! Create an initial data set for the WRF model based on real data. This ! program is specifically set up for the Eulerian, mass-based coordinate. PROGRAM real_data USE module_machine USE module_domain, ONLY : domain, alloc_and_configure_domain, & domain_clock_set, head_grid, program_name, domain_clockprint USE module_initialize_real, ONLY : wrfu_initialize, find_my_parent USE module_initialize_real USE module_io_domain USE module_driver_constants USE module_configure, ONLY : grid_config_rec_type, model_config_rec, & initial_config, get_config_as_buffer, set_config_as_buffer USE module_timing USE module_state_description, ONLY : realonly USE module_symbols_util, ONLY: wrfu_cal_gregorian #ifdef WRF_CHEM USE module_input_chem_data USE module_input_chem_bioemiss USE module_input_chem_emissopt3 #endif USE module_utility, ONLY : WRFU_finalize IMPLICIT NONE #ifdef WRF_CHEM ! interface INTERFACE ! mediation-supplied SUBROUTINE med_read_wrf_chem_bioemiss ( grid , config_flags) USE module_domain TYPE (domain) grid TYPE (grid_config_rec_type) config_flags END SUBROUTINE med_read_wrf_chem_bioemiss END INTERFACE #endif REAL :: time , bdyfrq INTEGER :: loop , levels_to_process , debug_level TYPE(domain) , POINTER :: null_domain TYPE(domain) , POINTER :: grid , another_grid TYPE(domain) , POINTER :: grid_ptr , grid_ptr2 TYPE (grid_config_rec_type) :: config_flags INTEGER :: number_at_same_level INTEGER :: max_dom, domain_id , grid_id , parent_id , parent_id1 , id INTEGER :: e_we , e_sn , i_parent_start , j_parent_start INTEGER :: idum1, idum2 #ifdef DM_PARALLEL INTEGER :: nbytes INTEGER, PARAMETER :: configbuflen = 4* CONFIG_BUF_LEN INTEGER :: configbuf( configbuflen ) LOGICAL , EXTERNAL :: wrf_dm_on_monitor #endif LOGICAL found_the_id INTEGER :: ids , ide , jds , jde , kds , kde INTEGER :: ims , ime , jms , jme , kms , kme INTEGER :: ips , ipe , jps , jpe , kps , kpe INTEGER :: ijds , ijde , spec_bdy_width INTEGER :: i , j , k , idts, rc INTEGER :: sibling_count , parent_id_hold , dom_loop CHARACTER (LEN=80) :: message INTEGER :: start_year , start_month , start_day , start_hour , start_minute , start_second INTEGER :: end_year , end_month , end_day , end_hour , end_minute , end_second INTEGER :: interval_seconds , real_data_init_type INTEGER :: time_loop_max , time_loop real::t1,t2 INTERFACE SUBROUTINE Setup_Timekeeping( grid ) USE module_domain, ONLY : domain TYPE(domain), POINTER :: grid END SUBROUTINE Setup_Timekeeping END INTERFACE #include "version_decl" ! Define the name of this program (program_name defined in module_domain) ! NOTE: share/input_wrf.F tests first 7 chars of this name to decide ! whether to read P_TOP as metadata from the SI (yes, if .eq. REAL_EM) program_name = "REAL_EM " // TRIM(release_version) // " PREPROCESSOR" #ifdef DM_PARALLEL CALL disable_quilting #endif ! Initialize the modules used by the WRF system. Many of the CALLs made from the ! init_modules routine are NO-OPs. Typical initializations are: the size of a ! REAL, setting the file handles to a pre-use value, defining moisture and ! chemistry indices, etc. CALL wrf_debug ( 100 , 'real_em: calling init_modules ' ) CALL init_modules(1) ! Phase 1 returns after MPI_INIT() (if it is called) CALL WRFU_Initialize( defaultCalendar=WRFU_CAL_GREGORIAN, rc=rc ) CALL init_modules(2) ! Phase 2 resumes after MPI_INIT() (if it is called) ! The configuration switches mostly come from the NAMELIST input. #ifdef DM_PARALLEL IF ( wrf_dm_on_monitor() ) THEN CALL initial_config END IF CALL get_config_as_buffer( configbuf, configbuflen, nbytes ) CALL wrf_dm_bcast_bytes( configbuf, nbytes ) CALL set_config_as_buffer( configbuf, configbuflen ) CALL wrf_dm_initialize #else CALL initial_config #endif CALL nl_get_debug_level ( 1, debug_level ) CALL set_wrf_debug_level ( debug_level ) CALL wrf_message ( program_name ) ! There are variables in the Registry that are only required for the real ! program, fields that come from the WPS package. We define the run-time ! flag that says to allocate space for these input-from-WPS-only arrays. CALL nl_set_use_wps_input ( 1 , REALONLY ) ! Allocate the space for the mother of all domains. NULLIFY( null_domain ) CALL wrf_debug ( 100 , 'real_em: calling alloc_and_configure_domain ' ) CALL alloc_and_configure_domain ( domain_id = 1 , & grid = head_grid , & parent = null_domain , & kid = -1 ) grid => head_grid CALL nl_get_max_dom ( 1 , max_dom ) IF ( model_config_rec%interval_seconds .LE. 0 ) THEN CALL wrf_error_fatal( 'namelist value for interval_seconds must be > 0') END IF all_domains : DO domain_id = 1 , max_dom IF ( ( model_config_rec%input_from_file(domain_id) ) .OR. & ( domain_id .EQ. 1 ) ) THEN IF ( domain_id .GT. 1 ) THEN CALL nl_get_grid_id ( domain_id, grid_id ) CALL nl_get_parent_id ( domain_id, parent_id ) CALL nl_get_e_we ( domain_id, e_we ) CALL nl_get_e_sn ( domain_id, e_sn ) CALL nl_get_i_parent_start ( domain_id, i_parent_start ) CALL nl_get_j_parent_start ( domain_id, j_parent_start ) WRITE (message,FMT='(A,2I3,2I4,2I3)') & 'new allocated domain: id, par id, dims i/j, start i/j =', & grid_id, parent_id, e_we, e_sn, i_parent_start, j_parent_start CALL wrf_debug ( 100 , message ) CALL nl_get_grid_id ( parent_id, grid_id ) CALL nl_get_parent_id ( parent_id, parent_id1 ) CALL nl_get_e_we ( parent_id, e_we ) CALL nl_get_e_sn ( parent_id, e_sn ) CALL nl_get_i_parent_start ( parent_id, i_parent_start ) CALL nl_get_j_parent_start ( parent_id, j_parent_start ) WRITE (message,FMT='(A,2I3,2I4,2I3)') & 'parent domain: id, par id, dims i/j, start i/j =', & grid_id, parent_id1, e_we, e_sn, i_parent_start, j_parent_start CALL wrf_debug ( 100 , message ) CALL nl_get_grid_id ( domain_id, grid_id ) CALL nl_get_parent_id ( domain_id, parent_id ) CALL nl_get_e_we ( domain_id, e_we ) CALL nl_get_e_sn ( domain_id, e_sn ) CALL nl_get_i_parent_start ( domain_id, i_parent_start ) CALL nl_get_j_parent_start ( domain_id, j_parent_start ) grid_ptr2 => head_grid found_the_id = .FALSE. CALL find_my_parent ( grid_ptr2 , grid_ptr , domain_id , parent_id , found_the_id ) IF ( found_the_id ) THEN sibling_count = 0 DO dom_loop = 2 , domain_id CALL nl_get_parent_id ( dom_loop, parent_id_hold ) IF ( parent_id_hold .EQ. parent_id ) THEN sibling_count = sibling_count + 1 END IF END DO CALL alloc_and_configure_domain ( domain_id = domain_id , & grid = another_grid , & parent = grid_ptr , & kid = sibling_count ) grid => another_grid ELSE CALL wrf_error_fatal( 'real_em.F: Could not find the parent domain') END IF END IF CALL Setup_Timekeeping ( grid ) CALL set_current_grid_ptr( grid ) CALL domain_clockprint ( 150, grid, & 'DEBUG real: clock after Setup_Timekeeping,' ) CALL domain_clock_set( grid, & time_step_seconds=model_config_rec%interval_seconds ) CALL domain_clockprint ( 150, grid, & 'DEBUG real: clock after timeStep set,' ) CALL wrf_debug ( 100 , 'real_em: calling set_scalar_indices_from_config ' ) CALL set_scalar_indices_from_config ( grid%id , idum1, idum2 ) CALL wrf_debug ( 100 , 'real_em: calling model_to_grid_config_rec ' ) CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) ! Initialize the WRF IO: open files, init file handles, etc. CALL wrf_debug ( 100 , 'real_em: calling init_wrfio' ) CALL init_wrfio ! Some of the configuration values may have been modified from the initial READ ! of the NAMELIST, so we re-broadcast the configuration records. #ifdef DM_PARALLEL CALL wrf_debug ( 100 , 'real_em: re-broadcast the configuration records' ) CALL get_config_as_buffer( configbuf, configbuflen, nbytes ) CALL wrf_dm_bcast_bytes( configbuf, nbytes ) CALL set_config_as_buffer( configbuf, configbuflen ) #endif ! No looping in this layer. CALL wrf_debug ( 100 , 'calling med_sidata_input' ) CALL med_sidata_input ( grid , config_flags ) CALL wrf_debug ( 100 , 'backfrom med_sidata_input' ) ELSE CYCLE all_domains END IF END DO all_domains CALL set_current_grid_ptr( head_grid ) ! We are done. CALL wrf_debug ( 0 , 'real_em: SUCCESS COMPLETE REAL_EM INIT' ) CALL wrf_shutdown CALL WRFU_Finalize( rc=rc ) END PROGRAM real_data SUBROUTINE med_sidata_input ( grid , config_flags ) ! Driver layer USE module_domain USE module_io_domain ! Model layer USE module_configure USE module_bc_time_utilities USE module_initialize_real USE module_optional_input #ifdef WRF_CHEM USE module_input_chem_data USE module_input_chem_bioemiss USE module_input_chem_emissopt3 #endif USE module_date_time USE module_utility IMPLICIT NONE ! Interface INTERFACE SUBROUTINE start_domain ( grid , allowed_to_read ) ! comes from module_start in appropriate dyn_ directory USE module_domain TYPE (domain) grid LOGICAL, INTENT(IN) :: allowed_to_read END SUBROUTINE start_domain END INTERFACE ! Arguments TYPE(domain) :: grid TYPE (grid_config_rec_type) :: config_flags ! Local INTEGER :: time_step_begin_restart INTEGER :: idsi , ierr , myproc CHARACTER (LEN=80) :: si_inpname CHARACTER (LEN=80) :: message CHARACTER(LEN=19) :: start_date_char , end_date_char , current_date_char , next_date_char INTEGER :: time_loop_max , loop, rc INTEGER :: julyr , julday REAL :: gmt real::t1,t2,t3,t4 grid%input_from_file = .true. grid%input_from_file = .false. CALL compute_si_start_and_end ( model_config_rec%start_year (grid%id) , & model_config_rec%start_month (grid%id) , & model_config_rec%start_day (grid%id) , & model_config_rec%start_hour (grid%id) , & model_config_rec%start_minute(grid%id) , & model_config_rec%start_second(grid%id) , & model_config_rec% end_year (grid%id) , & model_config_rec% end_month (grid%id) , & model_config_rec% end_day (grid%id) , & model_config_rec% end_hour (grid%id) , & model_config_rec% end_minute(grid%id) , & model_config_rec% end_second(grid%id) , & model_config_rec%interval_seconds , & model_config_rec%real_data_init_type , & start_date_char , end_date_char , time_loop_max ) ! Override stop time with value computed above. CALL domain_clock_set( grid, stop_timestr=end_date_char ) ! TBH: for now, turn off stop time and let it run data-driven CALL WRFU_ClockStopTimeDisable( grid%domain_clock, rc=rc ) CALL wrf_check_error( WRFU_SUCCESS, rc, & 'WRFU_ClockStopTimeDisable(grid%domain_clock) FAILED', & __FILE__ , & __LINE__ ) CALL domain_clockprint ( 150, grid, & 'DEBUG med_sidata_input: clock after stopTime set,' ) ! Here we define the initial time to process, for later use by the code. current_date_char = start_date_char start_date = start_date_char // '.0000' current_date = start_date CALL nl_set_bdyfrq ( grid%id , REAL(model_config_rec%interval_seconds) ) !!!!!!! Loop over each time period to process. CALL cpu_time ( t1 ) DO loop = 1 , time_loop_max internal_time_loop = loop IF ( ( grid%id .GT. 1 ) .AND. ( loop .GT. 1 ) .AND. & ( model_config_rec%grid_fdda(grid%id) .EQ. 0 ) .AND. & ( model_config_rec%sst_update .EQ. 0 ) ) EXIT print *,' ' print *,'-----------------------------------------------------------------------------' print *,' ' print '(A,I2,A,A,A,I4,A,I4)' , & ' Domain ',grid%id,': Current date being processed: ',current_date, ', which is loop #',loop,' out of ',time_loop_max ! After current_date has been set, fill in the julgmt stuff. CALL geth_julgmt ( config_flags%julyr , config_flags%julday , config_flags%gmt ) print *,'configflags%julyr, %julday, %gmt:',config_flags%julyr, config_flags%julday, config_flags%gmt ! Now that the specific Julian info is available, save these in the model config record. CALL nl_set_gmt (grid%id, config_flags%gmt) CALL nl_set_julyr (grid%id, config_flags%julyr) CALL nl_set_julday (grid%id, config_flags%julday) ! Open the input file for real. This is either the "new" one or the "old" one. The "new" one could have ! a suffix for the type of the data format. Check to see if either is around. CALL cpu_time ( t3 ) WRITE ( wrf_err_message , FMT='(A,A)' )'med_sidata_input: calling open_r_dataset for ', & TRIM(config_flags%auxinput1_inname) CALL wrf_debug ( 100 , wrf_err_message ) IF ( config_flags%auxinput1_inname(1:8) .NE. 'wrf_real' ) THEN CALL construct_filename4a( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , & current_date_char , config_flags%io_form_auxinput1 ) ELSE CALL construct_filename2a( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , & current_date_char ) END IF CALL open_r_dataset ( idsi, TRIM(si_inpname) , grid , config_flags , "DATASET=AUXINPUT1", ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'error opening ' // TRIM(si_inpname) // & ' for input; bad date in namelist or file not in directory' ) END IF ! Input data. CALL wrf_debug ( 100 , 'med_sidata_input: calling input_aux_model_input1' ) CALL input_aux_model_input1 ( idsi , grid , config_flags , ierr ) CALL cpu_time ( t4 ) WRITE ( wrf_err_message , FMT='(A,I10,A)' ) 'Timing for input ',NINT(t4-t3) ,' s.' CALL wrf_debug( 0, wrf_err_message ) ! Possible optional SI input. This sets flags used by init_domain. CALL cpu_time ( t3 ) IF ( loop .EQ. 1 ) THEN already_been_here = .FALSE. CALL wrf_debug ( 100 , 'med_sidata_input: calling init_module_optional_input' ) CALL init_module_optional_input ( grid , config_flags ) END IF CALL wrf_debug ( 100 , 'med_sidata_input: calling optional_input' ) CALL optional_input ( grid , idsi ) ! Initialize the mother domain for this time period with input data. CALL wrf_debug ( 100 , 'med_sidata_input: calling init_domain' ) grid%input_from_file = .true. CALL init_domain ( grid ) CALL cpu_time ( t4 ) WRITE ( wrf_err_message , FMT='(A,I10,A)' ) 'Timing for processing ',NINT(t4-t3) ,' s.' CALL wrf_debug( 0, wrf_err_message ) CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) ! Close this file that is output from the SI and input to this pre-proc. CALL wrf_debug ( 100 , 'med_sidata_input: back from init_domain' ) CALL close_dataset ( idsi , config_flags , "DATASET=AUXINPUT1" ) #ifdef WRF_CHEM IF ( loop == 1 ) THEN IF( grid%chem_opt > 0 ) then ! Read the chemistry data from a previous wrf forecast (wrfout file) IF(grid%chem_in_opt == 1 ) THEN message = 'INITIALIZING CHEMISTRY WITH OLD SIMULATION' CALL wrf_message ( message ) CALL input_ext_chem_file( grid ) IF(grid%emiss_opt == ECPTEC .or. grid%emiss_opt == GOCART_ECPTEC & .or. grid%biomass_burn_opt == BIOMASSB) THEN message = 'READING EMISSIONS DATA OPT 3' CALL wrf_message ( message ) ! CALL med_read_bin_chem_emissopt3 ( grid , config_flags) CALL med_read_wrf_chem_emissopt3 ( grid , config_flags) END IF IF(grid%bio_emiss_opt == 2 ) THEN message = 'READING BEIS3.11 EMISSIONS DATA' CALL wrf_message ( message ) CALL med_read_wrf_chem_bioemiss ( grid , config_flags) else IF(grid%bio_emiss_opt == 3 ) THEN !shc message = 'READING MEGAN 2 EMISSIONS DATA' CALL wrf_message ( message ) CALL med_read_wrf_chem_bioemiss ( grid , config_flags) END IF IF(grid%dust_opt == 1 .or. grid%dmsemis_opt == 1 .or. grid%chem_opt == 300) THEN !shc message = 'READING GOCART BG AND/OR DUST and DMS REF FIELDS' CALL wrf_message ( message ) CALL med_read_wrf_chem_gocart_bg ( grid , config_flags) END IF ELSEIF(grid%chem_in_opt == 0)then ! Generate chemistry data from a idealized vertical profile message = 'STARTING WITH BACKGROUND CHEMISTRY ' CALL wrf_message ( message ) CALL input_chem_profile ( grid ) IF(grid%bio_emiss_opt == 2 ) THEN message = 'READING BEIS3.11 EMISSIONS DATA' CALL wrf_message ( message ) CALL med_read_wrf_chem_bioemiss ( grid , config_flags) else IF(grid%bio_emiss_opt == 3 ) THEN !shc message = 'READING MEGAN 2 EMISSIONS DATA' CALL wrf_message ( message ) CALL med_read_wrf_chem_bioemiss ( grid , config_flags) END IF IF(grid%emiss_opt == ECPTEC .or. grid%emiss_opt == GOCART_ECPTEC & .or. grid%biomass_burn_opt == BIOMASSB) THEN message = 'READING EMISSIONS DATA OPT 3' CALL wrf_message ( message ) ! CALL med_read_bin_chem_emissopt3 ( grid , config_flags) CALL med_read_wrf_chem_emissopt3 ( grid , config_flags) END IF IF(grid%dust_opt == 1 .or. grid%dmsemis_opt == 1 .or. grid%chem_opt == 300) THEN !shc message = 'READING GOCART BG AND/OR DUST and DMS REF FIELDS' CALL wrf_message ( message ) CALL med_read_wrf_chem_gocart_bg ( grid , config_flags) END IF ELSE message = 'RUNNING WITHOUT CHEMISTRY INITIALIZATION' CALL wrf_message ( message ) END IF END IF END IF #endif CALL cpu_time ( t3 ) CALL assemble_output ( grid , config_flags , loop , time_loop_max ) CALL cpu_time ( t4 ) WRITE ( wrf_err_message , FMT='(A,I10,A)' ) 'Timing for output ',NINT(t4-t3) ,' s.' CALL wrf_debug( 0, wrf_err_message ) CALL cpu_time ( t2 ) WRITE ( wrf_err_message , FMT='(A,I4,A,I10,A)' ) 'Timing for loop # ',loop,' = ',NINT(t2-t1) ,' s.' CALL wrf_debug( 0, wrf_err_message ) ! If this is not the last time, we define the next time that we are going to process. IF ( loop .NE. time_loop_max ) THEN CALL geth_newdate ( current_date_char , start_date_char , loop * model_config_rec%interval_seconds ) current_date = current_date_char // '.0000' CALL domain_clockprint ( 150, grid, & 'DEBUG med_sidata_input: clock before current_date set,' ) WRITE (wrf_err_message,*) & 'DEBUG med_sidata_input: before currTime set, current_date = ',TRIM(current_date) CALL wrf_debug ( 150 , wrf_err_message ) CALL domain_clock_set( grid, current_date(1:19) ) CALL domain_clockprint ( 150, grid, & 'DEBUG med_sidata_input: clock after current_date set,' ) END IF CALL cpu_time ( t1 ) END DO END SUBROUTINE med_sidata_input SUBROUTINE compute_si_start_and_end ( & start_year , start_month , start_day , start_hour , start_minute , start_second , & end_year , end_month , end_day , end_hour , end_minute , end_second , & interval_seconds , real_data_init_type , & start_date_char , end_date_char , time_loop_max ) USE module_date_time IMPLICIT NONE INTEGER :: start_year , start_month , start_day , start_hour , start_minute , start_second INTEGER :: end_year , end_month , end_day , end_hour , end_minute , end_second INTEGER :: interval_seconds , real_data_init_type INTEGER :: time_loop_max , time_loop CHARACTER(LEN=19) :: current_date_char , start_date_char , end_date_char , next_date_char #ifdef PLANET WRITE ( start_date_char , FMT = '(I4.4,"-",I5.5,"_",I2.2,":",I2.2,":",I2.2)' ) & start_year,start_day,start_hour,start_minute,start_second WRITE ( end_date_char , FMT = '(I4.4,"-",I5.5,"_",I2.2,":",I2.2,":",I2.2)' ) & end_year, end_day, end_hour, end_minute, end_second #else WRITE ( start_date_char , FMT = '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) & start_year,start_month,start_day,start_hour,start_minute,start_second WRITE ( end_date_char , FMT = '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) & end_year, end_month, end_day, end_hour, end_minute, end_second #endif IF ( end_date_char .LT. start_date_char ) THEN CALL wrf_error_fatal( 'Ending date in namelist ' // end_date_char // ' prior to beginning date ' // start_date_char ) END IF ! start_date = start_date_char // '.0000' ! Figure out our loop count