MODULE module_mp_ncloud3 REAL, PARAMETER, PRIVATE :: dtcldcr = 240. INTEGER, PARAMETER, PRIVATE :: mstepmax = 100 REAL, PARAMETER, PRIVATE :: n0r = 8.e6 REAL, PARAMETER, PRIVATE :: avtr = 841.9 REAL, PARAMETER, PRIVATE :: bvtr = 0.8 REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 REAL, PARAMETER, PRIVATE :: avts = 16.2 REAL, PARAMETER, PRIVATE :: bvts = .527 REAL, PARAMETER, PRIVATE :: xncmax = 1.e8 REAL, PARAMETER, PRIVATE :: n0smax = 1.e9 REAL, PARAMETER, PRIVATE :: betai = .6 REAL, PARAMETER, PRIVATE :: xn0 = 1.e-2 REAL, PARAMETER, PRIVATE :: dicon = 16.3 REAL, PARAMETER, PRIVATE :: di0 = 12.9e-6*.8 REAL, PARAMETER, PRIVATE :: dimax = 400.e-6 REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent n0s REAL, PARAMETER, PRIVATE :: alpha = 1./8.18 ! .122 exponen factor for n0s ! REAL, PARAMETER, PRIVATE :: lamdarmax = 1.e15 REAL, PARAMETER, PRIVATE :: lamdarmax = 1.e5 REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-6 REAL, SAVE :: & qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr,& g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & precr1,precr2,xm0,xmmax,bvts1, & bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & g5pbso2,pvts,pacrs,precs1,precs2,pidn0r,& pidn0s,xlv1 CONTAINS !=================================================================== ! SUBROUTINE ncloud3(th, q, qci, qrs & , w, den, pii, p, delz & , delt,g, cpd, cpv, rd, rv, t0c & , ep1, ep2, qmin & , XLS, XLV0, XLF0, den0, denr & , cliq,cice,psat & , rain, rainncv & , ids,ide, jds,jde, kds,kde & , ims,ime, jms,jme, kms,kme & , its,ite, jts,jte, kts,kte & ) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- ! !Coded by Song-You Hong (NCEP) and implemented by Shuhua Chen (NCAR) ! INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & ims,ime, jms,jme, kms,kme , & its,ite, jts,jte, kts,kte REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & INTENT(INOUT) :: & th, & q, & qci, & qrs REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & INTENT(IN ) :: w, & den, & pii, & p, & delz REAL, INTENT(IN ) :: delt, & g, & rd, & rv, & T0c, & den0, & cpd, & cpv, & ep1, & ep2, & qmin, & XLS, & XLV0, & XLF0, & cliq, & cice, & psat, & denr REAL, DIMENSION( ims:ime , jms:jme ), & INTENT(INOUT) :: rain, & rainncv ! LOCAL VAR REAL, DIMENSION( its:ite , kts:kte ) :: t INTEGER :: i,j,k !------------------------------------------------------------------- DO J=jts,jte DO K=kts,kte DO I=its,ite t(i,k)=th(i,k,j)*pii(i,k,j) ENDDO ENDDO CALL ncloud32D(t, q(ims,kms,j), qci(ims,kms,j) & ,qrs(ims,kms,j),w(ims,kms,j), den(ims,kms,j) & ,p(ims,kms,j), delz(ims,kms,j) & , delt,g, cpd, cpv, rd, rv, t0c & ,ep1, ep2, qmin & ,XLS, XLV0, XLF0, den0, denr & ,cliq,cice,psat & ,J & ,rain(ims,j), rainncv(ims,j) & ,ids,ide, jds,jde, kds,kde & ,ims,ime, jms,jme, kms,kme & ,its,ite, jts,jte, kts,kte & ) DO K=kts,kte DO I=its,ite th(i,k,j)=t(i,k)/pii(i,k,j) ENDDO ENDDO ENDDO END SUBROUTINE ncloud3 !