!WRF:MODEL_LAYER:DYNAMICS
!
! SMALL_STEP code for the geometric height coordinate model
!
!---------------------------------------------------------------------------
MODULE module_small_step_em
USE module_configure
USE module_model_constants
CONTAINS
!----------------------------------------------------------------------
SUBROUTINE small_step_prep( u_1, u_2, v_1, v_2, w_1, w_2, &
t_1, t_2, ph_1, ph_2, &
mub, mu_1, mu_2, &
muu, muus, muv, muvs, &
mut, muts, mudf, &
u_save, v_save, w_save, &
t_save, ph_save, mu_save, &
ww, ww_save, &
dnw, c2a, pb, p, alt, &
msfux, msfuy, msfvx, &
msfvx_inv, &
msfvy, msftx, msfty, &
rdx, rdy, &
rk_step, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE ! religion first
! declarations for the stuff coming in
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde
INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme
INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte
INTEGER, INTENT(IN ) :: rk_step
REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT(INOUT) :: u_1, &
v_1, &
w_1, &
t_1, &
ph_1
REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT( OUT) :: u_save, &
v_save, &
w_save, &
t_save, &
ph_save
REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT(INOUT) :: u_2, &
v_2, &
w_2, &
t_2, &
ph_2
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT( OUT) :: c2a, &
ww_save
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN ) :: pb, &
p, &
alt, &
ww
REAL, DIMENSION(ims:ime, jms:jme) , INTENT(INOUT) :: mu_1,mu_2
REAL, DIMENSION(ims:ime, jms:jme) , INTENT(IN ) :: mub, &
muu, &
muv, &
mut, &
msfux,&
msfuy,&
msfvx,&
msfvx_inv,&
msfvy,&
msftx,&
msfty
REAL, DIMENSION(ims:ime, jms:jme) , INTENT( OUT) :: muus, &
muvs, &
muts, &
mudf
REAL, DIMENSION(ims:ime, jms:jme) , INTENT( OUT) :: mu_save
REAL, DIMENSION(kms:kme, jms:jme) , INTENT(IN ) :: dnw
REAL, INTENT(IN) :: rdx,rdy
! local variables
INTEGER :: i, j, k
INTEGER :: i_start, i_end, j_start, j_end, k_start, k_end
INTEGER :: i_endu, j_endv
!
!
! small_step_prep prepares the prognostic variables for the small timestep.
! This includes switching time-levels in the arrays and computing coupled
! perturbation variables for the small timestep
! (i.e. mu*u" = mu(t)*u(t)-mu(*)*u(*); mu*u" is advanced during the small
! timesteps
!
!
i_start = its
i_end = ite
j_start = jts
j_end = jte
k_start = kts
k_end = min(kte,kde-1)
i_endu = i_end
j_endv = j_end
IF(i_end == ide) i_end = i_end - 1
IF(j_end == jde) j_end = j_end - 1
! if this is the first RK step, reset *_1 to *_2
! (we are replacing the t-dt fields with the time t fields)
IF ((rk_step == 1) ) THEN
! 1 jun 2001 -> added boundary copy to 2D boundary condition routines,
! should be OK now without the following data copy
!#if 0
! DO j=j_start, j_end
! mu_2(0,j)=mu_2(1,j)
! mu_2(i_endu,j)=mu_2(i_end,j)
! mu_1(0,j)=mu_2(1,j)
! mu_1(i_endu,j)=mu_2(i_end,j)
! mub(0,j)=mub(1,j)
! mub(i_endu,j)=mub(i_end,j)
! ENDDO
! DO i=i_start, i_end
! mu_2(i,0)=mu_2(i,1)
! mu_2(i,j_endv)=mu_2(i,j_end)
! mu_1(i,0)=mu_2(i,1)
! mu_1(i,j_endv)=mu_2(i,j_end)
! mub(i,0)=mub(i,1)
! mub(i,j_endv)=mub(i,j_end)
! ENDDO
!#endif
DO j=j_start, j_end
DO i=i_start, i_end
mu_1(i,j)=mu_2(i,j)
ww_save(i,kde,j) = 0.
ww_save(i,1,j) = 0.
mudf(i,j) = 0. ! initialize external mode div damp to zero
ENDDO
ENDDO
DO j=j_start, j_end
DO k=k_start, k_end
DO i=i_start, i_endu
u_1(i,k,j) = u_2(i,k,j)
ENDDO
ENDDO
ENDDO
DO j=j_start, j_endv
DO k=k_start, k_end
DO i=i_start, i_end
v_1(i,k,j) = v_2(i,k,j)
ENDDO
ENDDO
ENDDO
DO j=j_start, j_end
DO k=k_start, k_end
DO i=i_start, i_end
t_1(i,k,j) = t_2(i,k,j)
ENDDO
ENDDO
ENDDO
DO j=j_start, j_end
DO k=k_start, min(kde,kte)
DO i=i_start, i_end
w_1(i,k,j) = w_2(i,k,j)
ph_1(i,k,j) = ph_2(i,k,j)
ENDDO
ENDDO
ENDDO
DO j=j_start, j_end
DO i=i_start, i_end
muts(i,j)=mub(i,j)+mu_2(i,j)
ENDDO
DO i=i_start, i_endu
! rk_step==1, WCS fix for tiling
! muus(i,j)=0.5*(mub(i,j)+mu_2(i,j)+mub(i-1,j)+mu_2(i-1,j))
muus(i,j) = muu(i,j)
ENDDO
ENDDO
DO j=j_start, j_endv
DO i=i_start, i_end
! rk_step==1, WCS fix for tiling
! muvs(i,j)=0.5*(mub(i,j)+mu_2(i,j)+mub(i,j-1)+mu_2(i,j-1))
muvs(i,j) = muv(i,j)
ENDDO
ENDDO
DO j=j_start, j_end
DO i=i_start, i_end
mu_save(i,j)=mu_2(i,j)
mu_2(i,j)=mu_2(i,j)-mu_2(i,j)
ENDDO
ENDDO
ELSE
DO j=j_start, j_end
DO i=i_start, i_end
muts(i,j)=mub(i,j)+mu_1(i,j)
ENDDO
DO i=i_start, i_endu
muus(i,j)=0.5*(mub(i,j)+mu_1(i,j)+mub(i-1,j)+mu_1(i-1,j))
ENDDO
ENDDO
DO j=j_start, j_endv
DO i=i_start, i_end
muvs(i,j)=0.5*(mub(i,j)+mu_1(i,j)+mub(i,j-1)+mu_1(i,j-1))
ENDDO
ENDDO
DO j=j_start, j_end
DO i=i_start, i_end
mu_save(i,j)=mu_2(i,j)
mu_2(i,j)=mu_1(i,j)-mu_2(i,j)
ENDDO
ENDDO
END IF
! set up the small timestep variables
DO j=j_start, j_end
DO i=i_start, i_end
ww_save(i,kde,j) = 0.
ww_save(i,1,j) = 0.
