MODULE adsorption_mod implicit none logical :: adsorption_pem ! True by default, to compute adsorption/desorption. Read in pem.def real, allocatable, dimension(:,:,:) :: co2_adsorbed_phys ! co2 that is in the regolith [kg/m^2] real, allocatable, dimension(:,:,:) :: h2o_adsorbed_phys ! h2o that is in the regolith [kg/m^2] !======================================================================= contains !======================================================================= !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!! !!! Purpose: Compute CO2 and H2O adsorption, following the methods from Zent & Quinn 1995, Jackosky et al., 1997 !!! !!! Author: LL, 01/2023 !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM) implicit none integer, intent(in) :: ngrid ! number of atmospheric columns integer, intent(in) :: nslope ! number of slope within a mesh integer, intent(in) :: nsoilmx_PEM ! number of soil layer in the PEM allocate(co2_adsorbed_phys(ngrid,nsoilmx_PEM,nslope)) allocate(h2o_adsorbed_phys(ngrid,nsoilmx_PEM,nslope)) END SUBROUTINE ini_adsorption_h_PEM !======================================================================= SUBROUTINE end_adsorption_h_PEM if (allocated(co2_adsorbed_phys)) deallocate(co2_adsorbed_phys) if (allocated(h2o_adsorbed_phys)) deallocate(h2o_adsorbed_phys) END SUBROUTINE end_adsorption_h_PEM !======================================================================= SUBROUTINE regolith_adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,tsoil_PEM,TI_PEM,ps,q_co2,q_h2o, & m_h2o_completesoil,delta_mh2oreg, m_co2_completesoil,delta_mco2reg) implicit none ! Inputs integer, intent(in) :: ngrid, nslope, nsoil_PEM, timelen ! size dimension: physics x subslope x soil x timeseries real, dimension(ngrid,nslope), intent(in) :: d_h2oglaciers, d_co2glaciers ! tendancies on the glaciers [1] real, dimension(ngrid,nslope), intent(in) :: waterice ! water ice at the surface [kg/m^2] real, dimension(ngrid,nslope), intent(in) :: co2ice ! co2 ice at the surface [kg/m^2] real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM ! Soil Thermal inertia (J/K/^2/s^1/2) real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM ! Soil temperature (K) real, dimension(ngrid,timelen), intent(in) :: ps ! Average surface pressure [Pa] real, dimension(ngrid,timelen), intent(in) :: q_co2 ! Mass mixing ratio of co2 in the first layer (kg/kg) real, dimension(ngrid,timelen), intent(in) :: q_h2o ! Mass mixing ratio of H2o in the first layer (kg/kg) ! Outputs real, dimension(ngrid), intent(out) :: delta_mh2oreg ! Difference density of h2o adsorbed (kg/m^3) real, dimension(ngrid), intent(out) :: delta_mco2reg ! Difference density of co2 adsorbed (kg/m^3) real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_co2_completesoil ! Density of co2 adsorbed (kg/m^3) real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_h2o_completesoil ! Density of h2o adsorbed (kg/m^3) ! Local variables real, dimension(ngrid,nsoil_PEM,nslope) :: theta_h2o_adsorbed ! Fraction of the pores occupied by H2O molecules ! ------------- ! Compute H2O adsorption, then CO2 adsorption call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & theta_h2o_adsorbed,m_h2o_completesoil,delta_mh2oreg) call regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o, & tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mco2reg) END SUBROUTINE !======================================================================= SUBROUTINE regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & theta_h2o_adsorbed,m_h2o_completesoil,delta_mreg) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!! !!! Purpose: Compute H2O adsorption, following the methods from Jackosky et al., 1997 !!! !!! Author: LL, 01/2023 !