=================================================================== ! SUBROUTINE ncloud32D(t, q, qci, qrs,w, den, p, delz & ,delt,g, cpd, cpv, rd, rv, t0c & ,ep1, ep2, qmin & ,XLS, XLV0, XLF0, den0, denr & ,cliq,cice,psat & ,lat & ,rain, rainncv & ,ids,ide, jds,jde, kds,kde & ,ims,ime, jms,jme, kms,kme & ,its,ite, jts,jte, kts,kte & ) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & ims,ime, jms,jme, kms,kme , & its,ite, jts,jte, kts,kte, & lat REAL, DIMENSION( its:ite , kts:kte ), & INTENT(INOUT) :: & t REAL, DIMENSION( ims:ime , kms:kme ), & INTENT(INOUT) :: & q, & qci, & qrs REAL, DIMENSION( ims:ime , kms:kme ), & INTENT(IN ) :: w, & den, & p, & delz REAL, INTENT(IN ) :: delt, & g, & cpd, & cpv, & T0c, & den0, & rd, & rv, & ep1, & ep2, & qmin, & XLS, & XLV0, & XLF0, & cliq, & cice, & psat, & denr REAL, DIMENSION( ims:ime ), & INTENT(INOUT) :: rain, & rainncv ! LOCAL VAR INTEGER, PARAMETER :: iun = 84 REAL, DIMENSION( its:ite , kts:kte ) :: & rh, qs, denfac, slope, slope2, slopeb, & pgen, paut, pacr, pisd, pres, pcon, fall, falk, & xl, cpm, work1, work2, q1, t1, & pgens, pauts, pacrss, pisds, press, pcons REAL, DIMENSION( its:ite , kts:kte ) :: & falkc, work1c, work2c, fallc INTEGER, DIMENSION( its:ite ) :: mstep LOGICAL, DIMENSION( its:ite ) :: flgcld REAL :: n0sfac, pi, & cpmcal, xlcal, tvcal, lamdar, lamdas, diffus, & viscos, xka, venfac, conden, diffac, & x, y, z, a, b, c, d, e, & qdt, pvt, qik, delq, facq, qrsci, frzmlt, & snomlt, hold, holdrs, facqci, supcol, coeres, & supsat, dtcld, xmi, qciik, delqci, eacrs, satdt, xnc INTEGER :: i,j,k, & iprt, latd, lond, loop, loops, ifsat, kk, n, numdt ! !================================================================= ! compute internal functions ! cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv xlcal(x) = xlv0-xlv1*(x-t0c) tvcal(x,y) = x+x*ep1*max(y,qmin) !---------------------------------------------------------------- ! size distributions: (x=mixing ratio, y=air density): ! valid for mixing ratio > 1.e-30 kg/kg. ! otherwise use uniform distribution value (1.e15) ! lamdar(x,y)=(pidn0r/(x*y))**.25 lamdas(x,y,z)=(pidn0s*z/(x*y))**.25 ! !---------------------------------------------------------------- ! diffus: diffusion coefficient of the water vapor ! viscos: kinematic viscosity(m2s-1) ! diffus(x,y) = 8.794e-5*x**1.81/y viscos(x,y) = 1.496e-6*x**1.5/(x+120.)/y xka(x,y) = 1.414e3*viscos(x,y)*y diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) venfac(a,b,c) = (viscos(b,c)/diffus(b,a))**(.3333333) & /viscos(b,c)**(.5)*(den0/c)**0.25 conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) ! pi = 4. * atan(1.) ! !================================================================= ! set iprt = 0 for no unit fort.84 output ! ! iprt = 0 ! if(iprt.eq.1) then ! qdt = delt * 1000. ! latd = jts ! lond = its ! else ! latd = 0 ! lond = 0 ! endif ! !