subroutine optci(PQMO,NLAY,ZLEV,PLEV,TLEV,TMID,PMID, & DTAUI,TAUCUMI,COSBI,WBARI,TAUGSURF,SEASHAZEFACT,& DIAG_OPTH,DIAG_OPTT,CDCOLUMN) use radinc_h use radcommon_h, only: gasi,gasi_recomb,tlimit,Cmk,gzlat_ig, & tgasref,pfgasref,wnoi,scalep,indi use gases_h use datafile_mod, only: haze_opt_file use comcstfi_mod, only: pi,r use callkeys_mod, only: continuum,graybody,corrk_recombin, & callclouds,callmufi,seashaze,uncoupl_optic_haze,& opt4clouds,FHIR,FCIR use tracer_h, only: nmicro,nice,ices_indx implicit none !================================================================== ! ! Purpose ! ------- ! Calculates longwave optical constants at each level. For each ! layer and spectral interval in the IR it calculates WBAR, DTAU ! and COSBAR. For each level it calculates TAU. ! ! TAUCUMI(L,LW) is the cumulative optical depth at level L (or alternatively ! at the *bottom* of layer L), LW is the spectral wavelength interval. ! ! TLEV(L) - Temperature at the layer boundary (i.e., level) ! PLEV(L) - Pressure at the layer boundary (i.e., level) ! ! Authors ! ------- ! Adapted from the NASA Ames code by R. Wordsworth (2009) ! ! Modified ! -------- ! J. Vatant d'Ollone (2016-17) ! --> Clean and adaptation to Titan ! B. de Batz de Trenquelléon (2022-2023) ! --> Clean and correction ! --> New optics added for Titan's clouds ! !================================================================== !========================================================== ! Input/Output !========================================================== REAL*8, INTENT(IN) :: PQMO(nlay,nmicro) ! Tracers for microphysics optics (X/m2). INTEGER, INTENT(IN) :: NLAY ! Number of pressure layers (for pqmo) REAL*8, INTENT(IN) :: ZLEV(NLAY+1) REAL*8, INTENT(IN) :: PLEV(L_LEVELS), TLEV(L_LEVELS) REAL*8, INTENT(IN) :: TMID(L_LEVELS), PMID(L_LEVELS) REAL*8, INTENT(IN) :: SEASHAZEFACT(L_LEVELS) INTEGER, INTENT(IN) :: CDCOLUMN REAL*8, INTENT(OUT) :: DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8, INTENT(OUT) :: TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) REAL*8, INTENT(OUT) :: COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8, INTENT(OUT) :: WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8, INTENT(OUT) :: TAUGSURF(L_NSPECTI,L_NGAUSS-1) REAL*8, INTENT(OUT) :: DIAG_OPTH(L_LEVELS,L_NSPECTI,6) REAL*8, INTENT(OUT) :: DIAG_OPTT(L_LEVELS,L_NSPECTI,6) ! ========================================================== real*8 DTAUKI(L_LEVELS,L_NSPECTI,L_NGAUSS) ! Titan customisation ! J. Vatant d'Ollone (2016) real*8 DHAZE_T(L_LEVELS,L_NSPECTI) real*8 DHAZES_T(L_LEVELS,L_NSPECTI) real*8 SSA_T(L_LEVELS,L_NSPECTI) real*8 ASF_T(L_LEVELS,L_NSPECTI) ! ========================== integer L, NW, NG, K, LK, IAER integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) real*8 ANS, TAUGAS real*8 DPR(L_LEVELS), U(L_LEVELS) real*8 LCOEF(4), LKCOEF(L_LEVELS,4) real*8 DCONT double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc double precision p_cross real*8 KCOEF(4) ! temporary variable to reduce memory access time to gasi real*8 tmpk(2,2) ! temporary variables for multiple aerosol calculation real*8 atemp real*8 btemp(L_NLAYRAD,L_NSPECTI) ! variables for k in units m^-1 real*8 dz(L_LEVELS) integer igas, jgas, ilay integer interm ! Variables for haze optics character(len=200) file_path logical file_ok integer dumch real*8 dumwvl integer ilev_cutoff real*8 corr_haze ! Variables for new optics integer iq, iw, FTYPE, CTYPE real*8 m0as,m0af,m0ccn,m3as,m3af,m3ccn,m3cld real*8 dtauaer_s,dtauaer_f,dtau_ccn,dtau_cld real*8,save :: rhoaer_s(L_NSPECTI),ssa_s(L_NSPECTI),asf_s(L_NSPECTI) real*8,save :: rhoaer_f(L_NSPECTI),ssa_f(L_NSPECTI),asf_f(L_NSPECTI) real*8,save :: ssa_ccn(L_NSPECTI),asf_ccn(L_NSPECTI) real*8,save :: ssa_cld(L_NSPECTI),asf_cld(L_NSPECTI) !