subroutine moldiff_red(ngrid,nlayer,nq,pplay,pplev,pt,pdt,pq,pdq,& ptimestep,zzlay,pdtconduc,pdqdiff) use comgeomfi_h use diffusion_h use comcstfi_mod, only: rad, g use tracer_h, only: noms, mmol implicit none #include "dimensions.h" ! ! Input/Output ! integer,intent(in) :: ngrid ! number of atmospheric columns integer,intent(in) :: nlayer ! number of atmospheric layers integer,intent(in) :: nq ! number of advected tracers real ptimestep real pplay(ngrid,nlayer) real zzlay(ngrid,nlayer) real pplev(ngrid,nlayer+1) real pq(ngrid,nlayer,nq) real pdq(ngrid,nlayer,nq) real pt(ngrid,nlayer) real pdt(ngrid,nlayer) real pdtconduc(ngrid,nlayer) ! tendence conduction real pdqdiff(ngrid,nlayer,nq) ! tendence diffusion ! ! Local ! integer,dimension(nq) :: indic_diff integer ig,iq,nz,l,k,n,nn,p,ij0 integer istep,il,gcn,ntime,nlraf real*8 masse real*8 masseU,kBolt,RgazP,Rplut,Grav,Mplut real*8 rho0,D0,T0,H0,time0,dZ,time,dZraf,tdiff,Zmin,Zmax real*8 FacEsc,invsgmu,PhiEscH,PhiEscH2 real*8 hp(nlayer) real*8 pp(nlayer) real*8 pint(nlayer) real*8 tt(nlayer),tnew(nlayer),tint(nlayer) real*8 zz(nlayer) real*8,dimension(:,:),allocatable,save :: qq,qnew,qint,FacMass real*8,dimension(:,:),allocatable,save :: rhoK,rhokinit real*8 rhoT(nlayer) real*8 dmmeandz(nlayer) real*8 massemoy(nlayer) real*8,dimension(:),allocatable :: Praf,Traf,Rraf,Mraf,Nraf,Draf,Hraf,Wraf real*8,dimension(:),allocatable :: Zraf,Tdiffraf real*8,dimension(:),allocatable :: Prafold,Mrafold real*8,dimension(:,:),allocatable :: Qraf,Rrafk,Nrafk real*8,dimension(:,:),allocatable :: Rrafkold real*8,dimension(:,:),allocatable :: Drafmol,Hrafmol,Wrafmol,Tdiffrafmol real*8,dimension(:),allocatable :: Atri,Btri,Ctri,Dtri,Xtri,Tad,Dad,Zad,rhoad real*8,dimension(:),allocatable :: alpha,beta,gama,delta,eps real*8,dimension(:),allocatable,save :: wi,Wad,Uthermal,Lambdaexo,Hspecie real*8,dimension(:),allocatable,save :: Mtot1,Mtot2,Mraf1,Mraf2 character(len=20),dimension(3) :: ListeDiff !TB16 : size changed (only ch4) !ccccccccccccccccccccccccccccccccccccccccccccccccccccccc ! tracer numbering in the molecular diffusion !ccccccccccccccccccccccccccccccccccccccccccccccccccccccc ! We need the index of escaping species integer,save :: i_ch4 ! vertical index limit for the molecular diffusion integer,save :: il0 ! Tracer indexes in the GCM: ! integer,save :: g_co=0 ! integer,save :: g_o=0 integer,save :: ncompdiff ! TB16 number of diffused species integer,dimension(:),allocatable,save :: gcmind ! array of GCM indexes integer ierr,compteur logical,save :: firstcall=.true. ! real abfac(ncompdiff) real,dimension(:,:),allocatable,save :: dij real,save :: step ! Initializations at first call if (firstcall) then ! Liste des especes qui sont diffuses si elles sont presentes ! ListeDiff=['co2','o','n2','ar','co','h2','h','d2','d','hd','o2','oh','ho2','h2o_vap','h2o2','o1d','n','no','no2'] !ListeDiff(1)='co2' !ListeDiff(2)='o' !ListeDiff(3)='n2' !ListeDiff(4)='ar' !ListeDiff(5)='co' !ListeDiff(6)='h2' !ListeDiff(7)='h' !ListeDiff(8)='d2' !ListeDiff(9)='hd' !ListeDiff(10)='d' !ListeDiff(11)='o2' !ListeDiff(12)='h2o_vap' !ListeDiff(13)='o3' !ListeDiff(14)='n' ListeDiff(1)='n2' ListeDiff(2)='ch4_gas' ListeDiff(3)='co_gas' ! i_h=1000 ! i_h2=1000 ! On regarde quelles especes diffusables sont presentes ncompdiff=0 indic_diff(1:nq)=0 pdqdiff(1:ngrid,1:nlayer,1:nq)=0 do nn=1,nq do n=1,3 ! TB14 change size : old = 14 if (ListeDiff(n) .eq. noms(nn)) then indic_diff(nn)=1 endif enddo if (indic_diff(nn) .eq. 1) then print*,'specie ', noms(nn), 'diffused in moldiff_red' ncompdiff=ncompdiff+1 endif enddo print*,'number of diffused species:',ncompdiff allocate(gcmind(ncompdiff)) ! Store gcm indexes in gcmind n=0 do nn=1,nq if (indic_diff(nn) .eq. 1) then n=n+1 gcmind(n)=nn ! if (noms(nn) .eq. 'h') i_h=n ! if (noms(nn) .eq. 