---------------------------------------------------------------- ! paddint 0 for negative values generated by dynamics ! do k = kts, kte do i = its, ite qci(i,k) = max(qci(i,k),0.0) qrs(i,k) = max(qrs(i,k),0.0) enddo enddo ! !---------------------------------------------------------------- ! latent heat for phase changes and heat capacity. neglect the ! changes during microphysical process calculation ! emanuel(1994) ! do k = kts, kte do i = its, ite cpm(i,k) = cpmcal(q(i,k)) xl(i,k) = xlcal(t(i,k)) enddo enddo ! !---------------------------------------------------------------- ! compute the minor time steps. ! loops = max(nint(delt/dtcldcr),1) dtcld = delt/loops if(delt.le.dtcldcr) dtcld = delt ! do loop = 1,loops ! !---------------------------------------------------------------- ! initialize the large scale variables ! do i = its, ite mstep(i) = 1 flgcld(i) = .true. enddo ! do k = kts, kte do i = its, ite work1(i,k) = tvcal(t(i,k),q(i,k)) denfac(i,k) = sqrt(den0/den(i,k)) enddo enddo ! do k = kts, kte do i = its, ite qs(i,k) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) qs(i,k) = max(qs(i,k),qmin) rh(i,k) = max(q(i,k) / qs(i,k),qmin) enddo enddo ! !---------------------------------------------------------------- ! initialize the variables for microphysical physics ! ! if(lat.eq.latd) then ! i = lond ! print*,'lat',latd,lat,i ! do k = kts, kte ! press(i,k) = 0. ! pauts(i,k) = 0. ! pacrss(i,k)= 0. ! pgens(i,k) = 0. ! pisds(i,k) = 0. ! pcons(i,k) = 0. ! t1(i,k) = t(i,k) ! q1(i,k) = q(i,k) ! enddo ! endif ! do k = kts, kte do i = its, ite pres(i,k) = 0. paut(i,k) = 0. pacr(i,k) = 0. pgen(i,k) = 0. pisd(i,k) = 0. pcon(i,k) = 0. fall(i,k) = 0. falk(i,k) = 0. fallc(i,k) = 0. falkc(i,k) = 0. enddo enddo ! !---------------------------------------------------------------- ! sloper: the slope parameter of the rain(m-1) ! xka: thermal conductivity of air(jm-1s-1k-1) ! work1: the thermodynamic term in the denominator associated with ! heat conduction and vapor diffusion ! (ry88, y93, h85) ! work2: parameter associated with the ventilation effects(y93) ! do k = kts, kte do i = its, ite if(qrs(i,k).le.qcrmin)then slope(i,k) = lamdarmax slopeb(i,k) = slope(i,k)**bvtr else if(t(i,k).ge.t0c) then slope(i,k) = lamdar(qrs(i,k),den(i,k)) slopeb(i,k) = slope(i,k)**bvtr else supcol = t0c-t(i,k) n0sfac = min(exp(alpha*supcol),n0smax) slope(i,k) = lamdas(qrs(i,k),den(i,k),n0sfac) slopeb(i,k) = slope(i,k)**bvts endif endif slope2(i,k) = slope(i,k)*slope(i,k) enddo enddo ! do k = kts, kte do i = its, ite if(t(i,k).ge.t0c) then work1(i,k) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k)) else work1(i,k) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k)) endif work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) enddo enddo ! do k = kts, kte do i = its, ite supsat = max(q(i,k),qmin)-qs(i,k) satdt = supsat/dtcld if(t(i,k).ge.t0c) then ! !