ENDDO
ENDDO
DO j=j_start, j_end
DO k=k_start, k_end
DO i=i_start, i_end
c2a(i,k,j) = cpovcv*(pb(i,k,j)+p(i,k,j))/alt(i,k,j)
ENDDO
ENDDO
ENDDO
DO j=j_start, j_end
DO k=k_start, k_end
DO i=i_start, i_endu
u_save(i,k,j) = u_2(i,k,j)
! u coupled with my
u_2(i,k,j) = (muus(i,j)*u_1(i,k,j)-muu(i,j)*u_2(i,k,j))/msfuy(i,j)
ENDDO
ENDDO
ENDDO
DO j=j_start, j_endv
DO k=k_start, k_end
DO i=i_start, i_end
v_save(i,k,j) = v_2(i,k,j)
! v coupled with mx
! v_2(i,k,j) = (muvs(i,j)*v_1(i,k,j)-muv(i,j)*v_2(i,k,j))/msfvx(i,j)
v_2(i,k,j) = (muvs(i,j)*v_1(i,k,j)-muv(i,j)*v_2(i,k,j))*msfvx_inv(i,j)
ENDDO
ENDDO
ENDDO
DO j=j_start, j_end
DO k=k_start, k_end
DO i=i_start, i_end
t_save(i,k,j) = t_2(i,k,j)
t_2(i,k,j) = muts(i,j)*t_1(i,k,j)-mut(i,j)*t_2(i,k,j)
ENDDO
ENDDO
ENDDO
DO j=j_start, j_end
! DO k=k_start, min(kde,kte)
DO k=k_start, kde
DO i=i_start, i_end
w_save(i,k,j) = w_2(i,k,j)
! w coupled with my
w_2(i,k,j) = (muts(i,j)* w_1(i,k,j)-mut(i,j)* w_2(i,k,j))/msfty(i,j)
ph_save(i,k,j) = ph_2(i,k,j)
ph_2(i,k,j) = ph_1(i,k,j)-ph_2(i,k,j)
ENDDO
ENDDO
ENDDO
DO j=j_start, j_end
! DO k=k_start, min(kde,kte)
DO k=k_start, kde
DO i=i_start, i_end
ww_save(i,k,j) = ww(i,k,j)
ENDDO
ENDDO
ENDDO
END SUBROUTINE small_step_prep
!-------------------------------------------------------------------------
SUBROUTINE small_step_finish( u_2, u_1, v_2, v_1, w_2, w_1, &
t_2, t_1, ph_2, ph_1, ww, ww1, &
mu_2, mu_1, &
mut, muts, muu, muus, muv, muvs, &
u_save, v_save, w_save, &
t_save, ph_save, mu_save, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, &
h_diabatic, &
number_of_small_timesteps,dts, &
rk_step, rk_order, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE ! religion first
! stuff passed in
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde
INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme
INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte
INTEGER, INTENT(IN ) :: number_of_small_timesteps
INTEGER, INTENT(IN ) :: rk_step, rk_order
REAL, INTENT(IN ) :: dts
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN ) :: u_1, &
v_1, &
w_1, &
t_1, &
ww1, &
ph_1
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: u_2, &
v_2, &
w_2, &
t_2, &
ww, &
ph_2
REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT(IN ) :: u_save, &
v_save, &
w_save, &
t_save, &
ph_save, &
h_diabatic
REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: muus, muvs
REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: mu_2, mu_1
REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: mut, muts, &
muu, muv, mu_save
REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN ) :: msfux, msfuy, &
msfvx, msfvy, &
msftx, msfty
! local stuff
INTEGER :: i,j,k
INTEGER :: i_start, i_end, j_start, j_end, i_endu, j_endv
!
!
! small_step_finish reconstructs the full uncoupled prognostic variables
! from the coupled perturbation variables used in the small timesteps.
!
!
i_start = its
i_end = ite
j_start = jts
j_end = jte
i_endu = i_end
j_endv = j_end
IF(i_end == ide) i_end = i_end - 1
IF(j_end == jde) j_end = j_end - 1
! 1 jun 2001 -> added boundary copy to 2D boundary condition routines,
! should be OK now without the following data copy
!#if 0
! DO j=j_start, j_end
! muts(0,j)=muts(1,j)
! muts(i_endu,j)=muts(i_end,j)
! ENDDO
! DO i=i_start, i_end
! muts(i,0)=muts(i,1)
! muts(i,j_endv)=muts(i,j_end)
! ENDDO
! DO j = j_start, j_endv
! DO i = i_start, i_end
! muvs(i,j) = 0.5*(muts(i,j) + muts(i,j-1))
! ENDDO
! ENDDO
! DO j = j_start, j_end
! DO i = i_start, i_endu
! muus(i,j) = 0.5*(muts(i,j) + muts(i-1,j))
! ENDDO
! ENDDO
!#endif
! addition of time level t back into variables
DO j = j_start, j_endv
DO k = kds, kde-1
DO i = i_start, i_end
! v coupled with mx
v_2(i,k,j) = (msfvx(i,j)*v_2(i,k,j) + v_save(i,k,j)*muv(i,j))/muvs(i,j)
ENDDO
ENDDO
ENDDO
DO j = j_start, j_end
DO k = kds, kde-1
DO i = i_start, i_endu
! u coupled with my
u_2(i,k,j) = (msfuy(i,j)*u_2(i,k,j) + u_save(i,k,j)*muu(i,j))/muus(i,j)
ENDDO
ENDDO
ENDDO
DO j = j_start, j_end
DO k = kds, kde
DO i = i_start, i_end
! w coupled with my
w_2(i,k,j) = (msfty(i,j)*w_2(i,k,j) + w_save(i,k,j)*mut(i,j))/muts(i,j)
ph_2(i,k,j) = ph_2(i,k,j) + ph_save(i,k,j)
ww(i,k,j) = ww(i,k,j) + ww1(i,k,j)
ENDDO
ENDDO
ENDDO
#ifdef REVERT
DO j = j_start, j_end
DO k = kds, kde-1
DO i = i_start, i_end
t_2(i,k,j) = (t_2(i,k,j) + t_save(i,k,j)*mut(i,j))/muts(i,j)
ENDDO
ENDDO
ENDDO
#else
IF ( rk_step < rk_order ) THEN
DO j = j_start, j_end
DO k = kds, kde-1
DO i = i_start, i_end
t_2(i,k,j) = (t_2(i,k,j) + t_save(i,k,j)*mut(i,j))/muts(i,j)
ENDDO
ENDDO
ENDDO
ELSE
DO j = j_start, j_end
DO k = kds, kde-1
DO i = i_start, i_end
t_2(i,k,j) = (t_2(i,k,j) - dts*number_of_small_timesteps*mut(i,j)*h_diabatic(i,k,j) &
+ t_save(i,k,j)*mut(i,j))/muts(i,j)
ENDDO
ENDDO
ENDDO
ENDIF
#endif
DO j = j_start, j_end
DO i = i_start, i_end
mu_2(i,j) = mu_2(i,j) + mu_save(i,j)
ENDDO
ENDDO
END SUBROUTINE small_step_finish
!-----------------------------------------------------------------------
SUBROUTINE calc_p_rho( al, p, ph, &
alt, t_2, t_1, c2a, pm1, &
mu, muts, znu, t0, &
rdnw, dnw, smdiv, &
non_hydrostatic, step, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE ! religion first
! declarations for the stuff coming in
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde
INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme
INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte
INTEGER, INTENT(IN ) :: step
REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT( OUT) :: al, &
p
REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT(IN ) :: alt, &
t_2, &
t_1, &
c2a
REAL, DIMENSION(ims:ime, kms:kme, jms:jme),INTENT(INOUT) :: ph, pm1
REAL, DIMENSION(ims:ime, jms:jme) , INTENT(IN ) :: mu, &
muts
REAL, DIMENSION(kms:kme) , INTENT(IN ) :: dnw, &
rdnw, &
znu
REAL, INTENT(IN ) :: t0, smdiv
LOGICAL, INTENT(IN ) :: non_hydrostatic
! local variables
INTEGER :: i, j, k
INTEGER :: i_start, i_end, j_start, j_end, k_start, k_end
REAL :: ptmp
!
