)) allocate(watercap(ngrid,1)) allocate(watercaptag(ngrid)) allocate(albedo(ngrid,2,1)) allocate(inertiesoil(ngrid,nsoilmx,1)) call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, & tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2, & qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice, & rnat,pctsrf_sic,tslab,tsea_ice,sea_ice) call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV) nslope = 1 call ini_comslope_h(ngrid,1) qsurf(:,:,1) = qsurf_read_generic tsurf(:,1) = tsurf_read_generic tsoil(:,:,1) = tsoil_read_generic emis(:,1) = emis_read_generic watercap(:,1) = 0. watercaptag(:) = .false. albedo(:,1,1) = albedo_read_generic(:,1) albedo(:,2,1) = albedo_read_generic(:,2) inertiesoil(:,:,1) = inertiedat if (nslope == 1) then def_slope(1) = 0 def_slope(2) = 0 def_slope_mean = 0 subslope_dist(:,1) = 1. endif ! Remove unphysical values of surface tracer qsurf(:,:,1) = qsurf_read_generic where (qsurf < 0.) qsurf = 0. deallocate(tsurf_read_generic,qsurf_read_generic,qsoil_read_generic,emis_read_generic) #endif do nnq = 1,nqtot ! Why not using ini_tracer ? if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq if (noms(nnq) == "h2o_vap") then igcm_h2o_vap = nnq mmol(igcm_h2o_vap) = 18. endif if (noms(nnq) == "co2") igcm_co2 = nnq enddo !------------------------ ! I Initialization ! I_c Subslope parametrisation !------------------------ ! Define some slope statistics iflat = 1 do islope = 2,nslope if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope enddo write(*,*) 'Flat slope for islope = ',iflat write(*,*) 'corresponding criterium = ',def_slope_mean(iflat) !------------------------ ! I Initialization ! I_d Read the PCM data and convert them to the physical grid !------------------------ ! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value call get_timelen_PCM("data_PCM_Y1.nc",timelen) allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen)) allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid)) allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2)) allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope)) allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen),tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen)) call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, & tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries) ! Compute the deviation from the average allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope)) ps_dev = ps_start0 - ps_avg tsurf_dev = tsurf - tsurf_avg tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:) !------------------------ ! I Initialization ! I_e Initialization of the PEM variables and soil !------------------------ call end_comsoil_h_PEM call ini_comsoil_h_PEM(ngrid,nslope) call end_adsorption_h_PEM call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM) call end_ice_table call ini_ice_table(ngrid,nslope,nsoilmx_PEM) allocate(watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) if (soil_pem) then call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM) tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries do l = nsoilmx + 1,nsoilmx_PEM tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:) watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:) tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:) enddo watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen endif !soil_pem deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries) !------------------------ ! I Initialization ! I_f Compute tendencies !------------------------ allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope)) call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice) call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice) d_co2ice_ini = d_co2ice deallocate(min_co2_ice,min_h2o_ice) !------------------------ ! I Initialization ! I_g Compute global surface pressure !------------------------ total_surface = sum(cell_area) ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface ps_avg_global_new = ps_avg_global_ini write(*,*) "Total surface of the planet =", total_surface write(*,*) "Initial global averaged pressure =", ps_avg_global_ini !------------------------ ! I Initialization ! I_h Read the "startpem.nc" !