---------------------------------------------------------------- ! warm rain process ! paut: auto conversion rate from cloud to rain (kgkg-1s-1)(kessler) ! pacr: accretion rate of rain by cloud(lin83) ! pres: evaporation/condensation rate of rain(rh83) ! if(qci(i,k).gt.qc0) then paut(i,k) = qck1*qci(i,k)**(7./3.) paut(i,k) = min(paut(i,k),qci(i,k)/dtcld) endif ! if(qrs(i,k).gt.qcrmin) then if(qci(i,k).gt.qcrmin) & pacr(i,k) = min(pacrr/slope2(i,k)/slope(i,k)/slopeb(i,k) & *qci(i,k)*denfac(i,k),qci(i,k)/dtcld) coeres = slope2(i,k)*sqrt(slope(i,k)*slopeb(i,k)) pres(i,k) = (rh(i,k)-1.)*(precr1/slope2(i,k) & +precr2*work2(i,k)/coeres)/work1(i,k) if(pres(i,k).lt.0.) then pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) pres(i,k) = max(pres(i,k),satdt/2) else pres(i,k) = min(pres(i,k),qrs(i,k)/dtcld) pres(i,k) = min(pres(i,k),satdt/2) endif endif else ! !---------------------------------------------------------------- ! cold rain process ! paut: conversion(aggregation) of ice to snow(kgkg-1s-1)(rh83) ! pgen: generation(nucleation) of ice from vapor(kgkg-1s-1)(rh83) ! pacr: accretion rate of snow by ice(lin83) ! pisd: deposition/sublimation rate of ice(rh83) ! pres: deposition/sublimation rate of snow(lin83) ! supcol = t0c-t(i,k) ifsat = 0 n0sfac = min(exp(alpha*supcol),n0smax) xnc = min(xn0 * exp(betai*supcol)/den(i,k),xncmax) ! if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qcrmin) then eacrs = exp(0.025*(-supcol)) pacr(i,k) = pacrs*n0sfac*eacrs/slope2(i,k)/slope(i,k) & /slopeb(i,k)*qci(i,k)*denfac(i,k) endif ! if(qci(i,k).gt.qcrmin) then xmi = qci(i,k)*xnc pisd(i,k) = 4.*dicon*sqrt(xmi)*den(i,k)*(rh(i,k)-1.) & /work1(i,k) if(pisd(i,k).lt.0.) then pisd(i,k) = max(pisd(i,k),satdt/2) pisd(i,k) = max(pisd(i,k),-qci(i,k)/dtcld) else pisd(i,k) = min(pisd(i,k),satdt/2) endif if(abs(pisd(i,k)).ge.abs(satdt)) ifsat = 1 endif ! if(qrs(i,k).gt.qcrmin.and.ifsat.ne.1) then coeres = slope2(i,k)*sqrt(slope(i,k)*slopeb(i,k)) pres(i,k) = (rh(i,k)-1.)*n0sfac*(precs1/slope2(i,k) & +precs2*work2(i,k)/coeres)/work1(i,k) if(pres(i,k).lt.0.) then pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) pres(i,k) = max(pres(i,k),satdt/2) else pres(i,k) = min(pres(i,k),satdt/2) pres(i,k) = min(pres(i,k),qrs(i,k)/dtcld) endif if(abs(pisd(i,k)+pres(i,k)).ge.abs(satdt)) ifsat = 1 endif ! if(supsat.gt.0.and.ifsat.ne.1) then pgen(i,k) = max(0.,(xm0*xnc-max(qci(i,k),0.))/dtcld) pgen(i,k) = min(pgen(i,k),satdt) endif ! if(qci(i,k).gt.qcrmin) paut(i,k) & = max(0.,(qci(i,k)-xmmax*xnc)/dtcld) endif enddo enddo ! !