SUBROUTINE conduction(ptimestep,pplay,pplev,pt,pdt, $ tsurf,zzlev,zzlay,zdtconduc) IMPLICIT NONE c======================================================================= c c Molecular thermal conduction c c N. Descamp, F. Forget 05/1999 c c======================================================================= c----------------------------------------------------------------------- c declarations: c----------------------------------------------------------------------- #include "dimensions.h" #include "dimphys.h" #include "comcstfi.h" #include "surfdat.h" #include "chimiedata.h" #include "conc.h" c arguments: c ---------- REAL ptimestep REAL pplay(ngridmx,nlayermx) real pplev(ngridmx,nlayermx+1) REAL zzlay(ngridmx,nlayermx) real zzlev(ngridmx,nlayermx+1) REAL pt(ngridmx,nlayermx) real pdt(ngridmx,nlayermx) real tsurf(ngridmx) real zdtconduc(ngridmx,nlayermx) c local: c ------ INTEGER i,ig,l, ngrid, nz real Akk,skk,phitop,m,tmean REAL alpha(nlayermx) real zt(nlayermx) REAL lambda(nlayermx) real muvol(nlayermx) REAL C(nlayermx) real D(nlayermx) real den(nlayermx) REAL pdtc(nlayermx) real zlay(nlayermx) real zlev(nlayermx+1) c constants used locally c --------------------- c The atmospheric conductivity is a function of temperature T : c conductivity = Akk* T**skk PARAMETER (skk=0.69) logical firstcall save firstcall data firstcall /.true./ c----------------------------------------------------------------------- c calcul des coefficients alpha et lambda c----------------------------------------------------------------------- IF (firstcall) THEN write (*,*)'conduction: coeff to compute molecular', & ' conductivity Akk,skk' write(*,*) Akk,skk firstcall = .false. END IF ! Initialize phitop phitop=0.0 ngrid=ngridmx nz=nlayermx do ig=1,ngrid zt(1)=pt(ig,1)+pdt(ig,1)*ptimestep c zlay(1)=-log(pplay(ig,1)/pplev(ig,1))*Rnew(ig,1)*zt(1)/g c zlev(1)=0.0 zlay(1)=zzlay(ig,1) zlev(1)=zzlev(ig,1) do i=2,nz zt(i)=pt(ig,i)+pdt(ig,i)*ptimestep c tmean=zt(i) c if(zt(i).ne.zt(i-1)) c & tmean=(zt(i)-zt(i-1))/log(zt(i)/zt(i-1)) c zlay(i)= zlay(i-1) c & -log(pplay(ig,i)/pplay(ig,i-1))*Rnew(ig,i-1)*tmean/g c zlev(i)= zlev(i-1) c & -log(pplev(ig,i)/pplev(ig,i-1))*Rnew(ig,i-1)*tmean/g zlay(i)=zzlay(ig,i) zlev(i)=zzlev(ig,i) enddo c zlev(nz+1)= zlev(nz) c & -log(max(pplev(ig,nz+1),1.e-30)/pplev(ig,nz)) c & *Rnew(ig,nz)*tmean/g c if(pplev(ig,nz+1).eq.0.) c & zlev(nz+1)=zlev(nz)+(zlay(nz)-zlay(nz-1)) zlev(nz+1)= zlev(nz)+10000. Akk=Akknew(ig,1) lambda(1) = Akk*tsurf(ig)**skk/zlay(1) DO i = 2 , nz Akk=Akknew(ig,i) lambda(i)=Akk*zt(i)**skk/(zlay(i)-zlay(i-1)) ENDDO DO i=1,nz-1 muvol(i)=pplay(ig,i)/(rnew(ig,i)*zt(i)) alpha(i)=cpnew(ig,i)*(muvol(i)/ptimestep) $ *(zlev(i+1)-zlev(i)) ENDDO muvol(nz)=pplay(ig,nz)/(rnew(ig,nz)*zt(nz)) alpha(nz)=cpnew(ig,i)*(muvol(nz)/ptimestep) $ *(zlev(nz+1)-zlev(nz)) c-------------------------------------------------------------------- c c calcul des coefficients C et D c c------------------------------------------------------------------- den(1)=alpha(1)+lambda(2)+lambda(1) C(1)=lambda(1)*(tsurf(ig)-zt(1))+lambda(2)*(zt(2)-zt(1)) C(1)=C(1)/den(1) D(1)=lambda(2)/den(1) DO i = 2,nz-1 den(i)=alpha(i)+lambda(i+1) den(i)=den(i)+lambda(i)*(1-D(i-1)) C(i) =lambda(i+1)*(zt(i+1)-zt(i)) $ +lambda(i)*(zt(i-1)-zt(i)+C(i-1)) C(i) =C(i)/den(i) D(i) =lambda(i+1) / den(i) ENDDO den(nz)=alpha(nz) + lambda(nz) * (1-D(nz-1)) C(nz)=C(nz-1)+zt(nz-1)-zt(nz) C(nz)=(C(nz)*lambda(nz)+phitop) / den(nz) c---------------------------------------------------------------------- c c calcul de la nouvelle temperature ptconduc c c---------------------------------------------------------------------- DO i=1,nz pdtc(i)=0. ENDDO pdtc(nz)=C(nz) DO i=nz-1,1,-1 pdtc(i)=C(i)+D(i)*pdtc(i+1) ENDDO c----------------------------------------------------------------------- c c calcul de la tendance zdtconduc c c----------------------------------------------------------------------- DO i=1,nz zdtconduc(ig,i)=pdtc(i)/ptimestep ENDDO ENDDO ! boucle sur ngrid RETURN END