------------------------ allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),stratif(ngrid,nslope)) allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid)) if (layering_algo) then do islope = 1,nslope do i = 1,ngrid call ini_layering(stratif(i,islope)) enddo enddo endif delta_h2o_icetablesublim = 0. call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth, & icetable_thickness,ice_porefilling,tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys, & ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,watersurf_density_avg, & watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,stratif) deallocate(tsurf_avg_yr1) ! We save the places where h2o ice is sublimating ! We compute the surface of h2o ice sublimating allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope)) co2ice_sublim_surf_ini = 0. h2oice_ini_surf = 0. is_co2ice_sublim_ini = .false. is_h2oice_sublim_ini = .false. is_co2ice_ini = .false. co2ice_disappeared = .false. do i = 1,ngrid do islope = 1,nslope if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true. if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then is_co2ice_sublim_ini(i,islope) = .true. co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope) endif if (d_h2oice(i,islope) < 0. .and. h2o_ice(i,islope) > 0.) then is_h2oice_sublim_ini(i,islope) = .true. h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope) endif enddo enddo write(*,*) "Total initial surface of co2 ice sublimating (slope) =", co2ice_sublim_surf_ini write(*,*) "Total initial surface of h2o ice sublimating (slope) =", h2oice_ini_surf if (adsorption_pem) then totmassco2_adsorbed = 0. totmassh2o_adsorbed = 0. do ig = 1,ngrid do islope = 1,nslope do l = 1,nsoilmx_PEM - 1 if (l == 1) then totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) else totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) endif enddo enddo enddo write(*,*) "Tot mass of CO2 in the regolith =", totmassco2_adsorbed write(*,*) "Tot mass of H2O in the regolith =", totmassh2o_adsorbed endif ! adsorption !------------------------ ! I Initialization ! I_i Compute orbit criterion !------------------------ #ifndef CPP_STD call iniorbit(aphelie,periheli,year_day,peri_day,obliquit) #else call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) #endif n_myear_leg = Max_iter_pem if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg) !-------------------------- END INITIALIZATION ------------------------- !-------------------------------- RUN ---------------------------------- !------------------------ ! II Run ! II_a Update pressure, ice and tracers !------------------------ i_myear_leg = 0 stopPEM = 0 if (layering_algo) then allocate(new_str(ngrid,nslope),new_lag1(ngrid,nslope),new_lag2(ngrid,nslope),current1(ngrid,nslope),current2(ngrid,nslope)) new_str = .true. new_lag1 = .true. new_lag2 = .true. do islope = 1,nslope do ig = 1,ngrid current1(ig,islope)%p => stratif(ig,islope)%top current2(ig,islope)%p => stratif(ig,islope)%top enddo enddo endif do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear) ! II.a.1. Compute updated global pressure write(*,*) "Recomputing the new pressure..." ps_avg_global_old = ps_avg_global_new do i = 1,ngrid do islope = 1,nslope ps_avg_global_new = ps_avg_global_old - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface enddo enddo if (adsorption_pem) then do i = 1,ngrid ps_avg_global_new = ps_avg_global_old - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface enddo endif write(*,*) 'Global average pressure old time step',ps_avg_global_old write(*,*) 'Global average pressure new time step',ps_avg_global_new ! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption) allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen)) write(*,*) "Recomputing the pressure levels timeseries adapted to the old pressure..." do l = 1,nlayer + 1 do ig = 1,ngrid zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:) enddo enddo write(*,*) "Recomputing the surface pressure timeseries adapted to the new pressure..." do ig = 1,ngrid ps_timeseries(ig,:) = ps_timeseries(ig,:)*ps_avg_global_new/ps_avg_global_old enddo write(*,*) "Recomputing the pressure levels timeseries adapted to the new pressure..." allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen)) do l = 1,nlayer + 1 do ig = 1,ngrid zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:) enddo enddo ! II.a.3. Tracers timeseries write(*,*) "Recomputing of tracer VMR timeseries for the new pressure..." allocate(vmr_co2_PEM_phys(ngrid,timelen)) l = 1 do ig = 1,ngrid do t = 1,timelen ! H2O q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ & (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t)) if (q_h2o_PEM_phys(ig,t) < 0) then q_h2o_PEM_phys(ig,t) = 1.e-30 else if (q_h2o_PEM_phys(ig,t) > 1) then q_h2o_PEM_phys(ig,t) = 1. endif ! CO2 q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ & (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t)) & + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t)) & - (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/ & (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t)) if (q_co2_PEM_phys(ig,t) < 0) then q_co2_PEM_phys(ig,t) = 1.e-30 else if (q_co2_PEM_phys(ig,t) > 1) then q_co2_PEM_phys(ig,t) = 1. endif mmean = 1./(A*q_co2_PEM_phys(ig,t) + B) vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2 enddo enddo deallocate(zplev_timeseries_new,zplev_timeseries_old) !------------------------ ! II Run ! II_b Evolution of ice !