---------------------------------------------------------------- ! check mass conservation of generation terms and feedback to the ! large scale ! do k = kts, kte do i = its, ite qciik = max(qcrmin,qci(i,k)) delqci = (paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k))*dtcld if(delqci.ge.qciik) then facqci = qciik/delqci paut(i,k) = paut(i,k)*facqci pacr(i,k) = pacr(i,k)*facqci pgen(i,k) = pgen(i,k)*facqci pisd(i,k) = pisd(i,k)*facqci endif qik = max(qcrmin,q(i,k)) delq = (pres(i,k)+pgen(i,k)+pisd(i,k))*dtcld if(delq.ge.qik) then facq = qik/delq pres(i,k) = pres(i,k)*facq pgen(i,k) = pgen(i,k)*facq pisd(i,k) = pisd(i,k)*facq endif work2(i,k) = -pres(i,k)-pgen(i,k)-pisd(i,k) q(i,k) = q(i,k)+work2(i,k)*dtcld qci(i,k) = max(qci(i,k)-(paut(i,k)+pacr(i,k)-pgen(i,k) & -pisd(i,k))*dtcld,0.) qrs(i,k) = max(qrs(i,k)+(paut(i,k)+pacr(i,k) & +pres(i,k))*dtcld,0.) if(t(i,k).lt.t0c) then t(i,k) = t(i,k)-xls*work2(i,k)/cpm(i,k)*dtcld else t(i,k) = t(i,k)-xl(i,k)*work2(i,k)/cpm(i,k)*dtcld endif enddo enddo ! do k = kts, kte do i = its, ite qs(i,k) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) qs(i,k) = max(qs(i,k),qmin) denfac(i,k) = sqrt(den0/den(i,k)) enddo enddo ! !---------------------------------------------------------------- ! condensational/evaporational rate of cloud water if there exists ! additional water vapor condensated/if evaporation of cloud water ! is not enough to remove subsaturation. ! use fall bariable for this process(pcon) ! ! if(lat.eq.latd) write(iun,603) do k = kts, kte do i = its, ite work1(i,k) = conden(t(i,k),q(i,k),qs(i,k),xl(i,k),cpm(i,k)) work2(i,k) = qci(i,k)+work1(i,k) pcon(i,k) = min(max(work1(i,k),0.),max(q(i,k),0.))/dtcld if(qci(i,k).gt.qcrmin.and.work1(i,k).lt.0.and.t(i,k).gt.t0c) & pcon(i,k) = max(work1(i,k),-qci(i,k))/dtcld q(i,k) = q(i,k)-pcon(i,k)*dtcld qci(i,k) = max(qci(i,k)+pcon(i,k)*dtcld,0.) t(i,k) = t(i,k)+pcon(i,k)*xl(i,k)/cpm(i,k)*dtcld ! ! if(lat.eq.latd.and.i.eq.lond) then ! pgens(i,k) = pgens(i,k)+pgen(i,k) ! pcons(i,k) = pcons(i,k)+pcon(i,k) ! pisds(i,k) = pisds(i,k)+pisd(i,k) ! pacrss(i,k) = pacrss(i,k)+pacr(i,k) ! press(i,k) = press(i,k)+pres(i,k) ! pauts(i,k) = pauts(i,k)+paut(i,k) ! write(iun,604) k,p(i,k)/100., & ! t(i,k)-t0c,t(i,k)-t1(i,k),q(i,k)*1000., & ! (q(i,k)-q1(i,k))*1000.,rh(i,k)*100.,pgens(i,k)*qdt, & ! pcons(i,k)*qdt,pisds(i,k)*qdt,pauts(i,k)*qdt,pacrss(i,k)*qdt, & ! press(i,k)*qdt,qci(i,k)*1000.,qrs(i,k)*1000. ! endif enddo enddo 603 format(1x,' k',' p', & ' t',' delt',' q',' delq',' rh', & ' pgen',' pcon',' pisd',' paut',' pacr',' pres', & ' qci',' qrs') 604 format(1x,i3,f6.0,4f5.1,f5.0,8f5.2) ! !---------------------------------------------------------------- ! compute the fallout term: ! first, vertical terminal velosity for minor loops ! do k = kts, kte do i = its, ite denfac(i,k) = sqrt(den0/den(i,k)) enddo enddo ! do k = kts, kte do i = its, ite if(qrs(i,k).le.qcrmin)then slope(i,k) = lamdarmax slopeb(i,k) = slope(i,k)**bvtr else if(t(i,k).ge.t0c) then slope(i,k) = lamdar(qrs(i,k),den(i,k)) slopeb(i,k) = slope(i,k)**bvtr else supcol = t0c-t(i,k) n0sfac = min(exp(alpha*supcol),n0smax) slope(i,k) = lamdas(qrs(i,k),den(i,k),n0sfac) slopeb(i,k) = slope(i,k)**bvts