MODULE optci_mod IMPLICIT NONE CONTAINS subroutine optci(PLEV,TLEV,DTAUI,TAUCUMI, & QXIAER,QSIAER,GIAER,COSBI,WBARI,TAUAERO, & TMID,PMID,TAUGSURF,QVAR,MUVAR,FRACVAR) use radinc_h, only: L_LEVELS, L_NLAYRAD, L_NSPECTI, L_NGAUSS, & L_NLEVRAD, L_REFVAR, naerkind use radcommon_h, only: gasi,tlimit,wrefVAR,Cmk,tgasref,pfgasref,wnoi,scalep,indi,glat_ig use gases_h, only: gfrac, ngasmx, igas_N2, igas_He, igas_H2O, igas_H2, & igas_CH4, igas_CO2 use comcstfi_mod, only: g, r, mugaz use callkeys_mod, only: kastprof,continuum,graybody,varspec use recombin_corrk_mod, only: corrk_recombin, gasi_recomb use tpindex_mod, only: tpindex implicit none !================================================================== ! ! Purpose ! ------- ! Calculates longwave optical constants at each level. For each ! layer and spectral interval in the IR it calculates WBAR, DTAU ! and COSBAR. For each level it calculates TAU. ! ! TAUCUMI(L,LW) is the cumulative optical depth at level L (or alternatively ! at the *bottom* of layer L), LW is the spectral wavelength interval. ! ! TLEV(L) - Temperature at the layer boundary (i.e., level) ! PLEV(L) - Pressure at the layer boundary (i.e., level) ! ! Authors ! ------- ! Adapted from the NASA Ames code by R. Wordsworth (2009) ! !================================================================== real*8,intent(out) :: DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) real*8 DTAUKI(L_LEVELS,L_NSPECTI,L_NGAUSS) real*8 TAUI(L_NLEVRAD,L_NSPECTI,L_NGAUSS) real*8,intent(out) :: TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) real*8,intent(in) :: PLEV(L_LEVELS) real*8,intent(in) :: TLEV(L_LEVELS) ! not used real*8,intent(in) :: TMID(L_LEVELS) real*8,intent(in) :: PMID(L_LEVELS) real*8,intent(out) :: COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) real*8,intent(out) :: WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) ! for aerosols real*8,intent(in) :: QXIAER(L_LEVELS,L_NSPECTI,NAERKIND) real*8,intent(in) :: QSIAER(L_LEVELS,L_NSPECTI,NAERKIND) real*8,intent(in) :: GIAER(L_LEVELS,L_NSPECTI,NAERKIND) real*8,intent(in) :: TAUAERO(L_LEVELS,NAERKIND) ! local variables (saved for convenience as need be allocated) real*8,save,allocatable :: TAUAEROLK(:,:,:) real*8,save,allocatable :: TAEROS(:,:,:) !$OMP THREADPRIVATE(TAUAEROLK,TAEROS) integer L, NW, NG, K, LK, IAER integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) real*8 ANS, TAUGAS real*8 DPR(L_LEVELS), U(L_LEVELS) real*8 LCOEF(4), LKCOEF(L_LEVELS,4) real*8,intent(out) :: taugsurf(L_NSPECTI,L_NGAUSS-1) real*8 DCONT,DAERO double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc double precision p_cross ! variable species mixing ratio variables real*8,intent(in) :: QVAR(L_LEVELS) real*8,intent(in) :: MUVAR(L_LEVELS) real*8,intent(in) :: FRACVAR(ngasmx,L_LEVELS) real*8 WRATIO(L_LEVELS) real*8 KCOEF(4) integer NVAR(L_LEVELS) ! temporary variables to reduce memory access time to gasi real*8 tmpk(2,2) real*8 tmpkvar(2,2,2) ! temporary variables for multiple aerosol calculation real*8 atemp real*8 btemp(L_NLAYRAD,L_NSPECTI) ! variables for k in units m^-1 real*8 dz(L_LEVELS) !real*8 rho !! see test below integer igas, jgas integer interm logical :: firstcall=.true. !$OMP THREADPRIVATE(firstcall) !--- Kasting's CIA ---------------------------------------- !real*8, parameter :: Ci(L_NSPECTI)=[ & ! 3.8E-5, 1.2E-5, 2.8E-6, 7.6E-7, 4.5E-7, 2.3E-7, & ! 5.4E-7, 1.6E-6, 0.0, & ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & ! 0.0, 4.0E-7, 4.0E-6, 1.4E-5, & ! 