------------------------ allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope)) call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM) call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf) if (layering_algo) then do islope = 1,nslope do ig = 1,ngrid call make_layering(stratif(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),d_dust,new_str(ig,islope),zshift_surf(ig,islope),new_lag1(ig,islope),new_lag2(ig,islope),zlag(ig,islope),stopPEM,current1(ig,islope)%p,current2(ig,islope)%p) enddo enddo else zlag = 0. endif !------------------------ ! II Run ! II_c Flow of glaciers !------------------------ allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope)) if (co2ice_flow .and. nslope > 1) call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, & ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow) if (h2oice_flow .and. nslope > 1) call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow) !------------------------ ! II Run ! II_d Update surface and soil temperatures !------------------------ ! II_d.1 Update Tsurf write(*,*) "Updating the new Tsurf" do ig = 1,ngrid do islope = 1,nslope ! CO2 ice disappeared so we look for the closest point without CO2 ice if (is_co2ice_ini(ig,islope) .and. co2_ice(ig,islope) < 1.e-10 .and. .not. co2ice_disappeared(ig,islope)) then co2ice_disappeared(ig,islope) = .true. if (latitude_deg(ig) > 0) then outer1: do ig_loop = ig,ngrid do islope_loop = islope,iflat,-1 if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop) exit outer1 endif enddo enddo outer1 else outer2: do ig_loop = ig,1,-1 do islope_loop = islope,iflat if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop) exit outer2 endif enddo enddo outer2 endif else if (co2_ice(ig,islope) > 1.e-10 .and. d_co2ice(ig,islope) > 1.e-10) then ! Put tsurf as tcond CO2 call computeTcondCO2(timelen,ngrid,nslope,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_ini,ps_avg_global_new,tsurf_avg) endif enddo enddo if (soil_pem) then ! II_d.2 Shifting soil temperature to surface call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM) deallocate(zshift_surf,zlag) ! II_d.3 Update soil temperature write(*,*)"Updating soil temperature" allocate(tsoil_avg_old(ngrid,nsoilmx_PEM)) do islope = 1,nslope tsoil_avg_old = tsoil_PEM(:,:,islope) call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope)) call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope)) do t = 1,timelen do ig = 1,ngrid do isoil = 1,nsoilmx_PEM ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil) ! Update of watersoil density watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r) if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1) enddo enddo enddo enddo watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen deallocate(tsoil_avg_old) write(*,*) "Update of soil temperature done" ! II_d.4 Update the ice table allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope)) if (icetable_equilibrium) then write(*,*) "Compute ice table (equilibrium method)" icetable_thickness_old = icetable_thickness call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness) call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere else if (icetable_dynamic) then write(*,*) "Compute ice table (dynamic method)" ice_porefilling_old = ice_porefilling allocate(porefill(nsoilmx_PEM)) do ig = 1,ngrid do islope = 1,nslope call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth) icetable_depth(ig,islope) = ssi_depth ice_porefilling(ig,:,islope) = porefill enddo enddo deallocate(porefill) call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg, tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere endif deallocate(icetable_thickness_old,ice_porefilling_old) ! II_d.5 Update the soil thermal properties call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM) ! II_d.6 Update the mass of the regolith adsorbed if (adsorption_pem) then call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, & tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, & h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed) totmassco2_adsorbed = 0. totmassh2o_adsorbed = 0. do ig = 1,ngrid do islope = 1,nslope do l = 1,nsoilmx_PEM if (l == 1) then totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) else totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) endif enddo enddo enddo write(*,*) "Tot mass of CO2 in the regolith=", totmassco2_adsorbed write(*,*) "Tot mass of H2O in the regolith=", totmassh2o_adsorbed endif endif !soil_pem !------------------------ ! II Run ! II_e Outputs !