!
! For the nonhydrostatic option,
! calc_p_rho computes the perturbation inverse density and
! perturbation pressure from the hydrostatic relation and the
! linearized equation of state, respectively.
!
! For the hydrostatic option,
! calc_p_rho computes the perturbation pressure, perturbation density,
! and perturbation geopotential
! from the vertical coordinate definition, linearized equation of state
! and the hydrostatic relation, respectively.
!
! forward weighting of the pressure (divergence damping) is also
! computed here.
!
!
i_start = its
i_end = ite
j_start = jts
j_end = jte
k_start = kts
k_end = min(kte,kde-1)
IF(i_end == ide) i_end = i_end - 1
IF(j_end == jde) j_end = j_end - 1
IF (non_hydrostatic) THEN
DO j=j_start, j_end
DO k=k_start, k_end
DO i=i_start, i_end
! al computation is all dry, so ok with moisture
al(i,k,j)=-1./muts(i,j)*(alt(i,k,j)*mu(i,j) &
+rdnw(k)*(ph(i,k+1,j)-ph(i,k,j)))
! this is temporally linearized p, no moisture correction needed
p(i,k,j)=c2a(i,k,j)*(alt(i,k,j)*(t_2(i,k,j)-mu(i,j)*t_1(i,k,j)) &
/(muts(i,j)*(t0+t_1(i,k,j)))-al (i,k,j))
ENDDO
ENDDO
ENDDO
ELSE ! hydrostatic calculation
DO j=j_start, j_end
DO k=k_start, k_end
DO i=i_start, i_end
p(i,k,j)=mu(i,j)*znu(k)
al(i,k,j)=alt(i,k,j)*(t_2(i,k,j)-mu(i,j)*t_1(i,k,j)) &
/(muts(i,j)*(t0+t_1(i,k,j)))-p(i,k,j)/c2a(i,k,j)
ph(i,k+1,j)=ph(i,k,j)-dnw(k)*(muts(i,j)*al (i,k,j) &
+mu(i,j)*alt(i,k,j))
ENDDO
ENDDO
ENDDO
END IF
! divergence damping setup
IF (step == 0) then ! we're initializing small timesteps
DO j=j_start, j_end
DO k=k_start, k_end
DO i=i_start, i_end
pm1(i,k,j)=p(i,k,j)
ENDDO
ENDDO
ENDDO
ELSE ! we're in the small timesteps
DO j=j_start, j_end ! and adding div damping component
DO k=k_start, k_end
DO i=i_start, i_end
ptmp = p(i,k,j)
p(i,k,j) = p(i,k,j) + smdiv*(p(i,k,j)-pm1(i,k,j))
pm1(i,k,j) = ptmp
ENDDO
ENDDO
ENDDO
END IF
END SUBROUTINE calc_p_rho
!----------------------------------------------------------------------
SUBROUTINE calc_coef_w( a,alpha,gamma, &
mut, cqw, &
rdn, rdnw, c2a, &
dts, g, epssm, top_lid, &
ids,ide, jds,jde, kds,kde, & ! domain dims
ims,ime, jms,jme, kms,kme, & ! memory dims
its,ite, jts,jte, kts,kte ) ! tile dims
IMPLICIT NONE ! religion first
! passed in through the call
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde
INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme
INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte
LOGICAL, INTENT(IN ) :: top_lid
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN ) :: c2a, &
cqw
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: alpha, &
gamma, &
a
REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN ) :: mut
REAL, DIMENSION(kms:kme), INTENT(IN ) :: rdn, &
rdnw
REAL, INTENT(IN ) :: epssm, &
dts, &
g
! Local stack data.
REAL, DIMENSION(ims:ime) :: cof
REAL :: b, c
INTEGER :: i, j, k, i_start, i_end, j_start, j_end, k_start, k_end
INTEGER :: ij, ijp, ijm, lid_flag
!
!
! calc_coef_w calculates the coefficients needed for the
! implicit solution of the vertical momentum and geopotential equations.
! This requires solution of a tri-diagonal equation.
!
!
i_start = its
i_end = ite
j_start = jts
j_end = jte
k_start = kts
k_end = kte-1
IF(j_end == jde) j_end = j_end - 1
IF(i_end == ide) i_end = i_end - 1
lid_flag=1
IF(top_lid)lid_flag=0
outer_j_loop: DO j = j_start, j_end
DO i = i_start, i_end
cof(i) = (.5*dts*g*(1.+epssm)/mut(i,j))**2
a(i, 2 ,j) = 0.
a(i,kde,j) =-2.*cof(i)*rdnw(kde-1)**2*c2a(i,kde-1,j)*lid_flag
gamma(i,1 ,j) = 0.
ENDDO
DO k=3,kde-1
DO i=i_start, i_end
a(i,k,j) = -cqw(i,k,j)*cof(i)*rdn(k)* rdnw(k-1)*c2a(i,k-1,j)
ENDDO
ENDDO
DO k=2,kde-1
DO i=i_start, i_end
b = 1.+cqw(i,k,j)*cof(i)*rdn(k)*(rdnw(k )*c2a(i,k,j ) &
+rdnw(k-1)*c2a(i,k-1,j))
c = -cqw(i,k,j)*cof(i)*rdn(k)*rdnw(k )*c2a(i,k,j )
alpha(i,k,j) = 1./(b-a(i,k,j)*gamma(i,k-1,j))
gamma(i,k,j) = c*alpha(i,k,j)
ENDDO
ENDDO
DO i=i_start, i_end
b = 1.+2.*cof(i)*rdnw(kde-1)**2*c2a(i,kde-1,j)
c = 0.
alpha(i,kde,j) = 1./(b-a(i,kde,j)*gamma(i,kde-1,j))
gamma(i,kde,j) = c*alpha(i,kde,j)
ENDDO
ENDDO outer_j_loop
END SUBROUTINE calc_coef_w
!----------------------------------------------------------------------
SUBROUTINE advance_uv ( u, ru_tend, v, rv_tend, &
p, pb, &
ph, php, alt, al, mu, &
muu, cqu, muv, cqv, mudf, &
msfux, msfuy, msfvx, &
msfvx_inv, msfvy, &
rdx, rdy, dts, &
cf1, cf2, cf3, fnm, fnp, &
emdiv, &
rdnw, config_flags, spec_zone, &
non_hydrostatic, top_lid, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IMPLICIT NONE ! religion first
! stuff coming in
TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags
LOGICAL, INTENT(IN ) :: non_hydrostatic, top_lid
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde
INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme
INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte
INTEGER, INTENT(IN ) :: spec_zone
REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), &
INTENT(INOUT) :: &
u, &
v
REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), &
INTENT(IN ) :: &
ru_tend, &
rv_tend, &
ph, &
php, &
p, &
pb, &
alt, &
al, &
cqu, &
cqv
REAL, DIMENSION( ims:ime , jms:jme ), INTENT(IN ) :: muu, &
muv, &
mu, &
mudf
REAL, DIMENSION( kms:kme ), INTENT(IN ) :: fnm, &
fnp , &
rdnw
REAL, DIMENSION( ims:ime , jms:jme ), INTENT(IN ) :: msfux, &
msfuy, &
msfvx, &
msfvy, &
msfvx_inv
REAL, INTENT(IN ) :: rdx, &
rdy, &
dts, &
cf1, &
cf2, &
cf3, &
emdiv
! Local 3d array from the stack (note tile size)
REAL, DIMENSION (its:ite, kts:kte) :: dpn, dpxy
REAL, DIMENSION (its:ite) :: mudf_xy
REAL :: dx, dy
INTEGER :: i,j,k, i_start, i_end, j_start, j_end, k_start, k_end
INTEGER :: i_endu, j_endv, k_endw
INTEGER :: i_start_up, i_end_up, j_start_up, j_end_up
INTEGER :: i_start_vp, i_end_vp, j_start_vp, j_end_vp
INTEGER :: i_start_u_tend, i_end_u_tend, j_start_v_tend, j_end_v_tend
!