$OMP THREADPRIVATE(rhoaer_s,rhoaer_f,ssa_s,ssa_f,ssa_cld,asf_s,asf_f,asf_cld) logical,save :: firstcall=.true. !$OMP THREADPRIVATE(firstcall) !! AS: to save time in computing continuum (see bilinearbig) IF (.not.ALLOCATED(indi)) THEN ALLOCATE(indi(L_NSPECTI,ngasmx,ngasmx)) indi = -9999 ! this initial value means "to be calculated" ENDIF ! Some initialisation because there's a pb with disr_haze at the limits (nw=1) ! I should check this - For now we set vars to zero : better than nans - JVO 2017 DHAZE_T(:,:) = 0.0 SSA_T(:,:) = 0.0 ASF_T(:,:) = 0.0 ! Load tabulated haze optical properties if needed. ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ IF (firstcall .AND. callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN OPEN(12,file=TRIM(haze_opt_file),form='formatted') ! The file has been inquired in physiq_mod firstcall READ(12,*) ! dummy header DO NW=1,L_NSPECTI READ(12,*) dumch, dumwvl, rhoaer_f(nw), ssa_f(nw), asf_f(nw), rhoaer_s(nw), ssa_s(nw), asf_s(nw) ENDDO CLOSE(12) ENDIF !======================================================================= ! Determine the total gas opacity throughout the column, for each ! spectral interval, NW, and each Gauss point, NG. taugsurf(:,:) = 0.0 dpr(:) = 0.0 lkcoef(:,:) = 0.0 ! Level of cutoff !~~~~~~~~~~~~~~~~ ilev_cutoff = 26 do K=2,L_LEVELS ilay = L_NLAYRAD+1 - k/2 ! int. arithmetic => gives the gcm layer index (reversed) DPR(k) = PLEV(K)-PLEV(K-1) ! if we have continuum opacities, we need dz dz(k) = dpr(k)*R*TMID(K)/(gzlat_ig(ilay)*PMID(K)) U(k) = Cmk(ilay)*DPR(k) ! only Cmk line in optci.F call tpindex(PMID(K),TMID(K),pfgasref,tgasref,LCOEF,MT(K),MP(K)) do LK=1,4 LKCOEF(K,LK) = LCOEF(LK) end do end do ! L_LEVELS do NW=1,L_NSPECTI ! We ignore K=1... do K=2,L_LEVELS ! int. arithmetic => gives the gcm layer index (reversed) ilay = L_NLAYRAD+1 - k/2 ! Optics coupled with the microphysics : IF (callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN !========================================================================================== ! Old optics (must have callclouds = .false.): !========================================================================================== IF (.NOT. opt4clouds) THEN m3as = pqmo(ilay,2) / 2.0 m3af = pqmo(ilay,4) / 2.0 ! Cut-off IF (ilay .lt. ilev_cutoff) THEN m3as = pqmo(ilev_cutoff,2) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(ilev_cutoff+1)-zlev(ilev_cutoff)) m3af = pqmo(ilev_cutoff,4) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(ilev_cutoff+1)-zlev(ilev_cutoff)) ENDIF dtauaer_s = m3as*rhoaer_s(nw) dtauaer_f = m3af*rhoaer_f(nw) !========================================================================================== ! New optics : !========================================================================================== ELSE iw = (L_NSPECTI + 1) - NW + L_NSPECTV ! Visible first and return !----------------------------- ! HAZE (Spherical + Fractal) : !----------------------------- FTYPE = 1 ! Spherical aerosols : !