endif endif slope2(i,k) = slope(i,k)*slope(i,k) enddo enddo ! do i = its, ite do k = kte, kts, -1 if(t(i,k).lt.t0c) then pvt = pvts else pvt = pvtr endif work1(i,k) = pvt/slopeb(i,k)*denfac(i,k) work2(i,k) = work1(i,k)/delz(i,k) if(qrs(i,k).le.qcrmin) work2(i,k) = 0. numdt = max(nint(work2(i,k)*dtcld+.5),1) if(t(i,k).lt.t0c.and.qci(i,k).gt.qmin) then work1c(i,k) = 3.29*(den(i,k)*qci(i,k))**0.16 else work1c(i,k) = 0. endif if(qci(i,k).le.qmin) then work2c(i,k) = 0. else work2c(i,k) = work1c(i,k)/delz(i,k) endif numdt = max(nint(work2c(i,k)*dtcld+.5),numdt) if(numdt.ge.mstep(i)) mstep(i) = numdt enddo mstep(i) = min(mstep(i),mstepmax) enddo ! ! if(lat.eq.latd) write(iun,605) do n = 1,mstepmax k = kte do i = its, ite if(n.le.mstep(i)) then falk(i,k) = den(i,k)*qrs(i,k)*work2(i,k)/mstep(i) hold = falk(i,k) fall(i,k) = fall(i,k)+falk(i,k) holdrs = qrs(i,k) qrs(i,k) = max(qrs(i,k)-falk(i,k)*dtcld/den(i,k),0.) falkc(i,k) = den(i,k)*qci(i,k)*work2c(i,k)/mstep(i) fallc(i,k) = fallc(i,k)+falkc(i,k) qci(i,k) = max(qci(i,k)-falkc(i,k)*dtcld/den(i,k),0.) endif enddo do k = kte-1, kts, -1 do i = its, ite if(n.le.mstep(i)) then falk(i,k) = den(i,k)*qrs(i,k)*work2(i,k)/mstep(i) hold = falk(i,k) fall(i,k) = fall(i,k)+falk(i,k) holdrs = qrs(i,k) qrs(i,k) = max(qrs(i,k)-(falk(i,k) & -falk(i,k+1)*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) falkc(i,k) = den(i,k)*qci(i,k)*work2c(i,k)/mstep(i) fallc(i,k) = fallc(i,k)+falkc(i,k) qci(i,k) = max(qci(i,k)-(falkc(i,k) & -falkc(i,k+1)*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) endif enddo enddo enddo 605 format(1x,' k',' p',' t',' q',' rh',' w', & ' vt',' falk',' falt',' qrsi',' qrsf',' mstep') 606 format(1x,i3,f6.0,2f5.1,f5.0,f6.2,5f6.2,i5) ! !---------------------------------------------------------------- ! compute the freezing/melting term. ! freezing occurs one layer above the melting level ! do i = its, ite mstep(i) = 0 enddo do k = kts, kte ! do i = its, ite if(t(i,k).ge.t0c) then mstep(i) = k endif enddo enddo ! do i = its, ite if(mstep(i).ne.0.and.w(i,mstep(i)).gt.0.) then work1(i,1) = float(mstep(i) + 1) work1(i,2) = float(mstep(i)) else work1(i,1) = float(mstep(i)) work1(i,2) = float(mstep(i)) endif enddo ! do i = its, ite k = nint(work1(i,1)) kk = nint(work1(i,2)) if(k*kk.ge.1) then qrsci = qrs(i,k) + qci(i,k) if(qrsci.gt.qcrmin.or.fall(i,kk).gt.0.) then frzmlt = min(max(-w(i,k)*qrsci/delz(i,k),-qrsci/dtcld), & qrsci/dtcld) snomlt = min(max(fall(i,kk)/den(i,kk),-qrs(i,k)/dtcld),qrs(i,k)/dtcld) if(k.eq.kk) then t(i,k) = t(i,k) - xlf0/cpm(i,k)*(frzmlt+snomlt)*dtcld else t(i,k) = t(i,k) - xlf0/cpm(i,k)*frzmlt*dtcld t(i,kk) = t(i,kk) - xlf0/cpm(i,kk)*snomlt*dtcld endif ! if(lat.eq.latd.and.i.eq.lond) write(iun,608) k,t(i,k)-t0c, & ! w(i,k),frzmlt*qdt,snomlt*qdt endif endif enddo 608 format(1x,'k = ',i3,' t = ',f5.1,' w = ',f6.2,' frz/mlt = ',f5.1, & ' snomlt = ',f5.1) ! !