for the processing times. time_loop = 1 PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',start_date_char,'.' current_date_char = start_date_char loop_count : DO CALL geth_newdate ( next_date_char , current_date_char , interval_seconds ) IF ( next_date_char .LT. end_date_char ) THEN time_loop = time_loop + 1 PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',next_date_char,'.' current_date_char = next_date_char ELSE IF ( next_date_char .EQ. end_date_char ) THEN time_loop = time_loop + 1 PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',next_date_char,'.' PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.' time_loop_max = time_loop EXIT loop_count ELSE IF ( next_date_char .GT. end_date_char ) THEN PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.' time_loop_max = time_loop EXIT loop_count END IF END DO loop_count END SUBROUTINE compute_si_start_and_end SUBROUTINE assemble_output ( grid , config_flags , loop , time_loop_max ) USE module_big_step_utilities_em USE module_domain USE module_io_domain USE module_configure USE module_date_time USE module_bc IMPLICIT NONE TYPE(domain) :: grid TYPE (grid_config_rec_type) :: config_flags INTEGER , INTENT(IN) :: loop , time_loop_max INTEGER :: ids , ide , jds , jde , kds , kde INTEGER :: ims , ime , jms , jme , kms , kme INTEGER :: ips , ipe , jps , jpe , kps , kpe INTEGER :: ijds , ijde , spec_bdy_width INTEGER :: i , j , k , idts INTEGER :: id1 , interval_seconds , ierr, rc, sst_update, grid_fdda INTEGER , SAVE :: id, id2, id4 CHARACTER (LEN=80) :: inpname , bdyname CHARACTER(LEN= 4) :: loop_char character *19 :: temp19 character *24 :: temp24 , temp24b REAL , DIMENSION(:,:,:) , ALLOCATABLE , SAVE :: ubdy3dtemp1 , vbdy3dtemp1 , tbdy3dtemp1 , pbdy3dtemp1 , qbdy3dtemp1 REAL , DIMENSION(:,:,:) , ALLOCATABLE , SAVE :: mbdy2dtemp1 REAL , DIMENSION(:,:,:) , ALLOCATABLE , SAVE :: ubdy3dtemp2 , vbdy3dtemp2 , tbdy3dtemp2 , pbdy3dtemp2 , qbdy3dtemp2 REAL , DIMENSION(:,:,:) , ALLOCATABLE , SAVE :: mbdy2dtemp2 real::t1,t2 ! Various sizes that we need to be concerned about. ids = grid%sd31 ide = grid%ed31 kds = grid%sd32 kde = grid%ed32 jds = grid%sd33 jde = grid%ed33 ims = grid%sm31 ime = grid%em31 kms = grid%sm32 kme = grid%em32 jms = grid%sm33 jme = grid%em33 ips = grid%sp31 ipe = grid%ep31 kps = grid%sp32 kpe = grid%ep32 jps = grid%sp33 jpe = grid%ep33 ijds = MIN ( ids , jds ) ijde = MAX ( ide , jde ) ! Boundary width, scalar value. spec_bdy_width = model_config_rec%spec_bdy_width interval_seconds = model_config_rec%interval_seconds sst_update = model_config_rec%sst_update grid_fdda = model_config_rec%grid_fdda(grid%id) IF ( loop .EQ. 1 ) THEN IF ( ( time_loop_max .EQ. 1 ) .OR. ( config_flags%polar ) ) THEN ! No need to allocate space since we do not need the lateral boundary data yet ! or at all (in case of the polar flag). ELSE ! This is the space needed to save the current 3d data for use in computing ! the lateral boundary tendencies. IF ( ALLOCATED ( ubdy3dtemp1 ) ) DEALLOCATE ( ubdy3dtemp1 ) IF ( ALLOCATED ( vbdy3dtemp1 ) ) DEALLOCATE ( vbdy3dtemp1 ) IF ( ALLOCATED ( tbdy3dtemp1 ) ) DEALLOCATE ( tbdy3dtemp1 ) IF ( ALLOCATED ( pbdy3dtemp1 ) ) DEALLOCATE ( pbdy3dtemp1 ) IF ( ALLOCATED ( qbdy3dtemp1 ) ) DEALLOCATE ( qbdy3dtemp1 ) IF ( ALLOCATED ( mbdy2dtemp1 ) ) DEALLOCATE ( mbdy2dtemp1 ) IF ( ALLOCATED ( ubdy3dtemp2 ) ) DEALLOCATE ( ubdy3dtemp2 ) IF ( ALLOCATED ( vbdy3dtemp2 ) ) DEALLOCATE ( vbdy3dtemp2 ) IF ( ALLOCATED ( tbdy3dtemp2 ) ) DEALLOCATE ( tbdy3dtemp2 ) IF ( ALLOCATED ( pbdy3dtemp2 ) ) DEALLOCATE ( pbdy3dtemp2 ) IF ( ALLOCATED ( qbdy3dtemp2 ) ) DEALLOCATE ( qbdy3dtemp2 ) IF ( ALLOCATED ( mbdy2dtemp2 ) ) DEALLOCATE ( mbdy2dtemp2 ) ALLOCATE ( ubdy3dtemp1(ims:ime,kms:kme,jms:jme) ) ALLOCATE ( vbdy3dtemp1(ims:ime,kms:kme,jms:jme) ) ALLOCATE ( tbdy3dtemp1(ims:ime,kms:kme,jms:jme) ) ALLOCATE ( pbdy3dtemp1(ims:ime,kms:kme,jms:jme) ) ALLOCATE ( qbdy3dtemp1(ims:ime,kms:kme,jms:jme) ) ALLOCATE ( mbdy2dtemp1(ims:ime,1:1, jms:jme) ) ALLOCATE ( ubdy3dtemp2(ims:ime,kms:kme,jms:jme) ) ALLOCATE ( vbdy3dtemp2(ims:ime,kms:kme,jms:jme) ) ALLOCATE ( tbdy3dtemp2(ims:ime,kms:kme,jms:jme) ) ALLOCATE ( pbdy3dtemp2(ims:ime,kms:kme,jms:jme) ) ALLOCATE ( qbdy3dtemp2(ims:ime,kms:kme,jms:jme) ) ALLOCATE ( mbdy2dtemp2(ims:ime,1:1, jms:jme) ) END IF ! Open the wrfinput file. From this program, this is an *output* file. CALL construct_filename1( inpname , 'wrfinput' , grid%id , 2 ) CALL open_w_dataset ( id1, TRIM(inpname) , grid , config_flags , output_model_input , "DATASET=INPUT", ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'real: error opening wrfinput for writing' ) END IF CALL output_model_input ( id1, grid , config_flags , ierr ) CALL close_dataset ( id1 , config_flags , "DATASET=INPUT" ) IF ( time_loop_max .NE. 1 ) THEN IF(sst_update .EQ. 1)THEN CALL construct_filename1( inpname , 'wrflowinp' , grid%id , 2 ) CALL open_w_dataset ( id4, TRIM(inpname) , grid , config_flags , output_aux_model_input4 , "DATASET=AUXINPUT4", ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'real: error opening wrflowinp for writing' ) END IF CALL output_aux_model_input4 ( id4, grid , config_flags , ierr ) END IF END IF IF ( ( time_loop_max .EQ. 1 ) .OR. ( config_flags%polar ) ) THEN ! No need to couple data since no lateral BCs required. ELSE ! We need to save the 3d data to compute a difference during the next loop. Couple the ! 