'h2') i_h2=n endif enddo print*,'gcmind=',gcmind ! find vertical index above which diffusion is computed ! TB16 : changer Pdiff dans diffusion.h. Mettre val plus faible ? ! print*,'TB16: pplay',pplay(1,:) do l=1,nlayer if (pplay(1,l) .gt. Pdiff) then il0=l endif enddo il0=il0+1 print*,'vertical index for diffusion',il0,pplay(1,il0) allocate(dij(ncompdiff,ncompdiff)) call moldiffcoeff_red(nq,dij,gcmind,ncompdiff) print*,'MOLDIFF EXO coefficient obtained' ! allocatation des tableaux dependants du nombre d especes diffusees allocate(qq(nlayer,ncompdiff)) allocate(qnew(nlayer,ncompdiff)) allocate(qint(nlayer,ncompdiff)) allocate(FacMass(nlayer,ncompdiff)) allocate(rhok(nlayer,ncompdiff)) allocate(rhokinit(nlayer,ncompdiff)) allocate(wi(ncompdiff)) allocate(wad(ncompdiff)) allocate(uthermal(ncompdiff)) allocate(lambdaexo(ncompdiff)) allocate(Hspecie(ncompdiff)) allocate(Mtot1(ncompdiff)) allocate(Mtot2(ncompdiff)) allocate(Mraf1(ncompdiff)) allocate(Mraf2(ncompdiff)) firstcall= .false. step=1 endif ! of if (firstcall) ! !ccccccccccccccccccccccccccccccccccccccccccccccccccccccc masseU=1.660538782d-27 kbolt=1.3806504d-23 RgazP=8.314472 ! PI =3.141592653 ! Rmars=3390000d0 ! Used to compute escape parameter no need to be more accurate Rplut=rad ! used from module comcstfi.h Grav=6.67d-11 ! Mmars=6.4d23 Mplut=1.303d22 ij0=6000 ! For test invsgmu=1d0/g/masseU ! Compute the wup(ig) for H and H2 using the balistic code from R Yelle ! PhiEscH=0D0 ! PhiEscH2=0D0 do ig=1,ngrid pp=dble(pplay(ig,:)) ! Update the temperature ! CALL TMNEW(pt(ig,:),pdt(ig,:),pdtconduc(ig,:)) & ! & ,tt,ptimestep,nlayer,ig) do l=1,nlayer tt(l)=pt(ig,l)*1D0+(pdt(ig,l)*dble(ptimestep)+ & pdtconduc(ig,l)*dble(ptimestep)) ! to cach Nans... if (tt(l).ne.tt(l)) then print*,'TB16 Err TMNEW',ig,l,tt(l),pt(ig,l), & pdt(ig,l),pdtconduc(ig,l),dble(ptimestep) endif enddo ! of do l=1,nlayer ! Update the mass mixing ratios modified by other processes ! CALL QMNEW(pq(ig,:,:),pdq(ig,:,:),qq,ptimestep,nlayer, & ! & ncompdiff,gcmind,ig) do iq=1,ncompdiff do l=1,nlayer qq(l,iq)=pq(ig,l,gcmind(iq))*1D0+( & pdq(ig,l,gcmind(iq))*dble(ptimestep)) qq(l,iq)=max(qq(l,iq),1d-30) enddo ! of do l=1,nlayer enddo ! of do iq=1,ncompdiff ! Compute the Pressure scale height CALL HSCALE(pp,hp,nlayer) ! Compute the atmospheric mass (in Dalton) CALL MMOY(massemoy,mmol,qq,gcmind,nlayer,ncompdiff) ! Compute the vertical gradient of atmospheric mass CALL DMMOY(massemoy,hp,dmmeandz,nlayer) ! Compute the altitude of each layer CALL ZVERT(pp,tt,massemoy,zz,nlayer,ig) ! Compute the total mass density (kg/m3) CALL RHOTOT(pp,tt,massemoy,qq,RHOT,RHOK,nlayer,ncompdiff) RHOKINIT=RHOK ! Compute total mass of each specie before new grid ! For conservation tests ! The conservation is not always fulfilled especially ! for species very far from diffusion equilibrium "photochemical species" ! e.g. OH, O(1D) Mtot1(1:ncompdiff)=0d0 do l=il0,nlayer do nn=1,ncompdiff Mtot1(nn)=Mtot1(nn)+1d0/g*qq(l,nn)* & & (dble(pplev(ig,l))-dble(pplev(ig,l+1))) enddo enddo Zmin=zz(il0) Zmax=zz(nlayer) ! If Zmax > 4000 km there is a problem / stop if (Zmax .gt. 4000000.) then Print*,'TB16 Zmax too high',ig,zmax,zmin do l=1,nlayer print*,'old',zz(l),pt(ig,l),pdq(ig,l,:) print*,'l',l,rhot(l),tt(l),pp(l),massemoy(l),qq(l,:) enddo stop endif ! The number of diffusion layers is variable ! and fixed by the resolution (dzres) specified in diffusion.h ! I fix a minimum number of layers 40 nlraf=int((Zmax-Zmin)/1000./dzres)+1 if (nlraf .le. 40) nlraf=40 ! if (nlraf .ge. 200) print*,ig,nlraf,Zmin,Zmax ! allocate arrays: allocate(Praf(nlraf),Traf(nlraf),Rraf(nlraf),Mraf(nlraf)) allocate(Nraf(nlraf),Draf(nlraf),Hraf(nlraf),Wraf(nlraf)) allocate(Zraf(nlraf),Tdiffraf(nlraf)) allocate(Prafold(nlraf),Mrafold(nlraf)) allocate(Qraf(nlraf,ncompdiff),Rrafk(nlraf,ncompdiff),Nrafk(nlraf,ncompdiff)) allocate(Rrafkold(nlraf,ncompdiff)) allocate(Drafmol(nlraf,ncompdiff),Hrafmol(nlraf,ncompdiff)) allocate(Wrafmol(nlraf,ncompdiff),Tdiffrafmol(nlraf,ncompdiff)) allocate(Atri(nlraf),Btri(nlraf),Ctri(nlraf),Dtri(nlraf),Xtri(nlraf)) allocate(Tad(nlraf),Dad(nlraf),Zad(nlraf),rhoad(nlraf)) allocate(alpha(nlraf),beta(nlraf),gama(nlraf),delta(nlraf),eps(nlraf)) ! before beginning, I use a better vertical resolution above il0, ! altitude grid reinterpolation ! The diffusion is solved on an altitude grid with constant step dz CALL UPPER_RESOL(pp,tt,zz,massemoy,RHOT,RHOK, & & qq,mmol,gcmind,Praf,Traf,Qraf,Mraf,Zraf, & & Nraf,Nrafk,Rraf,Rrafk,il0,nlraf,ncompdiff,nlayer,ig) Prafold=Praf Rrafkold=Rrafk Mrafold=Mraf ! We reddo interpolation of the gcm grid to estimate mass loss due to interpolation processes. CALL GCMGRID_P(Zraf,Praf,Qraf,Traf,Nrafk,Rrafk,qq,qint,tt,tint & & ,pp,mmol,gcmind,nlraf,ncompdiff,nlayer,ig) ! We compute the mass correction factor of each specie at each pressure level CALL CORRMASS(qq,qint,FacMass,nlayer,ncompdiff) ! Altitude step Dzraf=Zraf(2)-Zraf(1) ! Total mass computed on the altitude grid Mraf1(1:ncompdiff)=0d0 do nn=1,ncompdiff do l=1,nlraf Mraf1(nn)=Mraf1(nn)+Rrafk(l,nn)*Dzraf enddo enddo ! Reupdate values for mass conservation ! do l=1,nlraf ! print*,'test',l,Nraf(l),Praf(l) ! do nn=1,ncompdiff ! Rrafk(l,nn)=RrafK(l,nn)*Mtot1(nn)/Mraf1(nn) ! enddo ! Rraf(l)=sum(Rrafk(l,:)) ! do nn=1,ncompdiff ! Qraf(l,nn)=Rrafk(l,nn)/Rraf(l) ! Nrafk(l,nn)=Rrafk(l,nn)/dble(mmol(gcmind(nn)))/masseU ! enddo ! Mraf(l)=1d0/sum(Qraf(l,:)/dble(mmol(gcmind(:)))) ! Nraf(l)=Rraf(l)/Mraf(l)/masseU ! Praf(l)=kbolt*Traf(l)*Nraf(l) ! print*,'test',l,Nraf(l),Praf(l) ! enddo ! do l=1,nlayer ! print*,'l',l,zz(l),pp(l),tt(l),sum(qq(l,:)),massemoy(l) ! enddo ! The diffusion is computed above il0 computed from Pdiff in diffusion.h ! No change below il0 do l=1,nlayer qnew(l,:)=qq(l,:) ! No effet below il0 enddo ! all species treated independently ! Upper boundary velocity ! Jeans escape for H and H2 ! Comparison with and without escape still to be done ! No escape for other species do nn=1,ncompdiff Uthermal(nn)=sqrt(2d0*kbolt*Traf(nlraf)/masseU/ & & dble(mmol(gcmind(nn)))) Lambdaexo(nn)=masseU*dble(mmol(gcmind(nn)))*Grav*Mplut/ & & (Rplut+Zraf(nlraf))/kbolt/Traf(nlraf) wi(nn)=0D0 ! if (nn .eq. i_h .or. nn .eq. i_h2) then ! wi(nn)=Uthermal(nn)/2d0/sqrt(PI)*exp(-Lambdaexo(nn))* & ! & (Lambdaexo(nn)+1d0) ! endif enddo ! print*,'wi',wi(i_h),wi(i_h2),Uthermal,Lambdaexo,mmol(gcmind(:)) ! print*,'wi',wi ! stop ! Compute time step for diffusion ! Loop on species T0=Traf(nlraf) rho0=1d0 do nn=1,ncompdiff masse=dble(mmol(gcmind(nn))) ! DIffusion coefficient CALL DCOEFF(nn,dij,Praf,Traf,Nraf,Nrafk,Draf,nlraf,ncompdiff) Drafmol(:,nn)=Draf(:) ! Scale height of the density of the specie CALL HSCALEREAL(nn,Nrafk,Dzraf,Hraf,nlraf,ncompdiff) Hrafmol(:,nn)=Hraf(:) ! Hspecie(nn)=kbolt*T0/masse*invsgmu ! Computation of the diffusion vertical velocity of the specie CALL VELVERT(nn,Traf,Hraf,Draf,Dzraf,masse,Wraf,nlraf) Wrafmol(:,nn)=Wraf(:) ! Computation of the diffusion time CALL TIMEDIFF(nn,Hraf,Wraf,Tdiffraf,nlraf) Tdiffrafmol(:,nn)=Tdiffraf enddo ! We use a lower time step Tdiff=minval(Tdiffrafmol) Tdiff=minval(Tdiffrafmol(nlraf,:))*Mraf(nlraf) ! Some problems when H is dominant ! The time step is chosen function of atmospheric mass at higher level ! It is not very nice ! if (ig .eq. ij0) then ! print*,'test',ig,tdiff,tdiffmin,minloc(Tdiffrafmol),minloc(Tdiffrafmol(nlraf,:)) ! endif if (tdiff .lt. tdiffmin*Mraf(nlraf)) tdiff=tdiffmin*Mraf(nlraf) ! Number of time step ntime=anint(dble(ptimestep)/tdiff) ! print*,'ptime',ig,ptimestep,tdiff,ntime,tdiffmin,Mraf(nlraf) ! Adimensionned temperature do l=1,nlraf Tad(l)=Traf(l)/T0 enddo do istep=1,ntime do nn=1,ncompdiff Draf(1:nlraf)=Drafmol(1:nlraf,nn) ! Parameters to adimension the problem H0=kbolt*T0/dble(mmol(gcmind(nn)))*invsgmu D0=Draf(nlraf) Time0=H0*H0/D0 Time=Tdiff/Time0 ! Adimensions do l=1,nlraf Dad(l)=Draf(l)/D0 Zad(l)=Zraf(l)/H0 enddo Wad(nn)=wi(nn)*Time0/H0 DZ=Zad(2)-Zad(1) FacEsc=exp(-wad(nn)*DZ/Dad(nlraf-1)) do l=1,nlraf RhoAd(l)=Rrafk(l,nn)/rho0 enddo ! Compute intermediary coefficients CALL DIFFPARAM(Tad,Dad,DZ,alpha,beta,gama,delta,eps,nlraf) ! First way to include escape need to be validated ! Compute escape factor (exp(-ueff*dz/D(nz))) ! Compute matrix coefficients CALL MATCOEFF(alpha,beta,gama,delta,eps,Dad,rhoAd,FacEsc, & & dz,time,Atri,Btri,Ctri,Dtri,nlraf) Xtri(:)=0D0 ! SOLVE SYSTEM CALL tridag(Atri,Btri,Ctri,Dtri,Xtri,nlraf) ! Xtri=rhoAd ! if (ig .eq. ij0 .and. (nn .eq. 1 .or. nn .eq. 5 .or. nn .eq. 6 .or. nn .eq. 16)) then ! do l=1,nlraf ! if (Xtri(l) .lt. 0.) then ! print*,'l',l,rhoAd(l)*rho0,Xtri(l)*rho0,nn,Tad(l),Zad(l),Dad(l) ! stop ! endif ! enddo ! endif ! Check mass conservation of speci ! CALL CheckMass(rhoAd,Xtri,nlraf,nn) ! Update mass density of the species do l=1,nlraf Rrafk(l,nn)=rho0*Xtri(l) if (Rrafk(l,nn) .ne. Rrafk(l,nn) .or. & & Rrafk(l,nn) .lt. 0 .and. nn .eq. 16) then ! Test if n(CO2) < 0 skip diffusion (should never happen) print*,'TB16 pb