1.0E-5, 1.2E-6, 2.0E-7, 5.0E-8, 3.0E-8, 0.0 ] !real*8, parameter :: Ti(L_NSPECTI)=[ -2.2, -1.9, & ! -1.7, -1.7, -1.7, -1.7, -1.7, -1.7, & ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & ! -1.7,-1.7,-1.7,-1.7,-1.7,-1.7,-1.7, -1.7,0.0 ] !---------------------------------------------------------- if (firstcall) then ! allocate local arrays of size "naerkind" (which are also ! "saved" so that this is done only once in for all even if ! we don't need to store the value from a time step to the next) allocate(TAUAEROLK(L_LEVELS,L_NSPECTI,NAERKIND)) allocate(TAEROS(L_LEVELS,L_NSPECTI,NAERKIND)) firstcall=.false. endif ! of if (firstcall) !! AS: to save time in computing continuum (see bilinearbig) IF (.not.ALLOCATED(indi)) THEN ALLOCATE(indi(L_NSPECTI,ngasmx,ngasmx)) indi = -9999 ! this initial value means "to be calculated" ENDIF !======================================================================= ! Determine the total gas opacity throughout the column, for each ! spectral interval, NW, and each Gauss point, NG. taugsurf(:,:) = 0.0 dpr(:) = 0.0 lkcoef(:,:) = 0.0 do K=2,L_LEVELS DPR(k) = PLEV(K)-PLEV(K-1) !--- Kasting's CIA ---------------------------------------- !dz(k)=dpr(k)*189.02*TMID(K)/(0.03720*PMID(K)) ! this is CO2 path length (in cm) as written by Francois ! delta_z = delta_p * R_specific * T / (g * P) ! But Kasting states that W is in units of _atmosphere_ cm ! So we do !dz(k)=dz(k)*(PMID(K)/1013.25) !dz(k)=dz(k)/100.0 ! in m for SI calc !---------------------------------------------------------- ! if we have continuum opacities, we need dz if(kastprof)then dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K)) U(k) = Cmk*DPR(k)*mugaz/muvar(k) else dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k) U(k) = Cmk*DPR(k)*mugaz/muvar(k) ! only Cmk line in optci.F !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present endif call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) do LK=1,4 LKCOEF(K,LK) = LCOEF(LK) end do end do ! levels ! Spectral dependance of aerosol absorption do iaer=1,naerkind DO NW=1,L_NSPECTI do K=2,L_LEVELS TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXIAER(K,NW,IAER) end do ! levels END DO end do do NW=1,L_NSPECTI do K=2,L_LEVELS DAERO=SUM(TAEROS(K,NW,1:naerkind)) ! aerosol absorption DCONT = 0.0d0 ! continuum absorption if(continuum.and.(.not.graybody))then ! include continua if necessary wn_cont = dble(wnoi(nw)) T_cont = dble(TMID(k)) do igas=1,ngasmx if(gfrac(igas).eq.-1)then ! variable p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol elseif(varspec) then p_cont = dble(PMID(k)*scalep*FRACVAR(igas,k)*(1.-QVAR(k))) else p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) endif dtemp=0.0d0 if(igas.eq.igas_N2)then interm = indi(nw,igas,igas) call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) indi(nw,igas,igas) = interm elseif(igas.eq.igas_H2)then ! first do self-induced absorption interm = indi(nw,igas,igas) call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) indi(nw,igas,igas) = interm ! then cross-interactions with other gases do jgas=1,ngasmx if(varspec) then p_cross = dble(PMID(k)*scalep*FRACVAR(jgas,k)*(1.