!
! advance_uv advances the explicit perturbation horizontal momentum
! equations (u,v) by adding in the large-timestep tendency along with
! the small timestep pressure gradient tendency.
!
!
! now, the real work.
! set the loop bounds taking into account boundary conditions.
IF( config_flags%nested .or. config_flags%specified ) THEN
i_start = max( its,ids+spec_zone )
i_end = min( ite,ide-spec_zone-1 )
j_start = max( jts,jds+spec_zone )
j_end = min( jte,jde-spec_zone-1 )
k_start = kts
k_end = min( kte, kde-1 )
i_endu = min( ite,ide-spec_zone )
j_endv = min( jte,jde-spec_zone )
k_endw = k_end
IF( config_flags%periodic_x) THEN
i_start = its
i_end = ite
i_endu = i_end
IF(i_end == ide) i_end = i_end - 1
ENDIF
ELSE
i_start = its
i_end = ite
j_start = jts
j_end = jte
k_start = kts
k_end = kte-1
i_endu = i_end
j_endv = j_end
k_endw = k_end
IF(j_end == jde) j_end = j_end - 1
IF(i_end == ide) i_end = i_end - 1
ENDIF
i_start_up = i_start
i_end_up = i_endu
j_start_up = j_start
j_end_up = j_end
i_start_vp = i_start
i_end_vp = i_end
j_start_vp = j_start
j_end_vp = j_endv
IF ( (config_flags%open_xs .or. &
config_flags%symmetric_xs ) &
.and. (its == ids) ) &
i_start_up = i_start_up + 1
IF ( (config_flags%open_xe .or. &
config_flags%symmetric_xe ) &
.and. (ite == ide) ) &
i_end_up = i_end_up - 1
IF ( (config_flags%open_ys .or. &
config_flags%symmetric_ys .or. &
config_flags%polar ) &
.and. (jts == jds) ) &
j_start_vp = j_start_vp + 1
IF ( (config_flags%open_ye .or. &
config_flags%symmetric_ye .or. &
config_flags%polar ) &
.and. (jte == jde) ) &
j_end_vp = j_end_vp - 1
i_start_u_tend = i_start
i_end_u_tend = i_endu
j_start_v_tend = j_start
j_end_v_tend = j_endv
IF ( config_flags%symmetric_xs .and. (its == ids) ) &
i_start_u_tend = i_start_u_tend+1
IF ( config_flags%symmetric_xe .and. (ite == ide) ) &
i_end_u_tend = i_end_u_tend-1
IF ( config_flags%symmetric_ys .and. (jts == jds) ) &
j_start_v_tend = j_start_v_tend+1
IF ( config_flags%symmetric_ye .and. (jte == jde) ) &
j_end_v_tend = j_end_v_tend-1
dx = 1./rdx
dy = 1./rdy
! start real calculations.
! first, u
u_outer_j_loop: DO j = j_start, j_end
DO k = k_start, k_end
DO i = i_start_u_tend, i_end_u_tend
u(i,k,j) = u(i,k,j) + dts*ru_tend(i,k,j)
ENDDO
ENDDO
DO i = i_start_up, i_end_up
mudf_xy(i)= -emdiv*dx*(mudf(i,j)-mudf(i-1,j))/msfuy(i,j)
ENDDO
DO k = k_start, k_end
DO i = i_start_up, i_end_up
! Comments on map scale factors:
! x pressure gradient: ADT eqn 44, penultimate term on RHS
! = -(mx/my)*(mu/rho)*partial dp/dx
! [i.e., first rho->mu; 2nd still rho; alpha=1/rho]
! Klemp et al. splits into 2 terms:
! mu alpha partial dp/dx + partial dp/dnu * partial dphi/dx
! then into 4 terms:
! mu alpha partial dp'/dx + nu mu alpha' partial dmubar/dx +
! + mu partial dphi/dx + partial dphi'/dx * (partial dp'/dnu - mu')
!
! first 3 terms:
! ph, alt, p, al, pb not coupled
! since we want tendency to fit ADT eqn 44 (coupled) we need to
! multiply by (mx/my):
!
dpxy(i,k)= (msfux(i,j)/msfuy(i,j))*.5*rdx*muu(i,j)*( &
((ph (i,k+1,j)-ph (i-1,k+1,j))+(ph (i,k,j)-ph (i-1,k,j))) &
+(alt(i,k ,j)+alt(i-1,k ,j))*(p (i,k,j)-p (i-1,k,j)) &
+(al (i,k ,j)+al (i-1,k ,j))*(pb (i,k,j)-pb (i-1,k,j)) )
ENDDO
ENDDO
IF (non_hydrostatic) THEN
DO i = i_start_up, i_end_up
dpn(i,1) = .5*( cf1*(p(i,1,j)+p(i-1,1,j)) &
+cf2*(p(i,2,j)+p(i-1,2,j)) &
+cf3*(p(i,3,j)+p(i-1,3,j)) )
dpn(i,kde) = 0.
