##General options ##~~~~~~~~~~~~~~~ #Run with or without tracer transport ? tracer=.true. #Directory where external input files are: datadir=./data_physics/ #Diurnal cycle ? if diurnal=False, diurnal averaged solar heating diurnal=.true. #Seasonal cycle ? if season=False, Ls stays constant, to value set in "start" season = .true. #write some more output on the screen ? lwrite = .false. #Save statistics in file "stats.nc" ? callstats =.true. #Save EOF profiles in file "profiles" for Climate Database? calleofdump = .false. ## Dust scenario. Used if the dust is prescribed (i.e. if tracer=F or active=F) ## ~~~~~~~~~~~~~ # =1 Dust opt.deph read in startfi; =2 Viking scenario; =3 MGS scenario, # =4 Mars Year 24 from TES assimilation (old version of MY24; dust_tes.nc file) # =6 "cold" (low dust) scenario ; =7 "warm" (high dust) scenario # =8 "climatology" (our best guess of a typical Mars year) scenario # =24 Mars Year 24 ; =25 Mars Year 25 (year with a global dust storm) ; ... # =30 Mars Year 30 iaervar = 8 # Dust opacity at 610 Pa (when constant, i.e. for the iaervar=1 case) tauvis=0.1 # Dust vertical distribution: # (=0: old distrib. (Pollack90), =1: top set by "topdustref", # =2: Viking scenario; =3 MGS scenario) iddist = 3 # Dust top altitude (km). (Matters only if iddist=1) topdustref = 55. ## Physical Parameterizations : ## ~~~~~~~~~~~~~~~~~~~~~~~~~~ # call radiative transfer ? callrad = .true. # call NLTE radiative schemes ? matters only if callrad=T callnlte = .true. #callnlte = .false. # NLTE 15um scheme to use. # 0-> Old scheme, static oxygen # 1-> Old scheme, dynamic oxygen # 2-> New scheme nltemodel = 2 nltemodel = 0 # call CO2 NIR absorption ? matters only if callrad=T callnirco2 = .true. # NIR NLTE correction ? matters only if callnirco2=T nircorr=1 nircorr=0 # call turbulent vertical diffusion ? calldifv = .true. # call convective adjustment ? calladj = .true. # Thermals calltherm = .true. callrichsl = .true. # call CO2 condensation ? callcond =.true. # call thermal conduction in the soil ? callsoil = .true. # call Lott's gravity wave/subgrid topography scheme ? calllott = .true. # Impose polar cap surface albedos as observed by TES? TESicealbedo = .true. ## Coefficient for Northern cap albedoes TESice_Ncoef=1.6 ## Coefficient for Southern cap albedoes TESice_Scoef=1.6 ## Radiative transfer options : ## ~~~~~~~~~~~~~~~~~~~~~~~~~~ # the rad.transfer is computed every "iradia" physical timestep iradia = 1 # Output of the exchange coefficient mattrix ? for diagnostic only callg2d = .false. # Rayleigh scattering : (should be .false. for now) rayleigh = .false. ## Tracer (dust water, ice and/or chemical species) options (used if tracer=T): ## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # DUST: Transported dust ? (if >0, use 'dustbin' dust bins) dustbin = 2 # DUST: Radiatively active dust ? (matters if dustbin>0) active = .true. # DUST: use mass and number mixing ratios to predict dust size ? doubleq = .true. # DUST: lifted by GCM surface winds ? lifting = .true. # DUST: lifted by dust devils ? callddevil = .false. # DUST: Scavenging by H2O/CO2 snowfall ? scavenging = .true. # DUST/WATERICE: Gravitationnal sedimentation ? sedimentation = .true. # WATERICE: Radiatively active transported atmospheric water ice ? activice = .true. # WATER: Compute water cycle water = .true. # WATER: Microphysical scheme for water-ice clouds? microphys = .true. ## WATER: microphysics sub-timestep #imicro = 15 # WATER: parameter contact mteta = 0.95 # WATER: Effective variance for sedimentation for the log-normal # distribution of ice particles ? nuice_sed=0.1 # WATER: current permanent caps at both poles. True IS RECOMMENDED # (with .true., North cap is a source of water and South pole # is a cold trap) caps = .true. # WATER: Water ice albedo ? albedo_h2o_ice = 0.35 # WATER: Water ice thermal inertia inert_h2o_ice = 800 # WATER: Frost thickness threshold for albedo frost_albedo_threshold = 0.005 # PHOTOCHEMISTRY: include chemical species photochem = .true. photochem = .false. # SCATTERERS: set number of scatterers. must be compliant with preceding options. naerkind = 2 ## Thermospheric options (relevant if tracer=T) : ##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # call thermosphere ? callthermos = .true. callthermos = .false. # WATER: included without cycle (only if water=.false.) thermoswater = .false. # call thermal conduction ? (only if callthermos=.true.) callconduct = .true. callconduct = .false. # call molecular viscosity ? (only if callthermos=.true.) callmolvis = .true. callmolvis = .false. # call molecular diffusion ? (only if callthermos=.true.) callmoldiff = .true. callmoldiff = .false. # call thermospheric photochemistry ? (only if callthermos=.true.) thermochem = .true. thermochem = .false. # call EUV heating ? (only if callthermos=.true.) calleuv=.true. calleuv=.false. #Method to include solar variability? #0-> Fixed EUV input 1-> Variability with E10.7 as observed solvarmod=1 # fixed E10.7 value (for solvarmod=0) # (min=80 , ave=140, max=320) fixed_euv_value=140 #Solar variability as observed for MY? (must be between MY23 and MY32) # (only matters if solvarmod=1) solvaryear=34 # value for the UV heating efficiency ##(experimental values between 0.19 and 0.23, lower values may ## be used to compensate for low 15 um cooling) euveff = 0.21