-QVAR(k))) else p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) endif dtempc = 0.0d0 if(jgas.eq.igas_N2)then interm = indi(nw,igas,jgas) call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indi(nw,igas,jgas) = interm elseif(jgas.eq.igas_CO2)then interm = indi(nw,igas,jgas) call interpolateCO2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indi(nw,igas,jgas) = interm elseif(jgas.eq.igas_He)then interm = indi(nw,igas,jgas) call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indi(nw,igas,jgas) = interm endif dtemp = dtemp + dtempc enddo elseif(igas.eq.igas_CH4)then ! first do self-induced absorption interm = indi(nw,igas,igas) call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) indi(nw,igas,igas) = interm ! then cross-interactions with other gases do jgas=1,ngasmx if(varspec) then p_cross = dble(PMID(k)*scalep*FRACVAR(jgas,k)*(1.-QVAR(k))) else p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) endif dtempc = 0.0d0 if(jgas.eq.igas_H2)then interm = indi(nw,igas,jgas) call interpolateH2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indi(nw,igas,jgas) = interm elseif(jgas.eq.igas_CO2)then interm = indi(nw,igas,jgas) call interpolateCO2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indi(nw,igas,jgas) = interm elseif(jgas.eq.igas_He)then interm = indi(nw,igas,jgas) call interpolateHeCH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indi(nw,igas,jgas) = interm endif dtemp = dtemp + dtempc enddo elseif(igas.eq.igas_H2O.and.T_cont.gt.100.0)then ! Compute self and foreign (with air) continuum of H2O p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! interm = indi(nw,igas,igas) call interpolateH2O_self_foreign(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) ! MTCKD v3.3 indi(nw,igas,igas) = interm endif DCONT = DCONT + dtemp enddo ! Oobleck test !rho = PMID(k)*scalep / (TMID(k)*286.99) !if(WNOI(nw).gt.300.0 .and. WNOI(nw).lt.500.0)then ! DCONT = rho * 0.125 * 4.6e-4 !elseif(WNOI(nw).gt.500.0 .and. WNOI(nw).lt.700.0)then ! DCONT = 1000*dpr(k) * 1.0 * 4.6e-4 / g ! DCONT = rho * 1.0 * 4.6e-4 !elseif(WNOI(nw).gt.700.0 .and. WNOI(nw).lt.900.0)then ! DCONT = rho * 0.125 * 4.6e-4 !endif DCONT = DCONT*dz(k) endif do ng=1,L_NGAUSS-1 ! Now compute TAUGAS ! Interpolate between water mixing ratios ! WRATIO = 0.0 if the requested water amount is equal to, or outside the ! the water data range if(L_REFVAR.eq.1)then ! added by RW for special no variable case ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically ! the execution time of optci/v -> ~ factor 2 on the whole radiative ! transfer on the tested simulations ! IF (corrk_recombin) THEN ! added by JVO tmpk = GASI_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) ! contains the mix of recombined species ELSE tmpk = GASI(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) ENDIF KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG) KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG) KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG) KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG) else IF (corrk_recombin) THEN ! added by JVO tmpkvar = GASI_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) ELSE tmpkvar = GASI(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) ENDIF KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) * & ( tmpkvar(1,1,2)-tmpkvar(1,1,1) ) KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) * & ( tmpkvar(1,2,2)-tmpkvar(1,2,1) ) KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) * & ( tmpkvar(2,2,2)-tmpkvar(2,2,1) ) KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) * & ( tmpkvar(2,1,2)-tmpkvar(2,1,1) ) endif ! Interpolate the gaseous k-coefficients to the requested T,P values ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) TAUGAS = U(k)*ANS TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT DTAUKI(K,nw,ng) = TAUGAS & + DCONT & ! For parameterized continuum absorption + DAERO ! For aerosol absorption end do ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), ! which holds continuum opacity only NG = L_NGAUSS DTAUKI(K,nw,ng) = 0.d0 & + DCONT & ! For parameterized continuum absorption + DAERO ! For aerosol absorption end do end do !