MODULE compute_soiltemp_mod implicit none !----------------------------------------------------------------------- ! Author: LL ! Purpose: This module gathers the different routines used in the PEM to compute the soil temperature evolution and initialisation. ! ! Note: depths of layers and mid-layers, soil thermal inertia and ! heat capacity are commons in comsoil_PEM.h !----------------------------------------------------------------------- contains !======================================================================= SUBROUTINE compute_tsoil_pem(ngrid,nsoil,firstcall,therm_i,timestep,tsurf,tsoil) use comsoil_h_PEM, only: layer_PEM, mlayer_PEM, mthermdiff_PEM, thermdiff_PEM, coefq_PEM, coefd_PEM, mu_PEM, alph_PEM, beta_PEM, fluxgeo use comsoil_h, only: volcapa implicit none !----------------------------------------------------------------------- ! Author: LL ! Purpose: Compute soil temperature using an implict 1st order scheme ! ! Note: depths of layers and mid-layers, soil thermal inertia and ! heat capacity are commons in comsoil_PEM.h !----------------------------------------------------------------------- #include "dimensions.h" ! Inputs: ! ------- integer, intent(in) :: ngrid ! number of (horizontal) grid-points integer, intent(in) :: nsoil ! number of soil layers logical, intent(in) :: firstcall ! identifier for initialization call real, dimension(ngrid,nsoil), intent(in) :: therm_i ! thermal inertia [SI] real, intent(in) :: timestep ! time step [s] real, dimension(ngrid), intent(in) :: tsurf ! surface temperature [K] ! Outputs: !--------- real, dimension(ngrid,nsoil), intent(inout) :: tsoil ! soil (mid-layer) temperature [K] ! Local: !------- integer :: ig, ik ! 0. Initialisations and preprocessing step if (firstcall) then ! 0.1 Build mthermdiff_PEM(:), the mid-layer thermal diffusivities do ig = 1,ngrid do ik = 0,nsoil - 1 mthermdiff_PEM(ig,ik) = therm_i(ig,ik + 1)*therm_i(ig,ik + 1)/volcapa enddo enddo ! 0.2 Build thermdiff(:), the "interlayer" thermal diffusivities do ig = 1,ngrid do ik = 1,nsoil - 1 thermdiff_PEM(ig,ik) = ((layer_PEM(ik) - mlayer_PEM(ik - 1))*mthermdiff_PEM(ig,ik) & + (mlayer_PEM(ik) - layer_PEM(ik))*mthermdiff_PEM(ig,ik - 1))/(mlayer_PEM(ik) - mlayer_PEM(ik - 1)) enddo enddo ! 0.3 Build coefficients mu_PEM, q_{k+1/2}, d_k, alph_PEM ! mu_PEM mu_PEM = mlayer_PEM(0)/(mlayer_PEM(1) - mlayer_PEM(0)) ! q_{1/2} coefq_PEM(0) = volcapa*layer_PEM(1)/timestep ! q_{k+1/2} do ik = 1,nsoil - 1 coefq_PEM(ik) = volcapa*(layer_PEM(ik + 1) - layer_PEM(ik))/timestep enddo do ig = 1,ngrid ! d_k do ik = 1,nsoil - 1 coefd_PEM(ig,ik) = thermdiff_PEM(ig,ik)/(mlayer_PEM(ik)-mlayer_PEM(ik - 1)) enddo ! alph_PEM_{N-1} alph_PEM(ig,nsoil - 1) = coefd_PEM(ig,nsoil-1)/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) ! alph_PEM_k do ik = nsoil - 2,1,-1 alph_PEM(ig,ik) = coefd_PEM(ig,ik)/(coefq_PEM(ik) + coefd_PEM(ig,ik + 1)*(1. - alph_PEM(ig,ik + 1)) + coefd_PEM(ig,ik)) enddo enddo ! of do ig=1,ngrid endif ! of if (firstcall) if (.not. firstcall) THEN ! 2. Compute soil temperatures ! First layer: do ig = 1,ngrid tsoil(ig,1) = (tsurf(ig) + mu_PEM*beta_PEM(ig,1)*thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0))/ & (1. + mu_PEM*(1. - alph_PEM(ig,1))*thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0)) ! Other layers: do ik = 1,nsoil - 1 tsoil(ig,ik + 1) = alph_PEM(ig,ik)*tsoil(ig,ik) + beta_PEM(ig,ik) enddo enddo endif ! 