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! use comsoil_h_PEM, only: layer_PEM, index_breccia use comslope_mod, only: subslope_dist, def_slope_mean use vertical_layers_mod, only: ap, bp use constants_marspem_mod, only: alpha_clap_h2o, beta_clap_h2o, m_h2o, m_co2,m_noco2, rho_regolith #ifndef CPP_STD use comcstfi_h, only: pi #else use comcstfi_mod, only: pi #endif implicit none ! Inputs integer, intent(in) :: ngrid, nslope, nsoil_PEM,timelen ! Size dimension real, dimension(ngrid,nslope), intent(in) :: d_h2oglaciers, d_co2glaciers ! Tendencies on the glaciers () real, dimension(ngrid,nslope), intent(in) :: waterice ! Water ice at the surface [kg/m^2] real, dimension(ngrid,nslope), intent(in) :: co2ice ! CO2 ice at the surface [kg/m^2] real, dimension(ngrid,timelen), intent(in) :: ps ! Surface pressure (Pa) real, dimension(ngrid,timelen), intent(in) :: q_co2 ! Mass mixing ratio of co2 in the first layer (kg/kg) real, dimension(ngrid,timelen), intent(in) :: q_h2o ! Mass mixing ratio of H2o in the first layer (kg/kg) real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM ! Soil Thermal inertia (J/K/^2/s^1/2) real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM ! Soil temperature (K) ! Outputs real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_h2o_completesoil ! Density of h2o adsorbed (kg/m^3)(ngrid,nsoil_PEM,nslope) real, dimension(ngrid,nsoil_PEM,nslope), intent(out) :: theta_h2o_adsorbed ! Fraction of the pores occupied by H2O molecules real, dimension(ngrid), intent(out) :: delta_mreg ! Difference density of h2o adsorbed (kg/m^3) ! Constants real :: Ko = 1.57e-8 ! Jackosky et al. 1997 real :: e = 2573.9 ! Jackosky et al. 1997 real :: mu = 0.48 ! Jackosky et al. 1997 real :: m_theta = 2.84e-7 ! Mass of h2o per m^2 absorbed Jackosky et al. 1997 ! real :: as = 18.9e3 ! Specific area, Buhler & Piqueux 2021 real :: as = 9.48e4 ! Specific area, Zent real :: inertie_thresold = 800. ! TI > 800 means cementation ! Local variables real, dimension(ngrid,index_breccia,nslope) :: deltam_reg_complete ! Difference in the mass per slope and soil layer (kg/m^3) real :: K ! Used to compute theta integer :: ig, iloop, islope, it ! For loops logical, dimension(ngrid,nslope) :: ispermanent_co2glaciers ! Check if the co2 glacier is permanent logical, dimension(ngrid,nslope) :: ispermanent_h2oglaciers ! Check if the h2o glacier is permanent real, dimension(ngrid,nslope) :: deltam_reg_slope ! Difference density of h2o adsorbed per slope (kg/m^3) real, dimension(ngrid,nsoil_PEM,nslope) :: dm_h2o_regolith_slope ! Elementary h2o mass adsorded per mesh per slope real :: A, B ! Used to compute the mean mass above the surface real :: p_sat ! Saturated vapor pressure of ice real, dimension(:,:), allocatable :: mass_mean ! Mean mass above the surface real, dimension(:,:), allocatable :: zplev_mean ! Pressure above the surface real, dimension(:,:), allocatable :: pvapor ! Partial pressure above the surface real, dimension(:) , allocatable :: pvapor_avg ! Yearly averaged ! 0. Some initializations allocate(mass_mean(ngrid,timelen),zplev_mean(ngrid,timelen),pvapor(ngrid,timelen),pvapor_avg(ngrid)) A = 1./m_co2 - 1./m_noco2 B = 1./m_noco2 theta_h2o_adsorbed = 0. dm_h2o_regolith_slope = 0. ispermanent_h2oglaciers = .false. ispermanent_co2glaciers = .false. #ifndef CPP_STD ! 0.1 Look at perennial ice do ig = 1,ngrid do islope = 1,nslope if (abs(d_h2oglaciers(ig,islope)) > 1.e-5 .and. abs(waterice(ig,islope)) > 0.) ispermanent_h2oglaciers(ig,islope) = .true. if (abs(d_co2glaciers(ig,islope)) > 1.e-5 .and. abs(co2ice(ig,islope)) > 0.) ispermanent_co2glaciers(ig,islope) = .true. enddo enddo ! 0.2 Compute the partial pressure of vapor ! a. the molecular mass into the column do ig = 1,ngrid mass_mean(ig,:) = 1/(A*q_co2(ig,:) + B) enddo ! b. pressure level do it = 1,timelen do ig = 1,ngrid zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it) enddo enddo ! c. Vapor pressure pvapor = mass_mean/m_h2o*q_h2o*zplev_mean pvapor_avg = sum(pvapor,2)/timelen #endif deallocate(pvapor,zplev_mean,mass_mean) #ifndef CPP_STD ! 