moldiff',istep,ig,l,nn,Rrafk(l,nn),tdiff,& & rho0*Rhoad(l),Zmin,Zmax,ntime print*,'Atri',Atri print*,'Btri',Btri print*,'Ctri',Ctri print*,'Dtri',Dtri print*,'Xtri',Xtri print*,'alpha',alpha print*,'beta',beta print*,'gama',gama print*,'delta',delta print*,'eps',eps print*,'Dad',Dad print*,'Temp',Traf print*,'alt',Zraf print*,'Mraf',Mraf stop ! pdqdiff(1:ngrid,1:nlayer,1:nq)=0. ! return ! Rrafk(l,nn)=1D-30*Rraf(l) Rrafk(l,nn)=rho0*Rhoad(l) endif enddo enddo ! END Species Loop ! Update total mass density do l=1,nlraf Rraf(l)=sum(Rrafk(l,:)) enddo ! Compute new mass average at each altitude level and new pressure do l=1,nlraf do nn=1,ncompdiff Qraf(l,nn)=Rrafk(l,nn)/Rraf(l) Nrafk(l,nn)=Rrafk(l,nn)/dble(mmol(gcmind(nn)))/masseU enddo Mraf(l)=1d0/sum(Qraf(l,:)/dble(mmol(gcmind(:)))) Nraf(l)=Rraf(l)/Mraf(l)/masseU Praf(l)=Nraf(l)*kbolt*Traf(l) enddo enddo ! END time Loop ! Compute the total mass of each species to check mass conservation Mraf2(1:ncompdiff)=0d0 do nn=1,ncompdiff do l=1,nlraf Mraf2(nn)=Mraf2(nn)+Rrafk(l,nn)*Dzraf enddo enddo ! print*,'Mraf',Mraf2 ! Reinterpolate values on the GCM pressure levels CALL GCMGRID_P2(Zraf,Praf,Qraf,Traf,Nrafk,Rrafk,qq,qnew,tt,tnew,& & pp,mmol,gcmind,nlraf,ncompdiff,nlayer,FacMass,ig) CALL RHOTOT(pp,tt,massemoy,qnew,RHOT,RHOK,nlayer,ncompdiff) ! Update total escape flux of H and H2 (if q was really qnew, but not forget we will output ! the trend only at the end ! PhiEscH=PhiEscH+wi(i_h)*Nrafk(nlraf,i_h)*area(ig) ! in s-1 ! PhiEscH2=PhiEscH2+wi(i_h2)*Nrafk(nlraf,i_h2)*area(ig) ! in s-1 (U in m/s, aire in m2, Nrafk in m-3) ! print*,'test',ig,wi(i_h),Nrafk(nlraf,i_h),wi(i_h2),Nrafk(nlraf,i_h2),area(ig),PhiEscH,PhiEscH2,i_h,i_h2 ! stop if (ig .eq. ij0) then do l=il0,nlayer write(*,'(i2,1x,19(e12.4,1x))') l,zz(l),tt(l),RHOK(l,1)/sum(RHOK(l,:)),RHOKINIT(l,1)/sum(RHOKINIT(l,:)),& & RHOK(l,2)/sum(RHOK(l,:)),RHOKINIT(l,2)/sum(RHOKINIT(l,:)),& & RHOK(l,6)/sum(RHOK(l,:)),RHOKINIT(l,6)/sum(RHOKINIT(l,:)),& & RHOK(l,5)/sum(RHOK(l,:)),RHOKINIT(l,5)/sum(RHOKINIT(l,:)),& & RHOK(l,7)/sum(RHOK(l,:)),RHOKINIT(l,7)/sum(RHOKINIT(l,:)) enddo endif ! Compute total mass of each specie on the GCM vertical grid Mtot2(1:ncompdiff)=0d0 do l=il0,nlayer do nn=1,ncompdiff Mtot2(nn)=Mtot2(nn)+1d0/g*qnew(l,nn)* & & (dble(pplev(ig,l))-dble(pplev(ig,l+1))) enddo enddo ! Check mass conservation of each specie on column ! do nn=1,ncompdiff ! CALL CheckMass2(qq,qnew,pplev(ig,:),il0,nlayer,nn,ncompdiff) ! enddo ! Compute the diffusion trends du to diffusion do l=1,nlayer do nn=1,ncompdiff pdqdiff(ig,l,gcmind(nn))=(qnew(l,nn)-qq(l,nn))/ptimestep enddo enddo ! deallocation des tableaux deallocate(Praf,Traf,Rraf,Mraf) deallocate(Nraf,Draf,Hraf,Wraf) deallocate(Zraf,Tdiffraf) deallocate(Prafold,Mrafold) deallocate(Qraf,Rrafk,Nrafk) deallocate(Rrafkold) deallocate(Drafmol,Hrafmol) deallocate(Wrafmol,Tdiffrafmol) deallocate(Atri,Btri,Ctri,Dtri,Xtri) deallocate(Tad,Dad,Zad,rhoad) deallocate(alpha,beta,gama,delta,eps) enddo ! ig loop ! print*,'Escape flux H, H2 (s-1)',PhiEscH,PhiEscH2 return end ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** ! JYC subtroutine solving MX = Y where M is defined as a block tridiagonal ! matrix (Thomas algorithm), tested on a example subroutine tridagbloc(M,F,X,n1,n2) parameter (nmax=100) real*8 M(n1*n2,n1*n2),F(n1*n2),X(n1*n2) real*8 A(n1,n1,n2),B(n1,n1,n2),C(n1,n1,n2),D(n1,n2) real*8 at(n1,n1),bt(n1,n1),ct(n1,n1),dt(n1),gamt(n1,n1),y(n1,n1) real*8 alf(n1,n1),gam(n1,n1,n2),alfinv(n1,n1) real*8 uvec(n1,n2),uvect(n1),vvect(n1),xt(n1) real*8 indx(n1) real*8 rhu integer n1,n2 integer i,p,q X(:)=0. ! Define the bloc matrix A,B,C and the vector D A(1:n1,1:n1,1)=M(1:n1,1:n1) C(1:n1,1:n1,1)=M(1:n1,n1+1:2*n1) D(1:n1,1)=F(1:n1) do i=2,n2-1 A(1:n1,1:n1,i)=M((i-1)*n1+1:i*n1,(i-1)*n1+1:i*n1) B(1:n1,1:n1,i)=M((i-1)*n1+1:i*n1,(i-2)*n1+1:(i-1)*n1) C(1:n1,1:n1,i)=M((i-1)*n1+1:i*n1,i*n1+1:(i+1)*n1) D(1:n1,i)=F((i-1)*n1+1:i*n1) enddo A(1:n1,1:n1,n2)=M((n2-1)*n1+1:n2*n1,(n2-1)*n1+1:n2*n1) B(1:n1,1:n1,n2)=M((n2-1)*n1+1:n2*n1,(n2-2)*n1+1:(n2-1)*n1) D(1:n1,n2)=F((n2-1)*n1+1:n2*n1) ! Initialization y(:,:)=0. do i=1,n1 y(i,i)=1. enddo at(:,:)=A(:,:,1) ct(:,:)=C(:,:,1) dt(:)=D(:,1) call ludcmp(at,n1,n1,indx,rhu,ierr) do p=1,n1 call lubksb(at,n1,n1,indx,y(1,p)) do q=1,n1 alfinv(q,p)=y(q,p) enddo enddo