module sfluxi_mod implicit none contains SUBROUTINE SFLUXI(PLEV,TLEV,DTAUI,TAUCUMI,UBARI,RSFI,WNOI,DWNI, * COSBI,WBARI,NFLUXTOPI,NFLUXTOPI_nu, * FMNETI,fmneti_nu,fluxupi,fluxdni,fluxupi_nu, * FZEROI,TAUGSURF) use radinc_h, only: NTfac, NTstart, L_LEVELS, L_NSPECTI, L_NGAUSS use radinc_h, only: L_NLAYRAD, L_NLEVRAD use radcommon_h, only: planckir, tlimit,sigma, gweight use comcstfi_mod, only: pi use gfluxi_mod, only: gfluxi implicit none integer NLEVRAD, L, NW, NG, NTS, NTT real*8 TLEV(L_LEVELS), PLEV(L_LEVELS) real*8 TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) real*8 FMNETI(L_NLAYRAD) real*8 FMNETI_NU(L_NLAYRAD,L_NSPECTI) real*8 WNOI(L_NSPECTI), DWNI(L_NSPECTI) real*8 DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) real*8 FMUPI(L_NLEVRAD), FMDI(L_NLEVRAD) real*8 COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) real*8 WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) real*8 NFLUXTOPI real*8 NFLUXTOPI_nu(L_NSPECTI) real*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) real*8 FTOPUP real*8 UBARI, RSFI, TSURF, BSURF, TTOP, BTOP, TAUTOP real*8 PLANCK, PLTOP real*8 fluxupi(L_NLAYRAD), fluxdni(L_NLAYRAD) real*8 FZEROI(L_NSPECTI) real*8 taugsurf(L_NSPECTI,L_NGAUSS-1), fzero real*8 fup_tmp(L_NSPECTI),fdn_tmp(L_NSPECTI) real*8 PLANCKSUM,PLANCKREF ! AB : variables for interpolation REAL*8 C1 REAL*8 C2 REAL*8 P1 !======================================================================C NLEVRAD = L_NLEVRAD ! ZERO THE NET FLUXES NFLUXTOPI = 0.0D0 DO NW=1,L_NSPECTI NFLUXTOPI_nu(NW) = 0.0D0 DO L=1,L_NLAYRAD FLUXUPI_nu(L,NW) = 0.0D0 FMNETI_nu(L,NW) = 0.0 fup_tmp(nw)=0.0D0 fdn_tmp(nw)=0.0D0 END DO END DO DO L=1,L_NLAYRAD FMNETI(L) = 0.0D0 FLUXUPI(L) = 0.0D0 FLUXDNI(L) = 0.0D0 END DO ! WE NOW ENTER A MAJOR LOOP OVER SPECTRAL INTERVALS IN THE INFRARED ! TO CALCULATE THE NET FLUX IN EACH SPECTRAL INTERVAL TTOP = TLEV(2) ! JL12 why not (1) ??? TSURF = TLEV(L_LEVELS) NTS = int(TSURF*NTfac)-NTstart+1 NTT = int(TTOP *NTfac)-NTstart+1 !JL12 corrects the surface planck function so that its integral is equal to sigma Tsurf^4 !JL12 this ensure that no flux is lost due to: !JL12 -truncation of the planck function at high/low wavenumber !JL12 -numerical error during first spectral integration !JL12 -discrepancy between Tsurf and NTS/NTfac PLANCKSUM = 0.d0 PLANCKREF = TSURF * TSURF PLANCKREF = sigma * PLANCKREF * PLANCKREF DO NW=1,L_NSPECTI ! AB : PLANCKIR(NW,NTS) is replaced by P1, the linear interpolation result for a temperature TSURF C1 = TSURF * NTfac - int(TSURF * NTfac) P1 = (1.0D0 - C1) * PLANCKIR(NW,NTS) + C1 * PLANCKIR(NW,NTS+1) PLANCKSUM = PLANCKSUM + P1 * DWNI(NW) ENDDO PLANCKSUM = PLANCKREF / (PLANCKSUM * Pi) !JL12 DO 501 NW=1,L_NSPECTI ! SURFACE EMISSIONS - INDEPENDENT OF GAUSS POINTS ! AB : PLANCKIR(NW,NTS) is replaced by P1, the linear interpolation result for a temperature TSURF ! AB : idem for PLANCKIR(NW,NTT) and PLTOP C1 = TSURF * NTfac - int(TSURF * NTfac) C2 = TTOP * NTfac - int(TTOP * NTfac) P1 = (1.0D0 - C1) * PLANCKIR(NW,NTS) + C1 * PLANCKIR(NW,NTS+1) BSURF = (1. - RSFI) * P1 * PLANCKSUM PLTOP = (1.0D0 - C2) * PLANCKIR(NW,NTT) + C2*PLANCKIR(NW,NTT+1) ! If FZEROI(NW) = 1, then the k-coefficients are zero - skip to the ! special Gauss point at the end. FZERO = FZEROI(NW) IF(FZERO.ge.0.99) goto 40 DO NG=1,L_NGAUSS-1 if(TAUGSURF(NW,NG).lt. TLIMIT) then fzero = fzero + (1.0D0-FZEROI(NW))*GWEIGHT(NG) goto 30 end if ! SET UP THE UPPER AND LOWER BOUNDARY CONDITIONS ON THE IR ! CALCULATE THE DOWNWELLING RADIATION AT THE TOP OF THE MODEL ! OR THE TOP LAYER WILL COOL TO SPACE UNPHYSICALLY ! TAUTOP = DTAUI(1,NW,NG)*PLEV(2)/(PLEV(4)-PLEV(2)) TAUTOP = TAUCUMI(2,NW,NG) BTOP = (1.0D0-EXP(-TAUTOP/UBARI))*PLTOP ! WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM ! CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS ! WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER CALL GFLUXI(NLEVRAD,TLEV,NW,DWNI(NW),DTAUI(1,NW,NG), * TAUCUMI(1,NW,NG), * WBARI(1,NW,NG),COSBI(1,NW,NG),UBARI,RSFI,BTOP, * BSURF,FTOPUP,FMUPI,FMDI) ! NOW CALCULATE THE CUMULATIVE IR NET FLUX NFLUXTOPI = NFLUXTOPI+FTOPUP*DWNI(NW)*GWEIGHT(NG) * * (1.0D0-FZEROI(NW)) ! and same thing by spectral band... (RDW) NFLUXTOPI_nu(NW) = NFLUXTOPI_nu(NW) + FTOPUP * DWNI(NW) * * GWEIGHT(NG) * (1.0D0-FZEROI(NW)) DO L=1,L_NLEVRAD-1 ! CORRECT FOR THE WAVENUMBER INTERVALS FMNETI(L) = FMNETI(L) + (FMUPI(L)-FMDI(L)) * DWNI(NW) * * GWEIGHT(NG)*(1.0D0-FZEROI(NW)) FMNETI_NU(L,NW) = FMNETI_NU(L,NW) + (FMUPI(L)-FMDI(L)) * * DWNI(NW) * GWEIGHT(NG)*(1.0D0-FZEROI(NW)) FLUXUPI(L) = FLUXUPI(L) + FMUPI(L)*DWNI(NW)*GWEIGHT(NG) * * (1.0D0-FZEROI(NW)) FLUXDNI(L) = FLUXDNI(L) + FMDI(L)*DWNI(NW)*GWEIGHT(NG) * * (1.0D0-FZEROI(NW)) ! and same thing by spectral band... (RW) FLUXUPI_nu(L,NW) = FLUXUPI_nu(L,NW) + FMUPI(L)*DWNI(NW) * * GWEIGHT(NG) * (1.0D0 - FZEROI(NW)) END DO 30 CONTINUE END DO !End NGAUSS LOOP 40 CONTINUE ! SPECIAL 17th Gauss point NG = L_NGAUSS ! TAUTOP = DTAUI(1,NW,NG)*PLEV(2)/(PLEV(4)-PLEV(2)) TAUTOP = TAUCUMI(2,NW,NG) BTOP = (1.0D0-EXP(-TAUTOP/UBARI))*PLTOP ! WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM ! CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS ! WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER CALL GFLUXI(NLEVRAD,TLEV,NW,DWNI(NW),DTAUI(1,NW,NG), * TAUCUMI(1,NW,NG), * WBARI(1,NW,NG),COSBI(1,NW,NG),UBARI,RSFI,BTOP, * BSURF,FTOPUP,FMUPI,FMDI) ! NOW CALCULATE THE CUMULATIVE IR NET FLUX NFLUXTOPI = NFLUXTOPI+FTOPUP*DWNI(NW)*FZERO ! and same thing by spectral band... (RW) NFLUXTOPI_nu(NW) = NFLUXTOPI_nu(NW) * +FTOPUP*DWNI(NW)*FZERO DO L=1,L_NLEVRAD-1 ! CORRECT FOR THE WAVENUMBER INTERVALS FMNETI(L) = FMNETI(L)+(FMUPI(L)-FMDI(L))*DWNI(NW)*FZERO FMNETI_nu(L,NW) = FMNETI_nu(L,NW)+(FMUPI(L)-FMDI(L)) * *DWNI(NW)*FZERO FLUXUPI(L) = FLUXUPI(L) + FMUPI(L)*DWNI(NW)*FZERO FLUXDNI(L) = FLUXDNI(L) + FMDI(L)*DWNI(NW)*FZERO ! and same thing by spectral band... (RW) FLUXUPI_nu(L,NW) = FLUXUPI_nu(L,NW) * + FMUPI(L) * DWNI(NW) * FZERO END DO 501 CONTINUE !End Spectral Interval LOOP ! *** END OF MAJOR SPECTRAL INTERVAL LOOP IN THE INFRARED**** END SUBROUTINE SFLUXI end module sfluxi_mod