1. we compute the mass of H2O adsorded in each layer of the meshes do ig = 1,ngrid do islope = 1,nslope do iloop = 1,index_breccia K = Ko*exp(e/tsoil_PEM(ig,iloop,islope)) if (TI_PEM(ig,iloop,islope) < inertie_thresold) then theta_h2o_adsorbed(ig,iloop,islope) = (K*pvapor_avg(ig)/(1. + K*pvapor_avg(ig)))**mu else p_sat = exp(beta_clap_h2o/tsoil_PEM(ig,iloop,islope) + alpha_clap_h2o) ! we assume fixed temperature in the ice ... not really good but ... theta_h2o_adsorbed(ig,iloop,islope) = (K*p_sat/(1. + K*p_sat))**mu endif dm_h2o_regolith_slope(ig,iloop,islope) = as*theta_h2o_adsorbed(ig,iloop,islope)*m_theta*rho_regolith enddo enddo enddo ! 2. Check the exchange between the atmosphere and the regolith do ig = 1,ngrid delta_mreg(ig) = 0. do islope = 1,nslope deltam_reg_slope(ig,islope) = 0. do iloop = 1,index_breccia if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then if (iloop == 1) then deltam_reg_complete(ig,iloop,islope) = (dm_h2o_regolith_slope(ig,iloop,islope) - m_h2o_completesoil(ig,iloop,islope))*(layer_PEM(iloop)) else deltam_reg_complete(ig,iloop,islope) = (dm_h2o_regolith_slope(ig,iloop,islope) - m_h2o_completesoil(ig,iloop,islope))*(layer_PEM(iloop) - layer_PEM(iloop - 1)) endif else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC! deltam_reg_complete(ig,iloop,islope) = 0. endif deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope) enddo delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) enddo enddo m_h2o_completesoil = dm_h2o_regolith_slope #endif END SUBROUTINE !======================================================================= !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!! !!! Purpose: Compute CO2 following the methods from Zent & Quinn 1995 !!! !!! Author: LL, 01/2023 !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mreg) use comsoil_h_PEM, only: layer_PEM, index_breccia, index_breccia use comslope_mod, only: subslope_dist, def_slope_mean use vertical_layers_mod, only: ap, bp use constants_marspem_mod, only: m_co2, m_noco2, rho_regolith #ifndef CPP_STD use comcstfi_h, only: pi #else use comcstfi_mod, only: pi #endif implicit none ! Inputs: integer, intent(in) :: ngrid, nslope, nsoil_PEM,timelen ! Size dimension real, dimension(ngrid,timelen), intent(in) :: ps ! Average surface pressure [Pa] real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM ! Mean Soil Temperature [K] real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM ! Mean Thermal Inertia [USI] real, dimension(ngrid,nslope), intent(in) :: d_h2oglaciers, d_co2glaciers ! Tendencies on the glaciers () real, dimension(ngrid,timelen), intent(in) :: q_co2, q_h2o ! Mass mixing ratio of co2 and h2o in the first layer (kg/kg) real, dimension(ngrid,nslope), intent(in) :: waterice ! Water ice at the surface [kg/m^2] real, dimension(ngrid,nslope), intent(in) :: co2ice ! CO2 ice at the surface [kg/m^2] ! Outputs: real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_co2_completesoil ! Density of co2 adsorbed (kg/m^3) real, dimension(ngrid), intent(out) :: delta_mreg ! Difference density of co2 adsorbed (kg/m^3) ! Constants: real :: alpha = 7.512e-6 ! Zent & Quinn 1995 real :: beta = -1541.5 ! Zent & Quinn 1995 real :: inertie_thresold = 800. ! TI > 800 means cementation real :: m_theta = 4.27e-7 ! Mass of co2 per m^2 absorbed ! real :: as = 18.9e3 ! Specific area, Buhler & Piqueux 2021 real :: as = 9.48e4 ! Same as previous but from zent ! Local real :: A, B ! Used to compute the mean mass above the surface integer :: ig, islope, iloop, it ! For loops real, dimension(ngrid,nsoil_PEM,nslope) :: dm_co2_regolith_slope ! Elementary mass adsorded per mesh per slope logical, dimension(ngrid,nslope) :: ispermanent_co2glaciers ! Check if the co2 glacier is permanent