ENDDO
IF (top_lid) THEN
DO i = i_start_up, i_end_up
dpn(i,kde) =.5*( cf1*(p(i-1,kde-1,j)+p(i,kde-1,j)) &
+cf2*(p(i-1,kde-2,j)+p(i,kde-2,j)) &
+cf3*(p(i-1,kde-3,j)+p(i,kde-3,j)) )
ENDDO
ENDIF
DO k = k_start+1, k_end
DO i = i_start_up, i_end_up
dpn(i,k) = .5*( fnm(k)*(p(i,k ,j)+p(i-1,k ,j)) &
+fnp(k)*(p(i,k-1,j)+p(i-1,k-1,j)) )
ENDDO
ENDDO
! Comments on map scale factors:
! 4th term:
! php, dpn, mu not coupled
! since we want tendency to fit ADT eqn 44 (coupled) we need to
! multiply by (mx/my):
DO k = k_start, k_end
DO i = i_start_up, i_end_up
dpxy(i,k)=dpxy(i,k) + (msfux(i,j)/msfuy(i,j))*rdx*(php(i,k,j)-php(i-1,k,j))* &
(rdnw(k)*(dpn(i,k+1)-dpn(i,k))-.5*(mu(i-1,j)+mu(i,j)))
ENDDO
ENDDO
END IF
DO k = k_start, k_end
DO i = i_start_up, i_end_up
u(i,k,j)=u(i,k,j)-dts*cqu(i,k,j)*dpxy(i,k)+mudf_xy(i)
ENDDO
ENDDO
ENDDO u_outer_j_loop
! now v
v_outer_j_loop: DO j = j_start_v_tend, j_end_v_tend
DO k = k_start, k_end
DO i = i_start, i_end
v(i,k,j) = v(i,k,j) + dts*rv_tend(i,k,j)
ENDDO
ENDDO
DO i = i_start, i_end
mudf_xy(i)= -emdiv*dy*(mudf(i,j)-mudf(i,j-1))*msfvx_inv(i,j)
ENDDO
IF ( ( j >= j_start_vp) &
.and.( j <= j_end_vp ) ) THEN
DO k = k_start, k_end
DO i = i_start, i_end
! Comments on map scale factors:
! y pressure gradient: ADT eqn 45, penultimate term on RHS
! = -(my/mx)*(mu/rho)*partial dp/dy
! [i.e., first rho->mu; 2nd still rho; alpha=1/rho]
! Klemp et al. splits into 2 terms:
! mu alpha partial dp/dy + partial dp/dnu * partial dphi/dy
! then into 4 terms:
! mu alpha partial dp'/dy + nu mu alpha' partial dmubar/dy +
! + mu partial dphi/dy + partial dphi'/dy * (partial dp'/dnu - mu')
!
! first 3 terms:
! ph, alt, p, al, pb not coupled
! since we want tendency to fit ADT eqn 45 (coupled) we need to
! multiply by (my/mx):
! mudf_xy is NOT a map scale factor coupling
! it is some sort of divergence damping
dpxy(i,k)= (msfvy(i,j)/msfvx(i,j))*.5*rdy*muv(i,j)*( &
((ph(i,k+1,j)-ph(i,k+1,j-1))+(ph (i,k,j)-ph (i,k,j-1))) &
+(alt(i,k ,j)+alt(i,k ,j-1))*(p (i,k,j)-p (i,k,j-1)) &
+(al (i,k ,j)+al (i,k ,j-1))*(pb (i,k,j)-pb (i,k,j-1)) )
ENDDO
ENDDO
IF (non_hydrostatic) THEN
DO i = i_start, i_end
dpn(i,1) = .5*( cf1*(p(i,1,j)+p(i,1,j-1)) &
+cf2*(p(i,2,j)+p(i,2,j-1)) &
+cf3*(p(i,3,j)+p(i,3,j-1)) )
dpn(i,kde) = 0.
ENDDO
IF (top_lid) THEN
DO i = i_start, i_end
dpn(i,kde) =.5*( cf1*(p(i,kde-1,j-1)+p(i,kde-1,j)) &
+cf2*(p(i,kde-2,j-1)+p(i,kde-2,j)) &
+cf3*(p(i,kde-3,j-1)+p(i,kde-3,j)) )
ENDDO
ENDIF
DO k = k_start+1, k_end
DO i = i_start, i_end
dpn(i,k) = .5*( fnm(k)*(p(i,k ,j)+p(i,k ,j-1)) &
+fnp(k)*(p(i,k-1,j)+p(i,k-1,j-1)) )
ENDDO
ENDDO
! Comments on map scale factors:
! 4th term:
! php, dpn, mu not coupled
! since we want tendency to fit ADT eqn 45 (coupled) we need to
! multiply by (my/mx):
DO k = k_start, k_end
DO i = i_start, i_end
dpxy(i,k)=dpxy(i,k) + (msfvy(i,j)/msfvx(i,j))*rdy*(php(i,k,j)-php(i,k,j-1))* &
(rdnw(k)*(dpn(i,k+1)-dpn(i,k))-.5*(mu(i,j-1)+mu(i,j)))
ENDDO
ENDDO
END IF
DO k = k_start, k_end
DO i = i_start, i_end
v(i,k,j)=v(i,k,j)-dts*cqv(i,k,j)*dpxy(i,k)+mudf_xy(i)
ENDDO
ENDDO
END IF
ENDDO v_outer_j_loop
! The check for j_start_vp and j_end_vp makes sure that the edges in v
! are not updated. Let's add a polar boundary condition check here for
! safety to ensure that v at the poles never gets to be non-zero in the
! small time steps.
IF (config_flags%polar) THEN
IF (jts == jds) THEN
DO k = k_start, k_end
DO i = i_start, i_end
v(i,k,jds) = 0.
ENDDO
ENDDO
END IF
IF (jte == jde) THEN
DO k = k_start, k_end
DO i = i_start, i_end
v(i,k,jde) = 0.
ENDDO
ENDDO
END IF
END IF
END SUBROUTINE advance_uv
!---------------------------------------------------------------------
SUBROUTINE advance_mu_t( ww, ww_1, u, u_1, v, v_1, &
mu, mut, muave, muts, muu, muv, &
mudf, uam, vam, wwam, t, t_1, &
t_ave, ft, mu_tend, &
rdx, rdy, dts, epssm, &
dnw, fnm, fnp, rdnw, &
msfux, msfuy, msfvx, msfvx_inv, &
msfvy, msftx, msfty, &
step, config_flags, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IMPLICIT NONE ! religion first
! stuff coming in
TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde
INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme
INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte
INTEGER, INTENT(IN ) :: step
REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), &
INTENT(IN ) :: &
u, &
v, &
u_1, &
v_1, &
t_1, &
ft
REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), &
INTENT(INOUT) :: &
ww, &
ww_1, &
t, &
t_ave, &
uam, &
vam, &
wwam
REAL, DIMENSION( ims:ime , jms:jme ), INTENT(IN ) :: muu, &
muv, &
mut, &
msfux,&
msfuy,&
msfvx,&
msfvx_inv,&
msfvy,&
msftx,&
msfty,&
mu_tend
REAL, DIMENSION( ims:ime , jms:jme ), INTENT( OUT) :: muave, &
muts, &
mudf
REAL, DIMENSION( ims:ime , jms:jme ), INTENT(INOUT) :: mu
REAL, DIMENSION( kms:kme ), INTENT(IN ) :: fnm, &
fnp, &
dnw, &
rdnw
REAL, INTENT(IN ) :: rdx, &
rdy, &
dts, &
epssm
! Local arrays from the stack (note tile size)
REAL, DIMENSION (its:ite, kts:kte) :: wdtn, dvdxi
REAL, DIMENSION (its:ite) :: dmdt
INTEGER :: i,j,k, i_start, i_end, j_start, j_end, k_start, k_end
INTEGER :: i_endu, j_endv
REAL :: acc
!
!
! advance_mu_t advances the explicit perturbation theta equation and the mass
! conservation equation. In addition, the small timestep omega is updated,
! and some quantities needed in other places are squirrelled away.
!
!
! now, the real work.