gamt=matmul(alfinv,ct) gam(:,:,1)=gamt(:,:) uvect=matmul(alfinv,dt) uvec(:,1)=uvect do i=2,n2-1 y(:,:)=0. do j=1,n1 y(j,j)=1. enddo bt(:,:)=B(:,:,i) at(:,:)=A(:,:,i)-matmul(bt,gamt) ct(:,:)=C(:,:,i) dt(:)=D(:,i) call ludcmp(at,n1,n1,indx,rhu,ierr) do p=1,n1 call lubksb(at,n1,n1,indx,y(1,p)) do q=1,n1 alfinv(q,p)=y(q,p) enddo enddo gamt=matmul(alfinv,ct) gam(:,:,i)=gamt vvect=dt-matmul(bt,uvect) uvect=matmul(alfinv,vvect) uvec(:,i)=uvect enddo bt=B(:,:,n2) dt=D(:,n2) at=A(:,:,n2)-matmul(bt,gamt) vvect=dt-matmul(bt,uvect) y(:,:)=0. do j=1,n1 y(j,j)=1. enddo call ludcmp(at,n1,n1,indx,rhu,ierr) do p=1,n1 call lubksb(at,n1,n1,indx,y(1,p)) do q=1,n1 alfinv(q,p)=y(q,p) enddo enddo xt=matmul(alfinv,vvect) X((n2-1)*n1+1 :n1*n2)=xt do i=n2-1,1,-1 gamt=gam(:,:,i) xt=X(i*n1+1:n1*n2) uvect=uvec(:,i) vvect=matmul(gamt,xt) X((i-1)*n1+1:i*n1)=uvect-vvect enddo end subroutine tridag(a,b,c,r,u,n) ! parameter (nmax=4000) ! dimension gam(nmax),a(n),b(n),c(n),r(n),u(n) real*8 gam(n),a(n),b(n),c(n),r(n),u(n) if(b(1).eq.0.)then stop 'tridag: error: b(1)=0 !!! ' endif bet=b(1) u(1)=r(1)/bet do 11 j=2,n gam(j)=c(j-1)/bet bet=b(j)-a(j)*gam(j) if(bet.eq.0.) then stop 'tridag: error: bet=0 !!! ' endif u(j)=(r(j)-a(j)*u(j-1))/bet 11 continue do 12 j=n-1,1,-1 u(j)=u(j)-gam(j+1)*u(j+1) 12 continue return end ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** SUBROUTINE LUBKSB(A,N,NP,INDX,B) implicit none integer i,j,n,np,ii,ll real*8 sum real*8 a(np,np),indx(np),b(np) ! DIMENSION A(NP,NP),INDX(N),B(N) II=0 DO 12 I=1,N LL=INDX(I) SUM=B(LL) B(LL)=B(I) IF (II.NE.0)THEN DO 11 J=II,I-1 SUM=SUM-A(I,J)*B(J) 11 CONTINUE ELSE IF (SUM.NE.0.) THEN II=I ENDIF B(I)=SUM 12 CONTINUE DO 14 I=N,1,-1 SUM=B(I) IF(I.LT.N)THEN DO 13 J=I+1,N SUM=SUM-A(I,J)*B(J) 13 CONTINUE ENDIF B(I)=SUM/A(I,I) 14 CONTINUE RETURN END ! ******************************************************************** ! ******************************************************************** ! ******************************************************************** SUBROUTINE LUDCMP(A,N,NP,INDX,D,ierr) implicit none integer n,np,nmax,i,j,k,imax real*8 d,tiny,aamax real*8 a(np,np),indx(np) integer ierr ! error =0 if OK, =1 if problem PARAMETER (NMAX=100,TINY=1.0E-20) ! DIMENSION A(NP,NP),INDX(N),VV(NMAX) real*8 sum,vv(nmax),dum D=1. DO 12 I=1,N AAMAX=0. DO 11 J=1,N IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J)) 11 CONTINUE IF (AAMAX.EQ.0.) then write(*,*) 'In moldiff: Problem in LUDCMP with matrix A' write(*,*) 'Singular matrix ?' write(*,*) 'Matrix A = ', A ! stop ! TO DEBUG : ierr =1 return ! stop END IF VV(I)=1./AAMAX 12 CONTINUE DO 19 J=1,N IF (J.GT.1) THEN DO 14 I=1,J-1 SUM=A(I,J) IF (I.GT.1)THEN DO 13 K=1,I-1 SUM=SUM-A(I,K)*A(K,J) 13 CONTINUE A(I,J)=SUM ENDIF 14 CONTINUE ENDIF AAMAX=0. DO 16 I=J,N SUM=A(I,J) IF (J.GT.1)THEN DO 15 K=1,J-1 SUM=SUM-A(I,K)*A(K,J) 15 CONTINUE A(I,J)=SUM ENDIF DUM=VV(I)*ABS(SUM) IF (DUM.GE.AAMAX) THEN IMAX=I AAMAX=DUM ENDIF 16 CONTINUE IF (J.NE.IMAX)THEN DO 17 K=1,N DUM=A(IMAX,K) A(IMAX,K)=A(J,K) A(J,K)=DUM 17 CONTINUE D=-D VV(IMAX)=VV(J) ENDIF INDX(J)=IMAX IF(J.NE.N)THEN IF(A(J,J).EQ.0.)A(J,J)=TINY DUM=1./A(J,J) DO 18 I=J+1,N A(I,J)=A(I,J)*DUM 18 CONTINUE ENDIF 19 CONTINUE IF(A(N,N).EQ.0.)A(N,N)=TINY ierr =0 RETURN END SUBROUTINE TMNEW(T1,DT1,DT2,DT3,T2,dtime,nl,ig) IMPLICIT NONE INTEGER,INTENT(IN) :: nl,ig REAL,INTENT(IN),DIMENSION(nl) :: T1,DT1,DT2,DT3 REAL*8,INTENT(OUT),DIMENSION(nl) :: T2 REAL,INTENT(IN) :: dtime INTEGER :: l DO l=1,nl T2(l)=T1(l)*1D0+(DT1(l)*dble(dtime)+ & & DT2(l)*dble(dtime)+ & & DT3(l)*dble(dtime))*1D0 if (T2(l) .ne. T2(l)) then print*,'Err TMNEW',ig,l,T2(l),T1(l),dT1(l),DT2(l), & & DT3(l),dtime,dble(dtime) endif ENDDO END SUBROUTINE QMNEW(Q1,DQ,Q2,dtime,nl,nq,gc,ig) IMPLICIT NONE INTEGER,INTENT(IN) :: nl,nq INTEGER,INTENT(IN) :: ig INTEGER,INTENT(IN),dimension(nq) :: gc REAL,INTENT(IN),DIMENSION(nl,nq) :: Q1,DQ REAL*8,INTENT(OUT),DIMENSION(nl,nq) :: Q2 REAL,INTENT(IN) :: dtime INTEGER :: l,iq DO l=1,nl DO iq=1,nq Q2(l,iq)=Q1(l,gc(iq))*1D0+(DQ(l,gc(iq))*dble(dtime))*1D0 Q2(l,iq)=max(Q2(l,iq),1d-30) ENDDO ENDDO END SUBROUTINE HSCALE(p,hp,nl) IMPLICIT NONE INTEGER :: nl INTEGER :: l REAL*8,dimension(nl) :: P REAL*8,DIMENSION(nl) :: Hp hp(1)=-log(P(2)/P(1)) hp(nl)=-log(P(nl)/P(nl-1)) DO l=2,nl-1 