---------------------------------------------------------------- ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf ! do i = its, ite if(fall(i,1).gt.0.) then rainncv(i) = fall(i,1)*delz(i,1)/denr*dtcld*1000. rain(i) = fall(i,1)*delz(i,1)/denr*dtcld*1000. & + rain(i) endif enddo ! ! if(lat.eq.latd) write(iun,601) latd,lond,loop,rain(lond) 601 format(1x,' ncloud3 lat lon loop : rain(mm) ',3i6,f20.2) ! enddo ! big loops END SUBROUTINE ncloud32D ! ................................................................... real function rgmma(x) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- ! rgmma function: use infinite product form REAL :: euler parameter (euler=0.577215664901532) REAL :: x, y INTEGER :: i if(x.eq.1.)then rgmma=0. else rgmma=x*exp(euler*x) do i=1,10000 y=float(i) rgmma=rgmma*(1.000+x/y)*exp(-x/y) enddo rgmma=1./rgmma endif END FUNCTION rgmma ! !-------------------------------------------------------------------------- real function fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) !-------------------------------------------------------------------------- IMPLICIT NONE !-------------------------------------------------------------------------- real t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & xai,xbi,ttp,tr INTEGER ice ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ttp=t0c+0.01 dldt=cvap-cliq xa=-dldt/rv xb=xa+hvap/(rv*ttp) dldti=cvap-cice xai=-dldti/rv xbi=xai+hsub/(rv*ttp) tr=ttp/t if(t.lt.ttp.and.ice.eq.1) then fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) else fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) endif ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - END FUNCTION fpvs !------------------------------------------------------------------- SUBROUTINE ncloud3init(den0,denr,dens,cl,cpv,allowed_to_read) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- !.... constants which may not be tunable REAL, INTENT(IN) :: den0,denr,dens,cl,cpv LOGICAL,INTENT(IN) :: allowed_to_read REAL :: pi pi = 4.*atan(1.) xlv1 = cl-cpv qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu ! 7.03 bvtr1 = 1.+bvtr bvtr2 = 2.5+.5*bvtr bvtr3 = 3.+bvtr bvtr4 = 4.+bvtr g1pbr = rgmma(bvtr1) g3pbr = rgmma(bvtr3) g4pbr = rgmma(bvtr4) ! 17.837825 g5pbro2 = rgmma(bvtr2) ! 1.8273 pvtr = avtr*g4pbr/6. eacrr = 1.0 pacrr = pi*n0r*avtr*g3pbr*.25*eacrr precr1 = 2.*pi*n0r*.78 precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 xm0 = (di0/dicon)**2 xmmax = (dimax/dicon)**2 ! bvts1 = 1.+bvts bvts2 = 2.5+.5*bvts bvts3 = 3.+bvts bvts4 = 4.+bvts g1pbs = rgmma(bvts1) !.8875 g3pbs = rgmma(bvts3) g4pbs = rgmma(bvts4) ! 12.0786 g5pbso2 = rgmma(bvts2) pvts = avts*g4pbs/6. pacrs = pi*n0s*avts*g3pbs*.25 precs1 = 4.*n0s*.65 precs2 = 4.*n0s*.44*avts**.5*g5pbso2 pidn0r = pi*denr*n0r pidn0s = pi*dens*n0s ! END SUBROUTINE ncloud3init END MODULE module_mp_ncloud3