======================================================================= ! Now the full treatment for the layers, where besides the opacity ! we need to calculate the scattering albedo and asymmetry factors do iaer=1,naerkind DO NW=1,L_NSPECTI DO K=2,L_LEVELS TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER)*QSIAER(K,NW,IAER) ! effect of scattering albedo ENDDO ENDDO end do DO NW=1,L_NSPECTI DO L=1,L_NLAYRAD-1 K = 2*L+1 btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) END DO ! L vertical loop ! Last level L = L_NLAYRAD K = 2*L+1 btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) END DO ! NW spectral loop DO NW=1,L_NSPECTI NG = L_NGAUSS DO L=1,L_NLAYRAD-1 K = 2*L+1 DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50 atemp = 0. if(DTAUI(L,NW,NG) .GT. 1.0D-9) then do iaer=1,naerkind atemp = atemp + & GIAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) + & GIAER(K+1,NW,IAER) * TAUAEROLK(K+1,NW,IAER) end do WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) else WBARI(L,nw,ng) = 0.0D0 DTAUI(L,NW,NG) = 1.0D-9 endif if(btemp(L,nw) .GT. 0.0d0) then cosbi(L,NW,NG) = atemp/btemp(L,nw) else cosbi(L,NW,NG) = 0.0D0 end if END DO ! L vertical loop ! Last level L = L_NLAYRAD K = 2*L+1 DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) ! + 1.e-50 atemp = 0. if(DTAUI(L,NW,NG) .GT. 1.0D-9) then do iaer=1,naerkind atemp = atemp + GIAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) end do WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) else WBARI(L,nw,ng) = 0.0D0 DTAUI(L,NW,NG) = 1.0D-9 endif if(btemp(L,nw) .GT. 0.0d0) then cosbi(L,NW,NG) = atemp/btemp(L,nw) else cosbi(L,NW,NG) = 0.0D0 end if ! Now the other Gauss points, if needed. DO NG=1,L_NGAUSS-1 IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN DO L=1,L_NLAYRAD-1 K = 2*L+1 DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50 if(DTAUI(L,NW,NG) .GT. 1.0D-9) then WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) else WBARI(L,nw,ng) = 0.0D0 DTAUI(L,NW,NG) = 1.0D-9 endif cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) END DO ! L vertical loop ! Last level L = L_NLAYRAD K = 2*L+1 DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)! + 1.e-50 if(DTAUI(L,NW,NG) .GT. 1.0D-9) then WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) else WBARI(L,nw,ng) = 0.0D0 DTAUI(L,NW,NG) = 1.0D-9 endif cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) END IF END DO ! NG Gauss loop END DO ! NW spectral loop ! Total extinction optical depths DO NG=1,L_NGAUSS ! full gauss loop DO NW=1,L_NSPECTI TAUCUMI(1,NW,NG)=0.0D0 DO K=2,L_LEVELS TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG) END DO END DO ! end full gauss loop END DO ! be aware when comparing with textbook results ! (e.g. Pierrehumbert p. 218) that ! taucumi does not take the =0.5 factor into ! account. It is the optical depth for a vertically ! ascending ray with angle theta = 0. !open(127,file='taucum.out') !do nw=1,L_NSPECTI ! write(127,*) taucumi(L_LEVELS,nw,L_NGAUSS) !enddo !close(127) ! print*,'WBARI' ! print*,WBARI ! print*,'DTAUI' ! print*,DTAUI ! call abort end subroutine optci END MODULE optci_mod