hp(l)=-log(P(l+1)/P(l-1)) ENDDO END SUBROUTINE MMOY(massemoy,mmol,qq,gc,nl,nq) IMPLICIT NONE INTEGER :: nl,nq,l INTEGER,dimension(nq) :: gc REAL*8,DIMENSION(nl,nq) :: qq REAL*8,DIMENSION(nl) :: massemoy REAL,DIMENSION(nq) :: MMOL do l=1,nl massemoy(l)=1D0/sum(qq(l,:)/dble(mmol(gc(:)))) enddo END SUBROUTINE DMMOY(M,H,DM,nl) IMPLICIT NONE INTEGER :: nl,l REAL*8,DIMENSION(nl) :: M,H,DM DM(1)=(-3D0*M(1)+4D0*M(2)-M(3))/2D0/H(1) DM(nl)=(3D0*M(nl)-4D0*M(nl-1)+M(nl-2))/2D0/H(nl) do l=2,nl-1 DM(l)=(M(l+1)-M(l-1))/H(l) enddo END SUBROUTINE ZVERT(P,T,M,Z,nl,ig) IMPLICIT NONE INTEGER :: nl,l,ig REAL*8,dimension(nl) :: P,T,M,Z,H REAL*8 :: z0 REAL*8 :: kbolt,masseU,Konst,g,Hpm masseU=1.660538782d-27 kbolt=1.3806504d-23 Konst=kbolt/masseU g=0.6192 z0=0d0 Z(1)=z0 H(1)=Konst*T(1)/M(1)/g do l=2,nl H(l)=Konst*T(l)/M(l)/g Hpm=H(l-1) Z(l)=z(l-1)-Hpm*log(P(l)/P(l-1)) if (Z(l) .ne. Z(l)) then print*,'pb',l,ig print*,'P',P print*,'H',H print*,'T',T print*,'M',M print*,'Z',Z print*,'Hpm',Hpm endif enddo END SUBROUTINE RHOTOT(P,T,M,qq,rhoN,rhoK,nl,nq) IMPLICIT NONE REAL*8 :: kbolt,masseU,Konst INTEGER :: nl,nq,l,iq REAL*8,DIMENSION(nl) :: P,T,M,RHON REAL*8,DIMENSION(nl,nq) :: RHOK,qq masseU=1.660538782d-27 kbolt=1.3806504d-23 Konst=Kbolt/masseU do l=1,nl RHON(l)=P(l)*M(l)/T(l)/Konst do iq=1,nq RHOK(l,iq)=qq(l,iq)*RHON(l) enddo enddo END SUBROUTINE UPPER_RESOL(P,T,Z,M,R,Rk, & & qq,mmol,gc,Praf,Traf,Qraf,Mraf,Zraf, & & Nraf,Nrafk,Rraf,Rrafk,il,nl,nq,nlx,ig) IMPLICIT NONE INTEGER :: nl,nq,il,l,i,iq,nlx,iz,ig INTEGER :: gc(nq) INTEGER,DIMENSION(1) :: indz REAL*8, DIMENSION(nlx) :: P,T,Z,M,R REAL*8, DIMENSION(nlx,nq) :: qq,Rk REAL*8, DIMENSION(nl) :: Praf,Traf,Mraf,Zraf,Nraf,Rraf REAL*8 :: kbolt,masseU,Konst,g REAL*8, DIMENSION(nl,nq) :: Qraf,Rrafk,Nrafk REAL*8 :: facZ,dZ,H REAL,DIMENSION(nq) :: mmol masseU=1.660538782d-27 kbolt=1.3806504d-23 Konst=Kbolt/masseU g=0.6192 Zraf(1)=z(il) Praf(1)=P(il) Traf(1)=T(il) Nraf(1)=Praf(1)/kbolt/Traf(1) do iq=1,nq Qraf(1,iq)=qq(il,iq) enddo Mraf(1)=1d0/sum(Qraf(1,:)/dble(mmol(gc(:)))) Rraf(1)=Mraf(1)*masseU*Nraf(1) do iq=1,nq Rrafk(1,iq)=Rraf(1)*Qraf(1,iq) Nrafk(1,iq)=Rrafk(1,iq)/masseU/dble(mmol(gc(iq))) enddo Zraf(nl)=z(nlx) do l=2,nl-1 Zraf(l)=Zraf(1)+(Zraf(nl)-Zraf(1))/dble(nl-1)*dble((l-1)) indz=maxloc(z,mask=z <= Zraf(l)) iz=indz(1) if (iz .lt. 1 .or. iz .gt. nlx) then print*,'danger upper resol',iz,nl,Zraf(l),l,Zraf(1),Zraf(nl),z,P,T,ig stop endif dZ=Zraf(l)-Zraf(l-1) ! dZ=Zraf(l)-z(iz) facz=(Zraf(l)-z(iz))/(z(iz+1)-z(iz)) Traf(l)=T(iz)+(T(iz+1)-T(iz))*facz do iq=1,nq ! Qraf(l,iq)=qq(iz,iq)+(qq(iz+1,iq)-qq(iz,iq))*facz Rrafk(l,iq)=Rk(iz,iq)+(Rk(iz+1,iq)-Rk(iz,iq))*facZ Rrafk(l,iq)=Rk(iz,iq)*(Rk(iz+1,iq)/Rk(iz,iq))**facZ enddo ! Mraf(l)=1D0/(sum(qraf(l,:)/dble(mmol(gc(:))))) Rraf(l)=sum(Rrafk(l,:)) do iq=1,nq Qraf(l,iq)=Rrafk(l,iq)/Rraf(l) enddo Mraf(l)=1D0/(sum(qraf(l,:)/dble(mmol(gc(:))))) ! H=Konst*Traf(l)/Mraf(l)/g ! H=Konst*T(iz)/M(iz)/g ! Praf(l)=P(iz)*exp(-dZ/H) ! Praf(l)=Praf(l-1)*exp(-dZ/H) ! print*,'iz',l,iz,Praf(il-1)*exp(-dZ/H),z(iz),z(iz+1),H Nraf(l)=Rraf(l)/Mraf(l)/masseU Praf(l)=Nraf(l)*kbolt*Traf(l) ! Rraf(l)=Nraf(l)*Mraf(l)*masseU do iq=1,nq ! Rrafk(l,iq)=Rraf(l)*Qraf(l,iq) Nrafk(l,iq)=Rrafk(l,iq)/dble(mmol(gc(iq)))/masseU if (Nrafk(l,iq) .lt. 0. .or. & & Nrafk(l,iq) .ne. Nrafk(l,iq)) then print*,'pb interpolation upper resol',l,iq,Nrafk(l,iq),Rrafk(l,iq), & & Qraf(l,iq),Rk(iz,iq),Rk(iz+1,iq),facZ,Zraf(l),z(iz) stop endif enddo enddo Zraf(nl)=z(nlx) Traf(nl)=T(nlx) do iq=1,nq Rrafk(nl,iq)=Rk(nlx,iq) Qraf(nl,iq)=Rk(nlx,iq)/R(nlx) Nrafk(nl,iq)=Rk(nlx,iq)/dble(mmol(gc(iq)))/masseU enddo Nraf(nl)=sum(Nrafk(nl,:)) Praf(nl)=Nraf(nl)*kbolt*Traf(nl) Mraf(nl)=1D0/sum(Qraf(nl,:)/dble(mmol(gc(:)))) END SUBROUTINE CORRMASS(qq,qint,FacMass,nl,nq) IMPLICIT NONE INTEGER :: nl,nq,l,nn REAL*8,DIMENSION(nl,nq) :: qq,qint,FacMass do nn=1,nq do l=1,nl FacMass(l,nn)=qq(l,nn)/qint(l,nn) enddo enddo END SUBROUTINE DCOEFF(nn,Dij,P,T,N,Nk,D,nl,nq) IMPLICIT NONE REAL*8,DIMENSION(nl) :: N,T,D,P REAL*8,DIMENSION(nl,nq) :: Nk INTEGER :: nn,nl,nq,l,iq REAL,DIMENSION(nq,nq) :: Dij REAL*8 :: interm,P0,T0,ptfac,dfac P0=1D5 T0=273d0 do l=1,nl ptfac=(P0/P(l))*(T(l)/T0)**1.75d0 D(l)=0d0 interm=0d0 do iq=1,nq if (iq .ne. nn) then dfac=dble(dij(nn,iq))*ptfac interm=interm+Nk(l,iq)/N(l)/dfac