logical, dimension(ngrid,nslope) :: ispermanent_h2oglaciers ! Check if the h2o glacier is permanent real, dimension(ngrid,index_breccia,nslope) :: deltam_reg_complete ! Difference in the mass per slope and soil layer (kg/m^3) real, dimension(ngrid,nslope) :: deltam_reg_slope ! Difference in the mass per slope (kg/m^3) real, dimension(ngrid,nsoil_PEM,nslope) :: m_h2o_adsorbed ! Density of CO2 adsorbed (kg/m^3) real, dimension(ngrid,nsoil_PEM,nslope) :: theta_h2o_adsorbed ! Fraction of the pores occupied by H2O molecules real, dimension(ngrid) :: delta_mh2o ! Difference density of h2o adsorbed (kg/m^3) ! timelen array are allocated because heavy... real, dimension(:,:), allocatable :: mass_mean ! Mean mass above the surface real, dimension(:,:), allocatable :: zplev_mean ! Pressure above the surface real, dimension(:,:), allocatable :: pco2 ! Partial pressure above the surface real, dimension(:), allocatable :: pco2_avg ! Yearly averaged ! 0. Some initializations allocate(mass_mean(ngrid,timelen),zplev_mean(ngrid,timelen),pco2(ngrid,timelen),pco2_avg(ngrid)) m_h2o_adsorbed = 0. A = 1./m_co2 - 1./m_noco2 B = 1./m_noco2 dm_co2_regolith_slope = 0. delta_mreg = 0. ispermanent_h2oglaciers = .false. ispermanent_co2glaciers = .false. #ifndef CPP_STD ! 0.1 Look at perennial ice do ig = 1,ngrid do islope = 1,nslope if (abs(d_h2oglaciers(ig,islope)) > 1.e-5 .and. abs(waterice(ig,islope)) > 0.) ispermanent_h2oglaciers(ig,islope) = .true. if (abs(d_co2glaciers(ig,islope)) > 1.e-5 .and. abs(co2ice(ig,islope)) > 0.) ispermanent_co2glaciers(ig,islope) = .true. enddo enddo ! 0.2 Compute the partial pressure of CO2 ! a. the molecular mass into the column do ig = 1,ngrid mass_mean(ig,:) = 1./(A*q_co2(ig,:) + B) enddo ! b. pressure level do it = 1,timelen do ig = 1,ngrid zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it) enddo enddo ! c. Vapor pressure pco2 = mass_mean/m_co2*q_co2*zplev_mean pco2_avg(:) = sum(pco2(:,:),2)/timelen deallocate(zplev_mean,mass_mean,pco2) ! 1. Compute the fraction of the pores occupied by H2O call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & theta_h2o_adsorbed, m_h2o_adsorbed,delta_mh2o) ! 2. we compute the mass of co2 adsorded in each layer of the meshes do ig = 1,ngrid do islope = 1,nslope do iloop = 1,index_breccia if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1. - theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig)/ & (alpha*pco2_avg(ig) + sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope))) else if (abs(m_co2_completesoil(ig,iloop,islope)) < 1.e-10) then !!! we are at first call dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1. - theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig) & /(alpha*pco2_avg(ig)+sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope))) else ! no change: permanent ice stick the atoms of CO2 dm_co2_regolith_slope(ig,iloop,islope) = m_co2_completesoil(ig,iloop,islope) endif endif enddo enddo enddo ! 3. Check the exchange between the atmosphere and the regolith do ig = 1,ngrid delta_mreg(ig) = 0. do islope = 1,nslope deltam_reg_slope(ig,islope) = 0. do iloop = 1,index_breccia if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then if (iloop == 1) then deltam_reg_complete(ig,iloop,islope) = (dm_co2_regolith_slope(ig,iloop,islope) - m_co2_completesoil(ig,iloop,islope))*(layer_PEM(iloop)) else deltam_reg_complete(ig,iloop,islope) = (dm_co2_regolith_slope(ig,iloop,islope) - m_co2_completesoil(ig,iloop,islope))*(layer_PEM(iloop) - layer_PEM(iloop - 1)) endif else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC! deltam_reg_complete(ig,iloop,islope) = 0. endif deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope) enddo delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) enddo enddo m_co2_completesoil = dm_co2_regolith_slope #endif END SUBROUTINE regolith_co2adsorption END MODULE adsorption_mod