2. Compute beta_PEM coefficients (preprocessing for next time step) ! Bottom layer, beta_PEM_{N-1} do ig = 1,ngrid beta_PEM(ig,nsoil - 1) = coefq_PEM(nsoil - 1)*tsoil(ig,nsoil)/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) & + fluxgeo/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) enddo ! Other layers do ik = nsoil-2,1,-1 do ig = 1,ngrid beta_PEM(ig,ik) = (coefq_PEM(ik)*tsoil(ig,ik + 1) + coefd_PEM(ig,ik + 1)*beta_PEM(ig,ik + 1))/ & (coefq_PEM(ik) + coefd_PEM(ig,ik + 1)*(1. - alph_PEM(ig,ik + 1)) + coefd_PEM(ig,ik)) enddo enddo END SUBROUTINE compute_tsoil_pem !======================================================================= SUBROUTINE ini_tsoil_pem(ngrid,nsoil,therm_i,tsurf,tsoil) use comsoil_h_PEM, only: layer_PEM, mlayer_PEM, mthermdiff_PEM, thermdiff_PEM, coefq_PEM, coefd_PEM, mu_PEM, alph_PEM, beta_PEM, fluxgeo use comsoil_h, only: volcapa implicit none !----------------------------------------------------------------------- ! Author: LL ! Purpose: Initialize the soil with the solution of the stationnary problem of Heat Conduction. Boundarry conditions: Tsurf averaged from the PCM; Geothermal flux at the bottom layer ! ! Note: depths of layers and mid-layers, soil thermal inertia and ! heat capacity are commons in comsoil_PEM.h !----------------------------------------------------------------------- #include "dimensions.h" ! Inputs: !-------- integer, intent(in) :: ngrid ! number of (horizontal) grid-points integer, intent(in) :: nsoil ! number of soil layers real, dimension(ngrid,nsoil), intent(in) :: therm_i ! thermal inertia [SI] real, dimension(ngrid), intent(in) :: tsurf ! surface temperature [K] ! Outputs: !--------- real, dimension(ngrid,nsoil), intent(inout) :: tsoil ! soil (mid-layer) temperature [K] ! Local: !------- integer :: ig, ik, iloop ! 0. Initialisations and preprocessing step ! 0.1 Build mthermdiff_PEM(:), the mid-layer thermal diffusivities do ig = 1,ngrid do ik = 0,nsoil - 1 mthermdiff_PEM(ig,ik) = therm_i(ig,ik + 1)*therm_i(ig,ik + 1)/volcapa enddo enddo ! 0.2 Build thermdiff(:), the "interlayer" thermal diffusivities do ig = 1,ngrid do ik = 1,nsoil - 1 thermdiff_PEM(ig,ik) = ((layer_PEM(ik) - mlayer_PEM(ik - 1))*mthermdiff_PEM(ig,ik) & + (mlayer_PEM(ik) - layer_PEM(ik))*mthermdiff_PEM(ig,ik - 1))/(mlayer_PEM(ik) - mlayer_PEM(ik - 1)) enddo enddo ! 0.3 Build coefficients mu_PEM, q_{k+1/2}, d_k, alph_PEM ! mu_PEM mu_PEM = mlayer_PEM(0)/(mlayer_PEM(1) - mlayer_PEM(0)) ! q_{1/2} coefq_PEM(:) = 0. ! q_{k+1/2} do ig = 1,ngrid ! d_k do ik = 1,nsoil - 1 coefd_PEM(ig,ik) = thermdiff_PEM(ig,ik)/(mlayer_PEM(ik) - mlayer_PEM(ik - 1)) enddo ! alph_PEM_{N-1} alph_PEM(ig,nsoil - 1) = coefd_PEM(ig,nsoil - 1)/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) ! alph_PEM_k do ik = nsoil - 2,1,-1 alph_PEM(ig,ik) = coefd_PEM(ig,ik)/(coefq_PEM(ik) + coefd_PEM(ig,ik + 1)*(1. - alph_PEM(ig,ik + 1)) + coefd_PEM(ig,ik)) enddo enddo ! of do ig=1,ngrid ! 1. Compute beta_PEM coefficients ! Bottom layer, beta_PEM_{N-1} do ig = 1,ngrid beta_PEM(ig,nsoil - 1) = coefq_PEM(nsoil - 1)*tsoil(ig,nsoil)/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) & + fluxgeo/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) enddo ! Other layers do ik = nsoil - 2,1,-1 do ig = 1,ngrid beta_PEM(ig,ik) = (coefq_PEM(ik)*tsoil(ig,ik + 1) + coefd_PEM(ig,ik+1)*beta_PEM(ig,ik + 1))/ & (coefq_PEM(ik) + coefd_PEM(ig,ik + 1)*(1. - alph_PEM(ig,ik + 1)) + coefd_PEM(ig,ik)) enddo enddo ! 2. Compute soil temperatures do iloop = 1,10 !just convergence do ig = 1,ngrid ! First layer: tsoil(ig,1) = (tsurf(ig) + mu_PEM*beta_PEM(ig,1)*thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0))/ & (1. + mu_PEM*(1. - alph_PEM(ig,1))*thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0)) ! Other layers: do ik = 1,nsoil - 1 tsoil(ig,ik + 1) = alph_PEM(ig,ik)*tsoil(ig,ik) + beta_PEM(ig,ik) enddo enddo enddo ! iloop END SUBROUTINE ini_tsoil_pem END MODULE compute_soiltemp_mod