endif enddo D(l)=1d0/interm enddo END SUBROUTINE HSCALEREAL(nn,Nk,Dz,H,nl,nq) IMPLICIT NONE INTEGER :: nn,nl,nq,l REAL*8,DIMENSION(nl) :: H REAL*8,DIMENSION(nl,nq) :: Nk REAL*8 :: Dz H(1)=(-3D0*Nk(1,nn)+4d0*NK(2,nn)-Nk(3,nn))/(2D0*DZ)/ & & NK(1,nn) H(1)=-1D0/H(1) DO l=2,nl-1 H(l)=(Nk(l+1,nn)-NK(l-1,nn))/(2D0*DZ)/NK(l,nn) H(l)=-1D0/H(l) ENDDO H(nl)=(3D0*Nk(nl,nn)-4D0*Nk(nl-1,nn)+Nk(nl-2,nn))/(2D0*DZ)/ & & Nk(nl,nn) H(nl)=-1D0/H(nl) ! do l=1,nl ! if (abs(H(l)) .lt. 100.) then ! print*,'H',l,H(l),Nk(l,nn),nn ! endif ! enddo END SUBROUTINE VELVERT(nn,T,H,D,Dz,masse,W,nl) IMPLICIT NONE INTEGER :: l,nl,nn REAL*8,DIMENSION(nl) :: T,H,D,W,DT REAL*8 :: Dz,Hmol,masse REAL*8 :: kbolt,masseU,Konst,g masseU=1.660538782d-27 kbolt=1.3806504d-23 Konst=Kbolt/masseU g=0.6192 DT(1)=1D0/T(1)*(-3D0*T(1)+4D0*T(2)-T(3))/(2D0*DZ) Hmol=Konst*T(1)/masse/g W(1)=-D(1)*(1D0/H(1)-1D0/Hmol-DT(1)) DO l=2,nl-1 DT(l)=1D0/T(l)*(T(l+1)-T(l-1))/(2D0*DZ) Hmol=Konst*T(l)/masse/g W(l)=-D(l)*(1D0/H(l)-1D0/Hmol-DT(l)) ENDDO DT(nl)=1D0/T(nl)*(3d0*T(nl)-4D0*T(nl-1)+T(nl-2))/(2D0*DZ) Hmol=Konst*T(nl)/masse/g W(nl)=-D(nl)*(1D0/H(nl)-1D0/Hmol-DT(nl)) ! do l=1,nl ! print*,'W',W(l),D(l),H(l),DT(l) ! enddo END SUBROUTINE TIMEDIFF(nn,H,W,TIME,nl) IMPLICIT NONE INTEGER :: nn,nl,l REAL*8,DIMENSION(nl) :: W,H,TIME DO l=1,nl TIME(l)=abs(H(l)/W(l)) if (TIME(l) .lt. 1.D-4) then ! print*,'low tdiff',H(l),W(l),nn,l endif ENDDO END SUBROUTINE DIFFPARAM(T,D,dz,alpha,beta,gama,delta,eps,nl) IMPLICIT NONE INTEGER :: nl,l REAL*8,DIMENSION(nl) :: T,D REAL*8 :: DZ,DZinv REAL*8,DIMENSION(nl) :: alpha,beta,gama,delta,eps ! Compute alpha,beta and delta ! lower altitude values DZinv=1d0/(2D0*DZ) beta(1)=1d0/T(1) alpha(1)=beta(1)*(-3D0*T(1)+4D0*T(2)-T(3))*Dzinv delta(1)=(-3D0*D(1)+4D0*D(2)-D(3))*Dzinv beta(2)=1d0/T(2) alpha(2)=beta(2)*(T(3)-T(1))*Dzinv delta(2)=(D(3)-D(1))*Dzinv ! do l=2,nl-1 ! beta(l)=1D0/T(l) ! alpha(l)=beta(l)*(T(l+1)-T(l-1))*Dzinv ! delta(l)=(D(l+1)-D(l-1))*Dzinv ! end do do l=3,nl-1 beta(l)=1D0/T(l) alpha(l)=beta(l)*(T(l+1)-T(l-1))*Dzinv delta(l)=(D(l+1)-D(l-1))*Dzinv gama(l-1)=(beta(l)-beta(l-2))*Dzinv eps(l-1)=(alpha(l)-alpha(l-2))*Dzinv enddo ! Upper altitude values beta(nl)=1D0/T(nl) alpha(nl)=beta(nl)*(3D0*T(nl)-4D0*T(nl-1)+T(nl-2))*Dzinv delta(nl)=(3D0*D(nl)-4D0*D(nl-1)+D(nl-2))*Dzinv ! Compute the gama and eps coefficients ! Lower altitude values gama(1)=(-3D0*beta(1)+4D0*beta(2)-beta(3))*Dzinv eps(1)=(-3D0*alpha(1)+4D0*alpha(2)-alpha(3))*Dzinv gama(nl-1)=(beta(nl)-beta(nl-2))*Dzinv eps(nl-1)=(alpha(nl)-alpha(nl-2))*Dzinv ! do l=2,nl-1 ! gama(l)=(beta(l+1)-beta(l-1))*Dzinv ! eps(l)=(alpha(l+1)-alpha(l-1))*Dzinv ! end do gama(nl)=(3D0*beta(nl)-4D0*beta(nl-1)+beta(nl-2))*Dzinv eps(nl)=(3D0*alpha(nl)-4D0*alpha(nl-1)+alpha(nl-2))*Dzinv ! do l=1,nl ! print*,'test diffparam',alpha(l),beta(l),delta(l),gama(l),eps(l) ! enddo ! stop END SUBROUTINE MATCOEFF(alpha,beta,gama,delta,eps,Dad,rhoad, & & FacEsc,dz,dt,A,B,C,D,nl) IMPLICIT NONE INTEGER :: nl,l REAL*8, DIMENSION(nl) :: alpha,beta,gama,delta,eps,Dad,RHoad REAL*8 :: dz,dt,del1,del2,del3,FacEsc REAL*8, DIMENSION(nl) :: A,B,C,D del1=dt/2d0/dz del2=dt/dz/dz del3=dt ! lower boundary coefficients no change A(1)=0d0 B(1)=1d0 C(1)=0d0 D(1)=rhoAd(1) do l=2,nl-1 A(l)=(delta(l)+(alpha(l)+beta(l))*Dad(l))*del1-Dad(l)*del2 B(l)=-(delta(l)*(alpha(l)+beta(l))+Dad(l)*(gama(l)+eps(l)))*del3 B(l)=B(l)+1d0+2d0*Dad(l)*del2 C(l)=-(delta(l)+(alpha(l)+beta(l))*Dad(l))*del1-Dad(l)*del2 D(l)=rhoAD(l) enddo ! Upper boundary coefficients Diffusion profile C(nl)=0d0 B(nl)=-1d0 A(nl)=exp(-dZ*(alpha(nl)+beta(nl)))*FacEsc D(nl)=0D0 END SUBROUTINE Checkmass(X,Y,nl,nn) IMPLICIT NONE INTEGER :: nl,nn REAL*8,DIMENSION(nl) :: X,Y REAL*8 Xtot,Ytot Xtot=sum(X) Ytot=sum(Y) if (abs((Xtot-Ytot)/Xtot) .gt. 1d-3) then print*,'no conservation for mass',Xtot,Ytot,nn endif END SUBROUTINE Checkmass2(qold,qnew,P,il,nl,nn,nq) IMPLICIT NONE INTEGER :: nl,nn,l,nq,il REAL,DIMENSION(nl+1) :: P REAL*8,DIMENSION(nl,nq) :: qold,qnew REAL*8 :: DM,Mold,Mnew,g g=0.6192 DM=0d0 Mold=0d0 Mnew=0d0 DO l=il,nl DM=DM+(qnew(l,nn)-qold(l,nn))*(dble(P(l))-dble(P(l+1)))/g Mold=Mold+qold(l,nn)*(dble(P(l))-dble(P(l+1)))/g Mnew=Mnew+qnew(l,nn)*(dble(P(l))-dble(P(l+1)))/g ! print*,'l',l,qold(l,nn),qnew(l,nn),Mold,Mnew,DM,P(l),P(l+1) ENDDO