--------------------- CTYPE = 5 m0as = pqmo(ilay,1) / 2.0 m3as = pqmo(ilay,2) / 2.0 ! If not callclouds : must have a cut-off IF (.NOT. callclouds) THEN IF (ilay .lt. ilev_cutoff) THEN m0as = pqmo(ilev_cutoff,1) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(ilev_cutoff+1)-zlev(ilev_cutoff)) m3as = pqmo(ilev_cutoff,2) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(ilev_cutoff+1)-zlev(ilev_cutoff)) ENDIF ENDIF call get_haze_and_cloud_opacity(FTYPE,CTYPE,m0as,m3as,iw,dtauaer_s,ssa_s(nw),asf_s(nw)) ! Fractal aerosols : !------------------- CTYPE = FTYPE m0af = pqmo(ilay,3) / 2.0 m3af = pqmo(ilay,4) / 2.0 ! If not callclouds : must have a cut-off IF (.NOT. callclouds) THEN IF (ilay .lt. ilev_cutoff) THEN m0af = pqmo(ilev_cutoff,3) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(ilev_cutoff+1)-zlev(ilev_cutoff)) m3af = pqmo(ilev_cutoff,4) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(ilev_cutoff+1)-zlev(ilev_cutoff)) ENDIF ENDIF call get_haze_and_cloud_opacity(FTYPE,CTYPE,m0af,m3af,iw,dtauaer_f,ssa_f(nw),asf_f(nw)) ENDIF ! Tuning of optical properties for haze : !dtauaer_s = dtauaer_s * (FHIR * (1-ssa_s(nw)) + ssa_s(nw)) !ssa_s(nw) = ssa_s(nw) / (FHIR * (1-ssa_s(nw)) + ssa_s(nw)) dtauaer_f = dtauaer_f * (FHIR * (1-ssa_f(nw)) + ssa_f(nw)) ssa_f(nw) = ssa_f(nw) / (FHIR * (1-ssa_f(nw)) + ssa_f(nw)) ! Total of Haze opacity (dtau), SSA (w) and ASF (COS) : DHAZE_T(k,nw) = dtauaer_s + dtauaer_f IF (dtauaer_s + dtauaer_f .GT. 1.D-30) THEN SSA_T(k,nw) = ( dtauaer_s*ssa_s(nw) + dtauaer_f*ssa_f(nw) ) / ( dtauaer_s+dtauaer_f ) ASF_T(k,nw) = ( dtauaer_s*ssa_s(nw)*asf_s(nw) + dtauaer_f*ssa_f(nw)*asf_f(nw) ) & / ( ssa_s(nw)*dtauaer_s + ssa_f(nw)*dtauaer_f ) ELSE DHAZE_T(k,nw) = 0.D0 SSA_T(k,nw) = 1.0 ASF_T(k,nw) = 1.0 ENDIF ! Opacity and albedo adjustement below cutoff : IF (.NOT. callclouds) THEN corr_haze=0.6-0.4*TANH((PMID(K)*100.-2500.)/250.) IF (ilay .lt. ilev_cutoff) THEN DHAZE_T(k,nw) = DHAZE_T(k,nw) * corr_haze ENDIF ENDIF ! Diagnostics for the haze : DIAG_OPTH(k,nw,1) = DHAZE_T(k,nw) ! dtau DIAG_OPTH(k,nw,2) = SSA_T(k,nw) ! wbar DIAG_OPTH(k,nw,3) = ASF_T(k,nw) ! gbar !--------------------- ! CLOUDS (Spherical) : !--------------------- IF (callclouds) THEN CTYPE = 0 m0ccn = pqmo(ilay,5) / 2.0 m3ccn = pqmo(ilay,6) / 2.0 m3cld = pqmo(ilay,6) / 2.0 ! Clear / Dark column method : !----------------------------- ! CCN's SSA : call get_haze_and_cloud_opacity(FTYPE,FTYPE,m0ccn,m3ccn,iw,dtau_ccn,ssa_ccn(nw),asf_ccn(nw)) ! Clear column (CCN, C2H2, C2H6, HCN, AC6H6) : IF (CDCOLUMN == 0) THEN DO iq = 2, nice m3cld = m3cld + (pqmo(ilay,ices_indx(iq)) / 2.0) ENDDO call get_haze_and_cloud_opacity(FTYPE,CTYPE,m0ccn,m3cld,iw,dtau_cld,ssa_cld(nw),asf_cld(nw)) ! Dark column (CCN, CH4, C2H2, C2H6, HCN, AC6H6) : ELSEIF (CDCOLUMN == 1) THEN DO iq = 1, nice m3cld = m3cld + (pqmo(ilay,ices_indx(iq)) / 2.0) ENDDO call get_haze_and_cloud_opacity(FTYPE,CTYPE,m0ccn,m3cld,iw,dtau_cld,ssa_cld(nw),asf_cld(nw)) ELSE WRITE(*,*) 'WARNING OPTCI.F90 : CDCOLUMN MUST BE 0 OR 1' WRITE(*,*) 'WE USE DARK COLUMN ...' DO iq = 1, nice m3cld = m3cld + (pqmo(ilay,ices_indx(iq)) / 2.0) ENDDO call get_haze_and_cloud_opacity(FTYPE,CTYPE,m0ccn,m3cld,iw,dtau_cld,ssa_cld(nw),asf_cld(nw)) ENDIF ! For small dropplets, opacity of nucleus dominates... dtau_cld = (dtau_cld*m3ccn + dtau_cld*m3cld) / (m3ccn + m3cld) ssa_cld(nw) = (ssa_ccn(nw)*m3ccn + ssa_cld(nw)*m3cld) / (m3ccn + m3cld) ! Tuning of optical properties for clouds : dtau_cld = dtau_cld * (FCIR * (1-ssa_cld(nw)) + ssa_cld(nw)) ssa_cld(nw) = ssa_cld(nw) / (FCIR * (1-ssa_cld(nw)) + ssa_cld(nw)) ! Total of Haze + Clouds opacity (dtau), SSA (w) and ASF (COS) : DHAZE_T(k,nw) = dtauaer_s + dtauaer_f + dtau_cld IF (DHAZE_T(k,nw) .GT. 1.D-30) THEN SSA_T(k,nw) = ( dtauaer_s*ssa_s(nw) + dtauaer_f*ssa_f(nw) + dtau_cld*ssa_cld(nw) ) / ( dtauaer_s+dtauaer_f+dtau_cld ) ASF_T(k,nw) = ( dtauaer_s*ssa_s(nw)*asf_s(nw) + dtauaer_f*ssa_f(nw)*asf_f(nw) + dtau_cld*ssa_cld(nw)*asf_cld(nw) ) & / ( ssa_s(nw)*dtauaer_s + ssa_f(nw)*dtauaer_f + ssa_cld(nw)*dtau_cld ) ELSE DHAZE_T(k,nw) = 0.D0 SSA_T(k,nw) = 1.0 ASF_T(k,nw) = 1.0 ENDIF ! Diagnostics for clouds : DIAG_OPTT(k,nw,1) = DHAZE_T(k,nw) ! dtau DIAG_OPTT(k,nw,2) = SSA_T(k,nw) ! wbar DIAG_OPTT(k,nw,3) = ASF_T(k,nw) ! gbar ELSE ! Diagnostics for clouds : DIAG_OPTT(k,nw,1) = 0.D0 ! dtau DIAG_OPTT(k,nw,2) = 1.0 ! wbar DIAG_OPTT(k,nw,3) = 1.0 ! gbar ENDIF ! Optics and microphysics no coupled : ELSE ! Call fixed vertical haze profile of extinction - same for all columns call disr_haze(dz(k),plev(k),wnoi(nw),DHAZE_T(k,nw),SSA_T(k,nw),ASF_T(k,nw)) if (seashaze) DHAZE_T(k,nw) = DHAZE_T(k,nw)*seashazefact(k) ! Diagnostics for the haze : DIAG_OPTH(k,nw,1) = DHAZE_T(k,nw) ! dtau DIAG_OPTH(k,nw,2) = SSA_T(k,nw) ! wbar DIAG_OPTH(k,nw,3) = ASF_T(k,nw) ! gbar ! Diagnostics for clouds : DIAG_OPTT(k,nw,1) = 0.D0 ! dtau DIAG_OPTT(k,nw,2) = 1.0 ! wbar DIAG_OPTT(k,nw,3) = 1.0 ! gbar ENDIF ! ENDIF callmufi DCONT = 0.0d0 ! continuum absorption if(continuum.and.(.not.graybody))then ! include continua if necessary wn_cont = dble(wnoi(nw)) T_cont = dble(TMID(k)) do igas=1,ngasmx p_cont = dble(PMID(k)*scalep*gfrac(igas,ilay)) dtemp=0.0d0 if(igas.eq.igas_N2)then interm = indi(nw,igas,igas) call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) indi(nw,igas,igas) = interm elseif(igas.eq.igas_H2)then ! first do self-induced absorption interm = indi(nw,igas,igas) call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) indi(nw,igas,igas) = interm ! then cross-interactions with other gases do jgas=1,ngasmx p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) dtempc = 0.0d0 if(jgas.eq.igas_N2)then interm = indi(nw,igas,jgas) call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indi(nw,igas,jgas) = interm endif dtemp = dtemp + dtempc enddo elseif(igas.eq.igas_CH4)then ! first do self-induced absorption interm = indi(nw,igas,igas) call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) indi(nw,igas,igas) = interm ! then cross-interactions with other gases do jgas=1,ngasmx p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) dtempc = 0.0d0 if(jgas.eq.igas_N2)then interm = indi(nw,igas,jgas) call interpolateN2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indi(nw,igas,jgas) = interm endif dtemp = dtemp + dtempc enddo endif DCONT = DCONT + dtemp enddo DCONT = DCONT*dz(k) endif do ng=1,L_NGAUSS-1 ! Now compute TAUGAS ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically ! the execution time of optci/v -> ~ factor 2 on the whole radiative ! transfer on the tested simulations ! if (corrk_recombin) then tmpk = GASI_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NW,NG) else tmpk = GASI(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) endif KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG) KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG) KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG) KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG) ! Interpolate the gaseous k-coefficients to the requested T,P values ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) TAUGAS = U(k)*ANS TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT DTAUKI(K,nw,ng) = TAUGAS & + DCONT & ! For parameterized continuum absorption + DHAZE_T(K,NW) ! For Titan haze end do ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), ! which holds continuum opacity only NG = L_NGAUSS DTAUKI(K,nw,ng) = 0.d0 & + DCONT & ! For parameterized continuum absorption + DHAZE_T(K,NW) ! For Titan Haze DIAG_OPTH(K,nw,4) = 0.d0 DIAG_OPTH(K,nw,5) = TAUGAS DIAG_OPTH(K,nw,6) = DCONT DIAG_OPTT(K,nw,4) = 0.d0 DIAG_OPTT(K,nw,5) = TAUGAS DIAG_OPTT(K,nw,6) = DCONT end do ! k = L_LEVELS end do ! nw = L_NSPECTI !======================================================================= ! Now the full treatment for the layers, where besides the opacity ! we need to calculate the scattering albedo and asymmetry factors ! ====================================================================== ! Haze scattering DO NW=1,L_NSPECTI DO K=2,L_LEVELS DHAZES_T(K,NW) = DHAZE_T(K,NW) * SSA_T(K,NW) ENDDO ENDDO DO NW=1,L_NSPECTI DO L=1,L_NLAYRAD-1 K = 2*L+1 btemp(L,NW) = DHAZES_T(K,NW) + DHAZES_T(K+1,NW) END DO ! L vertical loop ! Last level L = L_NLAYRAD K = 2*L+1 btemp(L,NW) = DHAZES_T(K,NW) END DO ! NW spectral loop DO NW=1,L_NSPECTI NG = L_NGAUSS DO L=1,L_NLAYRAD-1 K = 2*L+1 DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50 atemp = 0. if(DTAUI(L,NW,NG) .GT. 1.0D-9) then atemp = atemp + & ASF_T(K,NW)*DHAZES_T(K,NW) + & ASF_T(K+1,NW)*DHAZES_T(K+1,NW) WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) else WBARI(L,nw,ng) = 0.0D0 DTAUI(L,NW,NG) = 1.0D-9 endif if(btemp(L,nw) .GT. 0.0d0) then cosbi(L,NW,NG) = atemp/btemp(L,nw) else cosbi(L,NW,NG) = 0.0D0 end if END DO ! L vertical loop ! Last level L = L_NLAYRAD K = 2*L+1 DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) ! + 1.e-50 atemp = 0. if(DTAUI(L,NW,NG) .GT. 1.0D-9) then atemp = atemp + ASF_T(K,NW)*DHAZES_T(K,NW) WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) else WBARI(L,nw,ng) = 0.0D0 DTAUI(L,NW,NG) = 1.0D-9 endif if(btemp(L,nw) .GT. 0.0d0) then cosbi(L,NW,NG) = atemp/btemp(L,nw) else cosbi(L,NW,NG) = 0.0D0 end if ! Now the other Gauss points, if needed. DO NG=1,L_NGAUSS-1 IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN DO L=1,L_NLAYRAD-1 K = 2*L+1 DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50 if(DTAUI(L,NW,NG) .GT. 1.0D-9) then WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) else WBARI(L,nw,ng) = 0.0D0 DTAUI(L,NW,NG) = 1.0D-9 endif cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) END DO ! L vertical loop ! Last level L = L_NLAYRAD K = 2*L+1 DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)! + 1.e-50 if(DTAUI(L,NW,NG) .GT. 1.0D-9) then WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) else WBARI(L,nw,ng) = 0.0D0 DTAUI(L,NW,NG) = 1.0D-9 endif cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) END IF END DO ! NG Gauss loop END DO ! NW spectral loop ! Total extinction optical depths !DO NG=1,L_NGAUSS ! full gauss loop ! DO NW=1,L_NSPECTI ! TAUCUMI(1,NW,NG)=0.0D0 ! DO K=2,L_LEVELS ! TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG) ! END DO ! END DO ! end full gauss loop !END DO TAUCUMI(:,:,:) = DTAUKI(:,:,:) ! be aware when comparing with textbook results ! (e.g. Pierrehumbert p. 218) that ! taucumi does not take the =0.5 factor into ! account. It is the optical depth for a vertically ! ascending ray with angle theta = 0. if(firstcall) firstcall = .false. return end subroutine optci