! set the loop bounds taking into account boundary conditions.
i_start = its
i_end = ite
j_start = jts
j_end = jte
k_start = kts
k_end = kte-1
i_endu = i_end
j_endv = j_end
IF(j_end == jde) j_end = j_end - 1
IF(i_end == ide) i_end = i_end - 1
IF ( .NOT. config_flags%periodic_x )THEN
IF ( (config_flags%specified .or. config_flags%nested) .and. (its == ids) ) &
i_start = i_start + 1
IF ( (config_flags%specified .or. config_flags%nested) .and. (ite == ide) ) &
i_end = i_end - 1
ENDIF
IF ( (config_flags%specified .or. config_flags%nested) .and. (jts == jds) ) &
j_start = j_start + 1
IF ( (config_flags%specified .or. config_flags%nested) .and. (jte == jde) ) &
j_end = j_end - 1
! CALCULATION OF WW (dETA/dt)
DO j = j_start, j_end
DO i=i_start, i_end
dmdt(i) = 0.
ENDDO
! NOTE: mu is not coupled with the map scale factor.
! ww (omega) IS coupled with the map scale factor.
! Being coupled with the map scale factor means
! multiplication by (1/msft) in this case.
! Comments on map scale factors
! ADT eqn 47:
! partial drho/dt = -mx*my[partial d/dx(rho u/my) + partial d/dy(rho v/mx)]
! -partial d/dz(rho w)
! with rho -> mu, dividing by my, and with partial d/dnu(rho nu/my [=ww])
! as the final term (because we're looking for d_nu_/dt)
!
! begin by integrating with respect to nu from bottom to top
! BCs are ww=0 at both
! final term gives 0
! first term gives Integral([1/my]partial d mu/dt) over total column = dm/dt
! RHS remaining is Integral(-mx[partial d/dx(mu u/my) +
! partial d/dy(mu v/mx)]) over column
! lines below find RHS terms at each level then set dmdt = sum over all levels
!
! [don't divide the below by msfty until find ww, since dmdt is used in
! the meantime]
DO k=k_start, k_end
DO i=i_start, i_end
dvdxi(i,k) = msftx(i,j)*msfty(i,j)*( &
rdy*( (v(i,k,j+1)+muv(i,j+1)*v_1(i,k,j+1)*msfvx_inv(i,j+1)) &
-(v(i,k,j )+muv(i,j )*v_1(i,k,j )*msfvx_inv(i,j )) ) &
+rdx*( (u(i+1,k,j)+muu(i+1,j)*u_1(i+1,k,j)/msfuy(i+1,j)) &
-(u(i,k,j )+muu(i ,j)*u_1(i,k,j )/msfuy(i ,j)) ))
dmdt(i) = dmdt(i) + dnw(k)*dvdxi(i,k)
ENDDO
ENDDO
DO i=i_start, i_end
muave(i,j) = mu(i,j)
mu(i,j) = mu(i,j)+dts*(dmdt(i)+mu_tend(i,j))
mudf(i,j) = (dmdt(i)+mu_tend(i,j)) ! save tendency for div damp filter
muts(i,j) = mut(i,j)+mu(i,j)
muave(i,j) =.5*((1.+epssm)*mu(i,j)+(1.-epssm)*muave(i,j))
ENDDO
DO k=2,k_end
DO i=i_start, i_end
ww(i,k,j)=ww(i,k-1,j)-dnw(k-1)*(dmdt(i)+dvdxi(i,k-1)+mu_tend(i,j))/msfty(i,j)
ENDDO
END DO
! NOTE: ww_1 (large timestep ww) is already coupled with the
! map scale factor
DO k=1,k_end
DO i=i_start, i_end
ww(i,k,j)=ww(i,k,j)-ww_1(i,k,j)
END DO
END DO
ENDDO
! CALCULATION OF THETA
! NOTE: theta'' is not coupled with the map-scale factor,
! while the theta'' tendency is coupled (i.e., mult by 1/msft)
! Comments on map scale factors
! BUT NOTE THAT both are mass coupled
! in flux form equations (Klemp et al.) Theta = mu*theta
!
! scalar eqn: partial d/dt(rho q/my) = -mx[partial d/dx(q rho u/my) +
! partial d/dy(q rho v/mx)]
! - partial d/dz(q rho w/my)
! with rho -> mu, and with partial d/dnu(q rho nu/my) as the final term
!
! adding previous tendency contribution which was map scale factor coupled
! (had been divided by msfty)
! need to uncouple before updating uncoupled Theta (by adding)
DO j=j_start, j_end
DO k=1,k_end
DO i=i_start, i_end
t_ave(i,k,j) = t(i,k,j)
t (i,k,j) = t(i,k,j) + msfty(i,j)*dts*ft(i,k,j)
END DO
END DO
ENDDO
DO j=j_start, j_end
DO i=i_start, i_end
wdtn(i,1 )=0.
wdtn(i,kde)=0.
ENDDO
DO k=2,k_end
DO i=i_start, i_end
! for scalar eqn RHS term 3
wdtn(i,k)= ww(i,k,j)*(fnm(k)*t_1(i,k ,j)+fnp(k)*t_1(i,k-1,j))
ENDDO
ENDDO
! scalar eqn, RHS terms 1, 2 and 3
! multiply by msfty to uncouple result for Theta from map scale factor
DO k=1,k_end
DO i=i_start, i_end
! multiplication by msfty uncouples result for Theta
t(i,k,j) = t(i,k,j) - dts*msfty(i,j)*( &
! multiplication by mx needed for RHS terms 1 & 2
msftx(i,j)*( &
.5*rdy* &
( v(i,k,j+1)*(t_1(i,k,j+1)+t_1(i,k, j )) &
-v(i,k,j )*(t_1(i,k, j )+t_1(i,k,j-1)) ) &
+ .5*rdx* &
( u(i+1,k,j)*(t_1(i+1,k,j)+t_1(i ,k,j)) &
-u(i ,k,j)*(t_1(i ,k,j)+t_1(i-1,k,j)) ) ) &
+ rdnw(k)*( wdtn(i,k+1)-wdtn(i,k) ) )
ENDDO
ENDDO
ENDDO
END SUBROUTINE advance_mu_t
!------------------------------------------------------------
SUBROUTINE advance_w( w, rw_tend, ww, w_save, u, v, &
mu1, mut, muave, muts, &
t_2ave, t_2, t_1, &
ph, ph_1, phb, ph_tend, &
ht, c2a, cqw, alt, alb, &
a, alpha, gamma, &
rdx, rdy, dts, t0, epssm, &
dnw, fnm, fnp, rdnw, rdn, &
cf1, cf2, cf3, msftx, msfty,&
config_flags, top_lid, &
ids,ide, jds,jde, kds,kde, & ! domain dims
ims,ime, jms,jme, kms,kme, & ! memory dims
its,ite, jts,jte, kts,kte ) ! tile dims
! We have used msfty for msft_inv but have not thought through w equation
! pieces properly yet, so we will have to hope that it is okay
! We think we have found a slight error in surface w calculation
IMPLICIT NONE ! religion first
! stuff coming in
TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde
INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme
INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte
LOGICAL, INTENT(IN ) :: top_lid
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
INTENT(INOUT) :: &
t_2ave, &
w, &
ph
REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), &
INTENT(IN ) :: &
rw_tend, &
ww, &
w_save, &
u, &
v, &
t_2, &
t_1, &
ph_1, &
phb, &
ph_tend, &
alpha, &
gamma, &
a, &
c2a, &
cqw, &
alb, &
alt
REAL, DIMENSION( ims:ime , jms:jme ), &
INTENT(IN ) :: &
mu1, &
mut, &
muave, &
muts, &
ht, &
msftx, &
msfty
REAL, DIMENSION( kms:kme ), INTENT(IN ) :: fnp, &
fnm, &
rdnw, &
rdn, &
dnw
REAL, INTENT(IN ) :: rdx, &
rdy, &
dts, &
cf1, &
cf2, &
cf3, &
t0, &
epssm
! Stack based 3d data, tile size.