IF (abs(DM/Mold) .gt. 1d-2) THEN Print*,'We dont conserve mas',nn,DM,Mold,Mnew,DM/Mold ENDIF END SUBROUTINE GCMGRID_P(Z,P,Q,T,Nk,Rk,qq,qnew,tt,tnew, & & pp,M,gc,nl,nq,nlx,ig) IMPLICIT NONE INTEGER :: nl,nq,nlx,il,nn,iP,ig,compteur INTEGER,DIMENSION(1) :: indP INTEGER,DIMENSION(nq) :: gc REAL*8,DIMENSION(nl) :: Z,P,T REAL*8,DIMENSION(nl,nq) :: Q,Nk,Rk REAL,DIMENSION(nq) :: M REAL*8,DIMENSION(nq) :: nNew REAL*8,DIMENSION(nlx) :: pp,tt,tnew REAL*8,DIMENSION(nlx) :: rhonew REAL*8,DIMENSION(nlx,nq) :: qq,qnew,rhoknew REAL*8 :: kbolt,masseU,Konst,g,Dz,facP,Hi REAL*8 :: Znew,Znew2,Pnew,Pnew2 masseU=1.660538782d-27 kbolt=1.3806504d-23 Konst=Kbolt/masseU g=0.6192 Dz=Z(2)-Z(1) Znew=Z(nl) Znew2=Znew+dz ! print*,'dz',Znew,Znew2,dz nNew(1:nq)=Nk(nl,1:nq) Pnew=P(nl) do il=1,nlx ! print*,'il',il,pp(il),P(1),P(nl) if (pp(il) .ge. P(1)) then qnew(il,:)=qq(il,:) tnew(il)=tt(il) endif if (pp(il) .lt. P(1)) then if (pp(il) .gt. P(nl)) then indP=maxloc(P,mask=P < pp(il)) iP=indP(1)-1 if (iP .lt. 1 .or. iP .gt. nl) then print*,'danger 2',iP,nl,pp(il) endif facP=(pp(il)-P(ip))/(P(ip+1)-P(ip)) ! print*,'P',P(ip),P(ip+1),facP,indP,iP ! do nn=1,nq ! qnew(il,nn)=Q(iP,nn)+ ! & (Q(ip+1,nn)-Q(ip,nn))*facP ! enddo do nn=1,nq rhoknew(il,nn)=Rk(iP,nn)+ & & (Rk(ip+1,nn)-Rk(ip,nn))*facP enddo tnew(il)=T(iP)+(T(iP+1)-T(iP))*facP rhonew(il)=sum(rhoknew(il,:)) do nn=1,nq qnew(il,nn)=rhoknew(il,nn)/rhonew(il) enddo else ! pp < P(nl) need to extrapolate density of each specie Pnew2=Pnew compteur=0 do while (pnew2 .ge. pp(il)) compteur=compteur+1 do nn=1,nq Hi=Konst*T(nl)/dble(M(gc(nn)))/g Nnew(nn)=Nnew(nn)*exp(-dZ/Hi) enddo Pnew=Pnew2 Pnew2=kbolt*T(nl)*sum(Nnew(:)) Znew=Znew2 Znew2=Znew2+Dz if (compteur .ge. 100000) then print*,'error moldiff_red infinite loop gcmgrid' print*,ig,il,pp(il),tt(nl),pnew2,qnew(il,:),Znew2 stop endif ! print*,'test',Pnew2,Znew2,Nnew(nq),pp(il) enddo facP=(pp(il)-Pnew)/(Pnew2-Pnew) ! do nn=1,nq ! qnew(il,nn)=dble(M(gc(nn)))*Nnew(nn) ! & /sum(dble(M(gc(:)))*Nnew(:)) ! enddo do nn=1,nq rhoknew(il,nn)=dble(M(gc(nn)))*Nnew(nn) enddo rhonew(il)=sum(rhoknew(il,:)) do nn=1,nq qnew(il,nn)=rhoknew(il,nn)/rhonew(il) enddo tnew(il)=T(nl) endif endif enddo END SUBROUTINE GCMGRID_P2(Z,P,Q,T,Nk,Rk,qq,qnew,tt,tnew & & ,pp,M,gc,nl,nq,nlx,facM,ig) IMPLICIT NONE INTEGER :: nl,nq,nlx,il,nn,iP,ig,compteur INTEGER,DIMENSION(1) :: indP INTEGER,DIMENSION(nq) :: gc REAL*8,DIMENSION(nl) :: Z,P,T REAL*8,DIMENSION(nl,nq) :: Q,Nk,Rk REAL,DIMENSION(nq) :: M REAL*8,DIMENSION(nq) :: nNew REAL*8,DIMENSION(nlx) :: pp,rhonew,tt,tnew REAL*8,DIMENSION(nlx,nq) :: qq,qnew,facM,rhoknew REAL*8 :: kbolt,masseU,Konst,g,Dz,facP,Hi REAL*8 :: Znew,Znew2,Pnew,Pnew2 masseU=1.660538782d-27 kbolt=1.3806504d-23 Konst=Kbolt/masseU g=0.61920 Dz=Z(2)-Z(1) Znew=Z(nl) Znew2=Znew+dz ! print*,'dz',Znew,Znew2,dz nNew(1:nq)=Nk(nl,1:nq) Pnew=P(nl) do il=1,nlx ! print*,'il',il,pp(il),P(1),P(nl) if (pp(il) .ge. P(1)) then qnew(il,:)=qq(il,:) tnew(il)=tt(il) endif if (pp(il) .lt. P(1)) then if (pp(il) .gt. P(nl)) then indP=maxloc(P,mask=P < pp(il)) iP=indP(1)-1 if (iP .lt. 1 .or. iP .gt. nl) then print*,'danger 3',iP,nl,pp(il) endif facP=(pp(il)-P(ip))/(P(ip+1)-P(ip)) ! print*,'P',P(ip),P(ip+1),facP,indP,iP ! do nn=1,nq ! qnew(il,nn)=Q(iP,nn)+ ! & (Q(ip+1,nn)-Q(ip,nn))*facP ! enddo do nn=1,nq rhoknew(il,nn)=(RK(iP,nn)+ & & (RK(iP+1,nn)-Rk(iP,nn))*facP)*facM(il,nn) enddo tnew(il)=T(iP)+(T(ip+1)-T(iP))*facP rhonew(il)=sum(rhoknew(il,:)) do nn=1,nq qnew(il,nn)=rhoknew(il,nn)/rhonew(il) enddo else ! pp < P(nl) need to extrapolate density of each specie Pnew2=Pnew compteur=0 do while (pnew2 .ge. pp(il)) compteur=compteur+1 do nn=1,nq Hi=Konst*T(nl)/dble(M(gc(nn)))/g Nnew(nn)=Nnew(nn)*exp(-dZ/Hi) enddo Pnew=Pnew2 Pnew2=kbolt*T(nl)*sum(Nnew(:)) Znew=Znew2 Znew2=Znew2+Dz if (compteur .ge. 100000) then print*,'pb moldiff_red infinite loop' print*,ig,nl,T(nl),pnew2,qnew(il,:),Znew2 stop endif ! print*,'test',Pnew2,Znew2,Nnew(nq),pp(il) enddo facP=(pp(il)-Pnew)/(Pnew2-Pnew) ! do nn=1,nq ! qnew(il,nn)=dble(M(gc(nn)))*Nnew(nn) ! & /sum(dble(M(gc(:)))*Nnew(:)) ! enddo do nn=1,nq rhoknew(il,nn)=dble(M(gc(nn)))*Nnew(nn)*FacM(il,nn) enddo rhonew(il)=sum(rhoknew(il,:)) do nn=1,nq qnew(il,nn)=rhoknew(il,nn)/rhonew(il) enddo tnew(il)=T(nl) endif endif enddo END