3d fields with total mu (mub + mu_2) and the stagger-specific map scale factor. ! u, theta, h, scalars coupled with my; v coupled with mx CALL couple ( grid%mu_2 , grid%mub , ubdy3dtemp1 , grid%u_2 , 'u' , grid%msfuy , & ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe ) CALL couple ( grid%mu_2 , grid%mub , vbdy3dtemp1 , grid%v_2 , 'v' , grid%msfvx , & ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe ) CALL couple ( grid%mu_2 , grid%mub , tbdy3dtemp1 , grid%t_2 , 't' , grid%msfty , & ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe ) CALL couple ( grid%mu_2 , grid%mub , pbdy3dtemp1 , grid%ph_2 , 'h' , grid%msfty , & ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe ) CALL couple ( grid%mu_2 , grid%mub , qbdy3dtemp1 , grid%moist(:,:,:,P_QV) , 't' , grid%msfty , & ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe ) DO j = jps , MIN(jde-1,jpe) DO i = ips , MIN(ide-1,ipe) mbdy2dtemp1(i,1,j) = grid%mu_2(i,j) END DO END DO END IF IF(grid_fdda .EQ. 1)THEN DO j = jps , jpe DO k = kps , kpe DO i = ips , ipe grid%fdda3d(i,k,j,p_u_ndg_old) = grid%u_2(i,k,j) grid%fdda3d(i,k,j,p_v_ndg_old) = grid%v_2(i,k,j) grid%fdda3d(i,k,j,p_t_ndg_old) = grid%t_2(i,k,j) grid%fdda3d(i,k,j,p_q_ndg_old) = grid%moist(i,k,j,P_QV) grid%fdda3d(i,k,j,p_ph_ndg_old) = grid%ph_2(i,k,j) END DO END DO END DO DO j = jps , jpe DO i = ips , ipe grid%fdda2d(i,1,j,p_mu_ndg_old) = grid%mu_2(i,j) grid%fdda2d(i,1,j,p_t2_ndg_old) = grid%t2(i,j) grid%fdda2d(i,1,j,p_q2_ndg_old) = grid%q2(i,j) grid%fdda2d(i,1,j,p_sn_ndg_old) = grid%snow(i,j) END DO END DO END IF IF ( ( time_loop_max .EQ. 1 ) .OR. ( config_flags%polar ) ) THEN ! No need to build boundary arrays, since no lateral BCs are being generated. ELSE ! There are 2 components to the lateral boundaries. First, there is the starting ! point of this time period - just the outer few rows and columns. CALL stuff_bdy ( ubdy3dtemp1 , grid%u_bxs, grid%u_bxe, grid%u_bys, grid%u_bye, & 'U' , spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdy ( vbdy3dtemp1 , grid%v_bxs, grid%v_bxe, grid%v_bys, grid%v_bye, & 'V' , spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdy ( tbdy3dtemp1 , grid%t_bxs, grid%t_bxe, grid%t_bys, grid%t_bye, & 'T' , spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdy ( pbdy3dtemp1 , grid%ph_bxs, grid%ph_bxe, grid%ph_bys, grid%ph_bye, & 'W' , spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdy ( qbdy3dtemp1 , grid%moist_bxs(:,:,:,P_QV), grid%moist_bxe(:,:,:,P_QV), & grid%moist_bys(:,:,:,P_QV), grid%moist_bye(:,:,:,P_QV), & 'T' , spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdy ( mbdy2dtemp1 , grid%mu_bxs, grid%mu_bxe, grid%mu_bys, grid%mu_bye, & 'M' , spec_bdy_width , & ids , ide , jds , jde , 1 , 1 , & ims , ime , jms , jme , 1 , 1 , & ips , ipe , jps , jpe , 1 , 1 ) END IF ELSE IF ( loop .GT. 1 ) THEN IF(sst_update .EQ. 1)THEN CALL output_aux_model_input4 ( id4, grid , config_flags , ierr ) END IF ! Open the boundary and the fdda file. IF ( loop .eq. 2 ) THEN IF ( (grid%id .eq. 1) .and. ( .NOT. config_flags%polar ) ) THEN CALL construct_filename1( bdyname , 'wrfbdy' , grid%id , 2 ) CALL open_w_dataset ( id, TRIM(bdyname) , grid , config_flags , output_boundary , "DATASET=BOUNDARY", ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'real: error opening wrfbdy for writing' ) END IF END IF IF(grid_fdda .EQ. 1)THEN CALL construct_filename1( inpname , 'wrffdda' , grid%id , 2 ) CALL open_w_dataset ( id2, TRIM(inpname) , grid , config_flags , output_aux_model_input10 , "DATASET=AUXINPUT10", ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'real: error opening wrffdda for writing' ) END IF END IF ELSE IF ( .NOT. domain_clockisstoptime(grid) ) THEN CALL domain_clockadvance( grid ) CALL domain_clockprint ( 150, grid, & 'DEBUG assemble_output: clock after ClockAdvance,' ) END IF END IF IF ( config_flags%polar ) THEN ! No need to couple fields, since no lateral BCs are required. ELSE ! Couple this time period's data with total mu, and save it in the *bdy3dtemp2 arrays. ! u, theta, h, scalars coupled with my; v coupled with mx CALL couple ( grid%mu_2 , grid%mub , ubdy3dtemp2 , grid%u_2 , 'u' , grid%msfuy , & ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe ) CALL couple ( grid%mu_2 , grid%mub , vbdy3dtemp2 , grid%v_2 , 'v' , grid%msfvx , & ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe ) CALL couple ( grid%mu_2 , grid%mub , tbdy3dtemp2 , grid%t_2 , 't' , grid%msfty , & ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe ) CALL couple ( grid%mu_2 , grid%mub , pbdy3dtemp2 , grid%ph_2 , 'h' , grid%msfty , & ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe ) CALL couple ( grid%mu_2 , grid%mub , qbdy3dtemp2 , grid%moist(:,:,:,P_QV) , 't' , grid%msfty , & ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe ) DO j = jps , jpe DO i = ips , ipe mbdy2dtemp2(i,1,j) = grid%mu_2(i,j) END DO END DO END IF IF(grid_fdda .EQ. 1)THEN DO j = jps , jpe DO k = kps , kpe DO i = ips , ipe grid%fdda3d(i,k,j,p_u_ndg_new) = grid%u_2(i,k,j) grid%fdda3d(i,k,j,p_v_ndg_new) = grid%v_2(i,k,j) grid%fdda3d(i,k,j,p_t_ndg_new) = grid%t_2(i,k,j) grid%fdda3d(i,k,j,p_q_ndg_new) = grid%moist(i,k,j,P_QV) grid%fdda3d(i,k,j,p_ph_ndg_new) = grid%ph_2(i,k,j) END DO END DO END DO DO j = jps , jpe DO i = ips , ipe grid%fdda2d(i,1,j,p_mu_ndg_new) = grid%mu_2(i,j) grid%fdda2d(i,1,j,p_t2_ndg_new) = grid%t2(i,j) grid%fdda2d(i,1,j,p_q2_ndg_new) = grid%q2(i,j) grid%fdda2d(i,1,j,p_sn_ndg_new) = grid%snow(i,j) END DO END DO END IF IF ( config_flags%polar ) THEN ! No need to build boundary arrays, since no lateral BCs are being generated. ELSE ! During all of the loops after the first loop, we first compute the boundary ! tendencies with the current data values (*bdy3dtemp2 arrays) and the previously ! saved information stored in the *bdy3dtemp1 arrays. CALL stuff_bdytend ( ubdy3dtemp2 , ubdy3dtemp1 , REAL(interval_seconds) , & grid%u_btxs, grid%u_btxe, & grid%u_btys, grid%u_btye, & 'U' , & spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdytend ( vbdy3dtemp2 , vbdy3dtemp1 , REAL(interval_seconds) , & grid%v_btxs, grid%v_btxe, & grid%v_btys, grid%v_btye, & 'V' , & spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdytend ( tbdy3dtemp2 , tbdy3dtemp1 , REAL(interval_seconds) , & grid%t_btxs, grid%t_btxe, & grid%t_btys, grid%t_btye, & 'T' , & spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdytend ( pbdy3dtemp2 , pbdy3dtemp1 , REAL(interval_seconds) , & grid%ph_btxs, grid%ph_btxe, & grid%ph_btys, grid%ph_btye, & 'W' , & spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdytend ( qbdy3dtemp2 , qbdy3dtemp1 , REAL(interval_seconds) , & grid%moist_btxs(:,:,:,P_QV), grid%moist_btxe(:,:,:,P_QV), & grid%moist_btys(:,:,:,P_QV), grid%moist_btye(:,:,:,P_QV), & 'T' , & spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdytend ( mbdy2dtemp2 , mbdy2dtemp1 , REAL(interval_seconds) , & grid%mu_btxs, grid%mu_btxe, & grid%mu_btys, grid%mu_btye, & 'M' , & spec_bdy_width , & ids , ide , jds , jde , 1 , 1 , & ims , ime , jms , jme , 1 , 1 , & ips , ipe , jps , jpe , 1 , 1 ) END IF ! Both pieces of the boundary data are now available to be written (initial time and tendency). ! This looks ugly, these date shifting things. What's it for? We want the "Times" variable ! in the lateral BDY file to have the valid times of when the initial fields are written. ! That's what the loop-2 thingy is for with the start date. We increment the start_date so ! that the starting time in the attributes is the second time period. Why you may ask. I ! agree, why indeed. CALL domain_clockprint ( 150, grid, & 'DEBUG assemble_output: clock before 1st current_date set,' ) WRITE (wrf_err_message,*) & 'DEBUG assemble_output: before 1st currTime set, current_date = ',TRIM(current_date) CALL wrf_debug ( 150 , wrf_err_message ) CALL domain_clock_set( grid, current_date(1:19) ) CALL domain_clockprint ( 150, grid, & 'DEBUG assemble_output: clock after 1st current_date set,' ) temp24= current_date temp24b=start_date start_date = current_date CALL geth_newdate ( temp19 , temp24b(1:19) , (loop-2) * model_config_rec%interval_seconds ) current_date = temp19 // '.0000' CALL domain_clockprint ( 150, grid, & 'DEBUG assemble_output: clock before 2nd current_date set,' ) WRITE (wrf_err_message,*) & 'DEBUG assemble_output: before 2nd currTime set, current_date = ',TRIM(current_date) CALL wrf_debug ( 150 , wrf_err_message ) CALL domain_clock_set( grid, current_date(1:19) ) CALL domain_clockprint ( 150, grid, & 'DEBUG assemble_output: clock after 2nd current_date set,' ) IF ( config_flags%polar ) THEN ! No need to ouput boundary data for polar cases. ELSE ! Output boundary file. IF(grid%id .EQ. 1)THEN print *,'LBC valid between these times ',current_date, ' ',start_date CALL output_boundary ( id, grid , config_flags , ierr ) END IF END IF ! Output gridded/analysis FDDA file. IF(grid_fdda .EQ. 1) THEN CALL output_aux_model_input10 ( id2, grid , config_flags , ierr ) END IF current_date = temp24 start_date = temp24b CALL domain_clockprint ( 150, grid, & 'DEBUG assemble_output: clock before 3rd current_date set,' ) WRITE (wrf_err_message,*) & 'DEBUG assemble_output: before 3rd currTime set, current_date = ',TRIM(current_date) CALL wrf_debug ( 150 , wrf_err_message ) CALL domain_clock_set( grid, current_date(1:19) ) CALL domain_clockprint ( 150, grid, & 'DEBUG assemble_output: clock after 3rd current_date set,' ) ! OK, for all of the loops, we output the initialzation data, which would allow us to ! start the model at any of the available analysis time periods. IF ( config_flags%all_ic_times ) THEN CALL construct_filename2a ( inpname , 'wrfinput_d.' , grid%id , 2 , TRIM(current_date) ) CALL open_w_dataset ( id1, inpname , grid , config_flags , output_model_input , "DATASET=INPUT", ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'real: error opening' // inpname // ' for writing' ) END IF CALL output_model_input ( id1, grid , config_flags , ierr ) CALL close_dataset ( id1 , config_flags , "DATASET=INPUT" ) END IF ! Is this or is this not the last time time? We can remove some unnecessary ! stores if it is not. IF ( loop .LT. time_loop_max ) THEN IF ( config_flags%polar ) THEN ! No need to swap old for new for the boundary data, it is not required. ELSE ! We need to save the 3d data to compute a difference during the next loop. Couple the ! 3d fields with total mu (mub + mu_2) and the stagger-specific map scale factor. ! We load up the boundary data again for use in the next loop. DO j = jps , jpe DO k = kps , kpe DO i = ips , ipe ubdy3dtemp1(i,k,j) = ubdy3dtemp2(i,k,j) vbdy3dtemp1(i,k,j) = vbdy3dtemp2(i,k,j) tbdy3dtemp1(i,k,j) = tbdy3dtemp2(i,k,j) pbdy3dtemp1(i,k,j) = pbdy3dtemp2(i,k,j) qbdy3dtemp1(i,k,j) = qbdy3dtemp2(i,k,j) END DO END DO END DO DO j = jps , jpe DO i = ips , ipe mbdy2dtemp1(i,1,j) = mbdy2dtemp2(i,1,j) END DO END DO END IF IF(grid_fdda .EQ. 1)THEN DO j = jps , jpe DO k = kps , kpe DO i = ips , ipe grid%fdda3d(i,k,j,p_u_ndg_old) = grid%fdda3d(i,k,j,p_u_ndg_new) grid%fdda3d(i,k,j,p_v_ndg_old) = grid%fdda3d(i,k,j,p_v_ndg_new) grid%fdda3d(i,k,j,p_t_ndg_old) = grid%fdda3d(i,k,j,p_t_ndg_new) grid%fdda3d(i,k,j,p_q_ndg_old) = grid%fdda3d(i,k,j,p_q_ndg_new) grid%fdda3d(i,k,j,p_ph_ndg_old) = grid%fdda3d(i,k,j,p_ph_ndg_new) END DO END DO END DO DO j = jps , jpe DO i = ips , ipe grid%fdda2d(i,1,j,p_mu_ndg_old) = grid%fdda2d(i,1,j,p_mu_ndg_new) grid%fdda2d(i,1,j,p_t2_ndg_old) = grid%fdda2d(i,1,j,p_t2_ndg_new) grid%fdda2d(i,1,j,p_q2_ndg_old) = grid%fdda2d(i,1,j,p_q2_ndg_new) grid%fdda2d(i,1,j,p_sn_ndg_old) = grid%fdda2d(i,1,j,p_sn_ndg_new) END DO END DO END IF IF ( config_flags%polar ) THEN ! No need to build boundary arrays, since no lateral BCs are being generated. ELSE ! There are 2 components to the lateral boundaries. First, there is the starting ! point of this time period - just the outer few rows and columns. CALL stuff_bdy ( ubdy3dtemp1 , grid%u_bxs, grid%u_bxe, grid%u_bys, grid%u_bye, & 'U' , spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdy ( vbdy3dtemp1 , grid%v_bxs, grid%v_bxe, grid%v_bys, grid%v_bye, & 'V' , spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdy ( tbdy3dtemp1 , grid%t_bxs, grid%t_bxe, grid%t_bys, grid%t_bye, & 'T' , spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdy ( pbdy3dtemp1 , grid%ph_bxs, grid%ph_bxe, grid%ph_bys, grid%ph_bye, & 'W' , spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdy ( qbdy3dtemp1 , grid%moist_bxs(:,:,:,P_QV), grid%moist_bxe(:,:,:,P_QV), & grid%moist_bys(:,:,:,P_QV), grid%moist_bye(:,:,:,P_QV), & 'T' , spec_bdy_width , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe ) CALL stuff_bdy ( mbdy2dtemp1 , grid%mu_bxs, grid%mu_bxe, grid%mu_bys, grid%mu_bye, & 'M' , spec_bdy_width , & ids , ide , jds , jde , 1 , 1 , & ims , ime , jms , jme , 1 , 1 , & ips , ipe , jps , jpe , 1 , 1 ) END IF ELSE IF ( loop .EQ. time_loop_max ) THEN ! If this is the last time through here, we need to close the files. IF ( config_flags%polar ) THEN ! No need to close the boundary file, it was never used. ELSE IF(grid%id .EQ. 1) THEN CALL close_dataset ( id , config_flags , "DATASET=BOUNDARY" ) END IF END IF IF(grid_fdda .EQ. 1) THEN CALL close_dataset ( id2 , config_flags , "DATASET=AUXINPUT10" ) END IF IF(sst_update .EQ. 1)THEN CALL close_dataset ( id4 , config_flags , "DATASET=AUXINPUT4" ) END IF END IF END IF END SUBROUTINE assemble_output