REAL, DIMENSION( its:ite ) :: mut_inv, msft_inv
REAL, DIMENSION( its:ite, kts:kte ) :: rhs, wdwn
INTEGER :: i,j,k, i_start, i_end, j_start, j_end, k_start, k_end
REAL, DIMENSION (kts:kte) :: dampwt
real :: htop,hbot,hdepth,hk
real :: pi,dampmag
!
!
! advance_w advances the implicit w and geopotential equations.
!
!
! set loop limits.
! Currently set for periodic boundary conditions
i_start = its
i_end = ite
j_start = jts
j_end = jte
k_start = kts
k_end = kte-1
IF(j_end == jde) j_end = j_end - 1
IF(i_end == ide) i_end = i_end - 1
IF ( .NOT. config_flags%periodic_x )THEN
IF ( (config_flags%specified .or. config_flags%nested) .and. (its == ids) ) &
i_start = i_start + 1
IF ( (config_flags%specified .or. config_flags%nested) .and. (ite == ide) ) &
i_end = i_end - 1
ENDIF
IF ( (config_flags%specified .or. config_flags%nested) .and. (jts == jds) ) &
j_start = j_start + 1
IF ( (config_flags%specified .or. config_flags%nested) .and. (jte == jde) ) &
j_end = j_end - 1
pi = 4.*atan(1.)
dampmag = dts*config_flags%dampcoef
hdepth=config_flags%zdamp
! calculation of phi and w equations
! Comments on map scale factors:
! phi equation is:
! partial d/dt(rho phi/my) = -mx partial d/dx(phi rho u/my)
! -mx partial d/dy(phi rho v/mx)
! - partial d/dz(phi rho w/my) + rho g w/my
! as with scalar equation, use uncoupled value (here phi) to find the
! coupled tendency (rho phi/my)
! here as usual rho -> ~'mu'
!
! w eqn [divided by my] is:
! partial d/dt(rho w/my) = -mx partial d/dx(w rho u/my)
! -mx partial d/dy(v rho v/mx)
! - partial d/dz(w rho w/my)
! +rho[(u*u+v*v)/a + 2 u omega cos(lat) -
! (1/rho) partial dp/dz - g + Fz]/my
! here as usual rho -> ~'mu'
!
! 'u,v,w' sent here must be coupled variables (= rho w/my etc.) by their usage
DO i=i_start, i_end
rhs(i,1) = 0.
ENDDO
j_loop_w: DO j = j_start, j_end
DO i=i_start, i_end
mut_inv(i) = 1./mut(i,j)
msft_inv(i) = 1./msfty(i,j)
ENDDO
DO k=1, k_end
DO i=i_start, i_end
t_2ave(i,k,j)=.5*((1.+epssm)*t_2(i,k,j) &
+(1.-epssm)*t_2ave(i,k,j))
t_2ave(i,k,j)=(t_2ave(i,k,j) + muave(i,j)*t0) &
/(muts(i,j)*(t0+t_1(i,k,j)))
wdwn(i,k+1)=.5*(ww(i,k+1,j)+ww(i,k,j))*rdnw(k) &
*(ph_1(i,k+1,j)-ph_1(i,k,j)+phb(i,k+1,j)-phb(i,k,j))
rhs(i,k+1) = dts*(ph_tend(i,k+1,j) + .5*g*(1.-epssm)*w(i,k+1,j))
ENDDO
ENDDO
! building up RHS of phi equation
! ph_tend contains terms 1 and 2; now adding 3 and 4 in stages:
! here rhs = delta t [ph_tend + ~g*w/2 - ~ww * partial d phi/dz]
DO k=2,k_end
DO i=i_start, i_end
rhs(i,k) = rhs(i,k)-dts*( fnm(k)*wdwn(i,k+1) &
+fnp(k)*wdwn(i,k ) )
ENDDO
ENDDO
! NOTE: phi'' is not coupled with the map-scale factor (1/m),
! but it's tendency is, so must multiply by msft here
! Comments on map scale factors:
! building up RHS of phi equation
! ph_tend contains terms 1 and 2; now adding 3 and 4 in stages:
! here rhs = ph_previous + (msft/mu)*[rhs_previous - ~ww * delta t *
! partial d phi/dz]
! = ph_previous + (msft*delta t/mu)*[ph_tend + ~g*w/2 - ~ww *
! partial d phi/dz]
DO k=2,k_end+1
DO i=i_start, i_end
rhs(i,k) = ph(i,k,j) + msfty(i,j)*rhs(i,k)*mut_inv(i)
if(top_lid .and. k.eq.k_end+1)rhs(i,k)=0.
ENDDO
ENDDO
! lower boundary condition on w
! Comments on map scale factors:
! Chain rule: if Z=Z(X,Y) [true at the surface] then
! dZ/dt = dZ/dX * dX/dt + dZ/dY * dY/dt, U=dX/dt, V=dY/dt
! using capitals to denote actual values
! In mapped values, u=U, v=V, z=Z, 1/dX=mx/dx, 1/dY=my/dy
! w = dz/dt = mx u dz/dx + my v dz/dy
! [where dz/dx is just the surface height change between x
! gridpoints, and dz/dy is the change between y gridpoints]
! [cf1, cf2 and cf3 do vertical weighting of u or v values nearest
! the surface]
! if so, shouldn't there be map scale factors below???
DO i=i_start, i_end
w(i,1,j)= &
.5*rdy*( &
(ht(i,j+1)-ht(i,j )) &
*(cf1*v(i,1,j+1)+cf2*v(i,2,j+1)+cf3*v(i,3,j+1)) &
+(ht(i,j )-ht(i,j-1)) &
*(cf1*v(i,1,j )+cf2*v(i,2,j )+cf3*v(i,3,j )) ) &
+.5*rdx*( &
(ht(i+1,j)-ht(i,j )) &
*(cf1*u(i+1,1,j)+cf2*u(i+1,2,j)+cf3*u(i+1,3,j)) &
+(ht(i,j )-ht(i-1,j)) &
*(cf1*u(i ,1,j)+cf2*u(i ,2,j)+cf3*u(i ,3,j)) )
ENDDO
!
! Jammed 3 doubly nested loops over k/i into 1 for slight improvement
! in efficiency. No change in results (bit-for-bit). JM 20040514
! (left a blank line where the other two k/i-loops were)
!