------------------------ call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/)) do islope = 1,nslope write(str2(1:2),'(i2.2)') islope call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope)) call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope)) call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope)) call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope)) call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope))) call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope))) call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope)) if (icetable_equilibrium) then call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope)) call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope)) else if (icetable_dynamic) then call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope)) endif if (soil_pem) then call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope)) call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope)) if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope)) if (adsorption_pem) then call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope)) call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope)) endif endif enddo deallocate(flag_co2flow,flag_h2oflow) !------------------------ ! II Run ! II_f Update the tendencies !------------------------ call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new) deallocate(vmr_co2_PEM_phys) !------------------------ ! II Run ! II_g Checking the stopping criterion !------------------------ write(*,*) "Checking the stopping criteria..." call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid) call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope) i_myear_leg = i_myear_leg + dt i_myear = i_myear + dt if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5 if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6 call system_clock(c2) if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7 if (stopPEM > 0) then select case (stopPEM) case(1) write(*,*) "STOPPING because surface of h2o ice sublimating is too low:", stopPEM, "See message above." case(2) write(*,*) "STOPPING because tendencies on h2o ice = 0:", stopPEM, "See message above." case(3) write(*,*) "STOPPING because surface of co2 ice sublimating is too low:", stopPEM, "See message above." case(4) write(*,*) "STOPPING because surface global pressure changed too much:", stopPEM, "See message above." case(5) write(*,*) "STOPPING because maximum number of iterations is reached (possibly due to orbital parameters):", stopPEM case(6) write(*,*) "STOPPING because maximum number of Martian years to be simulated is reached:", stopPEM case(7) write(*,*) "STOPPING because the time limit for the PEM job will be reached soon:", stopPEM case(8) write(*,*) "STOPPING because the layering algorithm met an hasty end:", stopPEM case default write(*,*) "STOPPING with unknown stopping criterion code:", stopPEM end select exit else write(*,*) "The PEM can continue!" write(*,*) "Number of iterations of the PEM: i_myear_leg =", i_myear_leg write(*,*) "Number of simulated Martian years: i_myear =", i_myear endif enddo ! big time iteration loop of the pem deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed) deallocate(watersoil_density_PEM_avg,watersurf_density_avg,) deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries) deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim) deallocate(d_co2ice,d_co2ice_ini,d_h2oice) deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini) if (layering_algo) then do islope = 1,nslope do i = 1,ngrid call del_layering(stratif(i,islope)) enddo enddo deallocate(new_str,new_lag1,new_lag2,current1,current2) endif !------------------------------ END RUN -------------------------------- !------------------------------- OUTPUT -------------------------------- !------------------------ ! III Output ! III_a Update surface value for the PCM start files !------------------------ ! III_a.1 Ice update for start file watercap = 0. perennial_co2ice = co2_ice do ig = 1,ngrid ! H2O ice metamorphism if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold endif ! Is H2O ice still considered as an infinite reservoir for the PCM? if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then ! There is enough ice to be considered as an infinite reservoir watercaptag(ig) = .true. else ! There too little ice to be considered as an infinite reservoir so ice is transferred to the frost watercaptag(ig) = .false. qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:) h2o_ice(ig,:) = 0. endif ! CO2 ice metamorphism if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold qsurf(ig,igcm_co2,:) = metam_co2ice_threshold endif enddo ! III.a.2. Tsurf update for start file tsurf = tsurf_avg + tsurf_dev deallocate(tsurf_dev) ! III_a.3 Tsoil update for start file if (soil_pem) then inertiesoil = TI_PEM(:,:nsoilmx,:) ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value do isoil = 1,nsoilmx tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:) enddo tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev #ifndef CPP_STD flux_geo = fluxgeo #endif endif deallocate(tsurf_avg,tsoil_dev) ! III_a.4 Pressure update for start file allocate(ps_start(ngrid)) ps_start = ps_avg + ps_dev