! above surface, begin by adding delta t * previous (coupled) w tendency
DO k=2,k_end
DO i=i_start, i_end
w(i,k,j)=w(i,k,j)+dts*rw_tend(i,k,j) &
+ msft_inv(i)*cqw(i,k,j)*( &
+.5*dts*g*mut_inv(i)*rdn(k)* &
(c2a(i,k ,j)*rdnw(k ) &
*((1.+epssm)*(rhs(i,k+1 )-rhs(i,k )) &
+(1.-epssm)*(ph(i,k+1,j)-ph(i,k ,j))) &
-c2a(i,k-1,j)*rdnw(k-1) &
*((1.+epssm)*(rhs(i,k )-rhs(i,k-1 )) &
+(1.-epssm)*(ph(i,k ,j)-ph(i,k-1,j))))) &
+dts*g*msft_inv(i)*(rdn(k)* &
(c2a(i,k ,j)*alt(i,k ,j)*t_2ave(i,k ,j) &
-c2a(i,k-1,j)*alt(i,k-1,j)*t_2ave(i,k-1,j)) &
- muave(i,j))
ENDDO
ENDDO
K=k_end+1
DO i=i_start, i_end
w(i,k,j)=w(i,k,j)+dts*rw_tend(i,k,j) &
+msft_inv(i)*( &
-.5*dts*g*mut_inv(i)*rdnw(k-1)**2*2.*c2a(i,k-1,j) &
*((1.+epssm)*(rhs(i,k )-rhs(i,k-1 )) &
+(1.-epssm)*(ph(i,k,j)-ph(i,k-1,j))) &
-dts*g*(2.*rdnw(k-1)* &
c2a(i,k-1,j)*alt(i,k-1,j)*t_2ave(i,k-1,j) &
+ muave(i,j)) )
if(top_lid)w(i,k,j) = 0.
ENDDO
DO k=2,k_end+1
DO i=i_start, i_end
w(i,k,j)=(w(i,k,j)-a(i,k,j)*w(i,k-1,j))*alpha(i,k,j)
ENDDO
ENDDO
DO k=k_end,2,-1
DO i=i_start, i_end
w (i,k,j)=w (i,k,j)-gamma(i,k,j)*w(i,k+1,j)
ENDDO
ENDDO
IF (config_flags%damp_opt .eq. 3) THEN
DO k=k_end+1,2,-1
DO i=i_start, i_end
htop=(ph_1(i,k_end+1,j)+phb(i,k_end+1,j))/g
hk=(ph_1(i,k,j)+phb(i,k,j))/g
hbot=htop-hdepth
dampwt(k) = 0.
if(hk .ge. hbot)then
dampwt(k) = dampmag*sin(0.5*pi*(hk-hbot)/hdepth)*sin(0.5*pi*(hk-hbot)/hdepth)
endif
w(i,k,j) = (w(i,k,j) - dampwt(k)*mut(i,j)*w_save(i,k,j))/(1.+dampwt(k))
ENDDO
ENDDO
ENDIF
DO k=k_end+1,2,-1
DO i=i_start, i_end
ph(i,k,j) = rhs(i,k)+msfty(i,j)*.5*dts*g*(1.+epssm) &
*w(i,k,j)/muts(i,j)
ENDDO
ENDDO
ENDDO j_loop_w
END SUBROUTINE advance_w
!---------------------------------------------------------------------
SUBROUTINE sumflux ( ru, rv, ww, &
u_lin, v_lin, ww_lin, &
muu, muv, &
ru_m, rv_m, ww_m, epssm, &
msfux, msfuy, msfvx, msfvx_inv, msfvy, &
iteration , number_of_small_timesteps, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE ! religion first
! declarations for the stuff coming in
INTEGER, INTENT(IN ) :: number_of_small_timesteps
INTEGER, INTENT(IN ) :: iteration
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde
INTEGER, INTENT(IN ) :: ims,ime, jms,jme, kms,kme
INTEGER, INTENT(IN ) :: its,ite, jts,jte, kts,kte
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN ) :: ru, &
rv, &
ww, &
u_lin, &
v_lin, &
ww_lin
REAL, DIMENSION(ims:ime, kms:kme, jms:jme) , INTENT(INOUT) :: ru_m, &
rv_m, &
ww_m
REAL, DIMENSION(ims:ime, jms:jme) , INTENT(IN ) :: muu, muv, &
msfux, msfuy, &
msfvx, msfvy, msfvx_inv
INTEGER :: mini, minj, mink
REAL, INTENT(IN ) :: epssm
INTEGER :: i,j,k
!
!
! update the small-timestep time-averaged mass fluxes; these
! are needed for consistent mass-conserving scalar advection.
!
!
IF (iteration == 1 )THEN
DO j = jts, jte
DO k = kts, kte
DO i = its, ite
ru_m(i,k,j) = 0.
rv_m(i,k,j) = 0.
ww_m(i,k,j) = 0.
ENDDO
ENDDO
ENDDO
ENDIF
mini = min(ide-1,ite)
minj = min(jde-1,jte)
mink = min(kde-1,kte)
DO j = jts, minj
DO k = kts, mink
DO i = its, mini
ru_m(i,k,j) = ru_m(i,k,j) + ru(i,k,j)
rv_m(i,k,j) = rv_m(i,k,j) + rv(i,k,j)
ww_m(i,k,j) = ww_m(i,k,j) + ww(i,k,j)
ENDDO
ENDDO
ENDDO
IF (ite .GT. mini) THEN
DO j = jts, minj
DO k = kts, mink
DO i = mini+1, ite
ru_m(i,k,j) = ru_m(i,k,j) + ru(i,k,j)
ENDDO
ENDDO
ENDDO
END IF
IF (jte .GT. minj) THEN
DO j = minj+1, jte
DO k = kts, mink
DO i = its, mini
rv_m(i,k,j) = rv_m(i,k,j) + rv(i,k,j)
ENDDO
ENDDO
ENDDO
END IF
IF ( kte .GT. mink) THEN
DO j = jts, minj
DO k = mink+1, kte
DO i = its, mini
ww_m(i,k,j) = ww_m(i,k,j) + ww(i,k,j)
ENDDO
ENDDO
ENDDO
END IF
IF (iteration == number_of_small_timesteps) THEN
DO j = jts, minj
DO k = kts, mink
DO i = its, mini
ru_m(i,k,j) = ru_m(i,k,j) / number_of_small_timesteps &
+ muu(i,j)*u_lin(i,k,j)/msfuy(i,j)
rv_m(i,k,j) = rv_m(i,k,j) / number_of_small_timesteps &
+ muv(i,j)*v_lin(i,k,j)*msfvx_inv(i,j)
ww_m(i,k,j) = ww_m(i,k,j) / number_of_small_timesteps &
+ ww_lin(i,k,j)
ENDDO
ENDDO
ENDDO
IF (ite .GT. mini) THEN
DO j = jts, minj
DO k = kts, mink
DO i = mini+1, ite
ru_m(i,k,j) = ru_m(i,k,j) / number_of_small_timesteps &
+ muu(i,j)*u_lin(i,k,j)/msfuy(i,j)
ENDDO
ENDDO
ENDDO
END IF
IF (jte .GT. minj) THEN
DO j = minj+1, jte
DO k = kts, mink
DO i = its, mini
rv_m(i,k,j) = rv_m(i,k,j) / number_of_small_timesteps &
+ muv(i,j)*v_lin(i,k,j)*msfvx_inv(i,j)
ENDDO
ENDDO
ENDDO
END IF
IF ( kte .GT. mink) THEN
DO j = jts, minj
DO k = mink+1, kte
DO i = its, mini
ww_m(i,k,j) = ww_m(i,k,j) / number_of_small_timesteps &
+ ww_lin(i,k,j)
ENDDO
ENDDO
ENDDO
END IF
ENDIF
END SUBROUTINE sumflux
!---------------------------------------------------------------------
SUBROUTINE init_module_small_step
END SUBROUTINE init_module_small_step
END MODULE module_small_step_em