deallocate(ps_avg,ps_dev) ! III_a.5 Tracers update for start file allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1)) do l = 1,nlayer + 1 zplev_start0(:,l) = ap(l) + bp(l)*ps_start0 zplev_new(:,l) = ap(l) + bp(l)*ps_start enddo do nnq = 1,nqtot if (noms(nnq) /= "co2") then do l = 1,llm - 1 do ig = 1,ngrid q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) enddo q(:,llm,nnq) = q(:,llm - 1,nnq) enddo else do l = 1,llm - 1 do ig = 1,ngrid q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) & + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) enddo q(:,llm,nnq) = q(:,llm - 1,nnq) enddo endif enddo deallocate(zplev_start0) ! Conserving the tracers mass for start file do nnq = 1,nqtot do ig = 1,ngrid do l = 1,llm - 1 if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1)) q(ig,l,nnq) = 1. q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2)) write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number" endif if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30 enddo enddo enddo deallocate(zplev_new) ! III_a.6 Albedo update for start file do ig = 1,ngrid if (latitude(ig) < 0.) then icap = 2 ! Southern hemisphere else icap = 1 ! Northern hemisphere endif do islope = 1,ngrid ! Bare ground albedo(ig,:,islope) = albedodat(ig) emis(ig,islope) = emissiv ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant ! H2O ice if (h2o_ice(ig,islope) > 0.) then albedo(ig,:,islope) = albedo_h2o_cap emis(ig,islope) = 1. endif ! CO2 ice if (co2_ice(ig,islope) > 0.) then albedo(ig,:,islope) = albedo_perennialco2(icap) emis(ig,islope) = emisice(icap) endif ! H2O frost if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then albedo(ig,:,islope) = albedo_h2o_frost emis(ig,islope) = 1. endif ! CO2 frost if (qsurf(ig,igcm_co2,islope) > 0.) then albedo(ig,:,islope) = albedice(icap) emis(ig,islope) = emisice(icap) endif enddo enddo ! III_a.7 Orbital parameters update for start file if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg) !------------------------ ! III Output ! III_b Write "restart.nc" and "restartfi.nc" !------------------------ ! III_b.1 Write "restart.nc" ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys pday = day_ini ztime_fin = time_phys #ifndef CPP_1D allocate(p(ip1jmp1,nlayer + 1)) ! Correction on teta due to surface pressure changes do l = 1,nlayer do i = 1,ip1jmp1 teta(i,l)= teta(i,l)*(ps_start0(i)/ps_start(i))**kappa enddo enddo ! Correction on atmospheric pressure call pression(ip1jmp1,ap,bp,ps_start,p) ! Correction on the mass of atmosphere call massdair(p,masse) call dynredem0("restart.nc",day_ini,phis) call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,ps_start) write(*,*) "restart.nc has been written." deallocate(ap,bp,p) #else call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q) write(*,*) "restart1D.txt has been written." #endif deallocate(ps_start0,ps_start) ! III_b.2 Write the "restartfi.nc" #ifndef CPP_STD call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, & nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, & inertiedat,def_slope,subslope_dist) call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, & ptimestep,ztime_fin,tsurf,tsoil,inertiesoil, & albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, & wstar,watercap,perennial_co2ice) #else if (allocated(noms)) deallocate(noms) deallocate(qsurf,tsurf,tsoil,emis,watercap,watercaptag,albedo,inertiesoil) call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, & nlayer,nq,ptimestep,pday,time_phys,cell_area, & albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, & ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, & cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab, & tsea_ice,sea_ice) #endif write(*,*) "restartfi.nc has been written." !------------------------ ! III Output ! III_c Write the "restartpem.nc" !------------------------ if (layering_algo) nb_str_max = get_nb_str_max(stratif,ngrid,nslope) ! Get the maximum number of "stratum" in the stratification (layerings) call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist) call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, & co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,stratif) write(*,*) "restartpem.nc has been written." call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear) write(*,*) "The PEM has run for", i_myear_leg, "Martian years." write(*,*) "The chained simulation has run for", i_myear, "Martian years =", i_myear*convert_years, "Earth years." write(*,*) "The reached date is now", (year_bp_ini + i_myear)*convert_years, "Earth years." write(*,*) "PEM: so far, so good!" if (layering_algo) then do islope = 1,nslope do i = 1,ngrid call del_layering(stratif(i,islope)) enddo enddo endif deallocate(q,longitude,latitude,cell_area,tsoil_PEM) deallocate(co2_ice,h2o_ice,stratif) !----------------------------- END OUTPUT ------------------------------ END PROGRAM pem