module gfluxi_old_mod implicit none contains SUBROUTINE GFLUXI_OLD(NLL,TLEV,NW,DW,DTAU,TAUCUM,W0,COSBAR,UBARI, * RSF,BTOP,BSURF,FTOPUP,FMIDP,FMIDM) use radinc_h, only: L_TAUMAX, NTfac, NTstart use radinc_h, only: L_NLAYRAD, L_LEVELS use radcommon_h, only: planckir use comcstfi_mod, only: pi IMPLICIT NONE !----------------------------------------------------------------------- ! THIS SUBROUTINE TAKES THE OPTICAL CONSTANTS AND BOUNDARY CONDITIONS ! FOR THE INFRARED FLUX AT ONE WAVELENGTH AND SOLVES FOR THE FLUXES AT ! THE LEVELS. THIS VERSION IS SET UP TO WORK WITH LAYER OPTICAL DEPTHS ! MEASURED FROM THE TOP OF EACH LAYER. THE TOP OF EACH LAYER HAS ! OPTICAL DEPTH ZERO. IN THIS SUB LEVEL N IS ABOVE LAYER N. THAT IS LAYER N ! HAS LEVEL N ON TOP AND LEVEL N+1 ON BOTTOM. OPTICAL DEPTH INCREASES ! FROM TOP TO BOTTOM. SEE C.P. MCKAY, TGM NOTES. ! THE TRI-DIAGONAL MATRIX SOLVER IS DSOLVER AND IS DOUBLE PRECISION SO MANY ! VARIABLES ARE PASSED AS SINGLE THEN BECOME DOUBLE IN DSOLVER ! ! NLL = NUMBER OF LEVELS (NLAYERS + 1) MUST BE LESS THAT NL (101) ! TLEV(L_LEVELS) = ARRAY OF TEMPERATURES AT GCM LEVELS ! WAVEN = WAVELENGTH FOR THE COMPUTATION ! DW = WAVENUMBER INTERVAL ! DTAU(NLAYER) = ARRAY OPTICAL DEPTH OF THE LAYERS ! W0(NLEVEL) = SINGLE SCATTERING ALBEDO ! COSBAR(NLEVEL) = ASYMMETRY FACTORS, 0=ISOTROPIC ! UBARI = AVERAGE ANGLE, MUST BE EQUAL TO 0.5 IN IR ! RSF = SURFACE REFLECTANCE ! BTOP = UPPER BOUNDARY CONDITION ON IR INTENSITY (NOT FLUX) ! BSURF = SURFACE EMISSION = (1-RSFI)*PLANCK, INTENSITY (NOT FLUX) ! FP(NLEVEL) = UPWARD FLUX AT LEVELS ! FM(NLEVEL) = DOWNWARD FLUX AT LEVELS ! FMIDP(NLAYER) = UPWARD FLUX AT LAYER MIDPOINTS ! FMIDM(NLAYER) = DOWNWARD FLUX AT LAYER MIDPOINTS !----------------------------------------------------------------------- INTEGER NLL, NLAYER, L, NW, NT, NT2 REAL*8 TERM, CPMID, CMMID REAL*8 PLANCK REAL*8 EM,EP REAL*8 COSBAR(L_NLAYRAD), W0(L_NLAYRAD), DTAU(L_NLAYRAD) REAL*8 TAUCUM(L_LEVELS), DTAUK REAL*8 TLEV(L_LEVELS) REAL*8 WAVEN, DW, UBARI, RSF REAL*8 BTOP, BSURF, FMIDP(L_NLAYRAD), FMIDM(L_NLAYRAD) REAL*8 B0(L_NLAYRAD) REAL*8 B1(L_NLAYRAD) REAL*8 ALPHA(L_NLAYRAD) REAL*8 LAMDA(L_NLAYRAD),XK1(L_NLAYRAD),XK2(L_NLAYRAD) REAL*8 GAMA(L_NLAYRAD),CP(L_NLAYRAD),CM(L_NLAYRAD) REAL*8 CPM1(L_NLAYRAD),CMM1(L_NLAYRAD),E1(L_NLAYRAD) REAL*8 E2(L_NLAYRAD) REAL*8 E3(L_NLAYRAD) REAL*8 E4(L_NLAYRAD) REAL*8 FTOPUP, FLUXUP, FLUXDN REAL*8 :: TAUMAX = L_TAUMAX ! AB : variables for interpolation REAL*8 C1 REAL*8 C2 REAL*8 P1 REAL*8 P2 !======================================================================= ! WE GO WITH THE HEMISPHERIC CONSTANT APPROACH IN THE INFRARED NLAYER = L_NLAYRAD DO L=1,L_NLAYRAD-1 !----------------------------------------------------------------------- ! There is a problem when W0 = 1 ! open(888,file='W0') ! if ((W0(L).eq.0.).or.(W0(L).eq.1.)) then ! write(888,*) W0(L), L, 'gfluxi' ! endif ! Prevent this with an if statement: !----------------------------------------------------------------------- !if (W0(L).eq.1.D0) then ! W0(L) = 0.99999D0 !endif ALPHA(L) = SQRT( (1.0D0-W0(L))/(1.0D0-W0(L)*COSBAR(L)) ) LAMDA(L) = ALPHA(L)*(1.0D0-W0(L)*COSBAR(L))/UBARI !NT = int(TLEV(2*L)*NTfac) - NTstart+1 !NT2 = int(TLEV(2*L+2)*NTfac) - NTstart+1 NT2 = int(TLEV(2*L+2)*10.0D0)-NTstart +1 NT = int(TLEV(2*L)*10.0D0)-NTstart + 1 ! AB : PLANCKIR(NW,NT) is replaced by P1, the linear interpolation result for a temperature NT ! AB : idem for PLANCKIR(NW,NT2) and P2 !C1 = TLEV(2*L) * NTfac - int(TLEV(2*L) * NTfac) !C2 = TLEV(2*L+2)*NTfac - int(TLEV(2*L+2)*NTfac) !P1 = (1.0D0 - C1) * PLANCKIR(NW,NT) + C1 * PLANCKIR(NW,NT+1) !P2 = (1.0D0 - C2) * PLANCKIR(NW,NT2) + C2 * PLANCKIR(NW,NT2+1) !B1(L) = (P2 - P1) / DTAU(L) !B0(L) = P1 B1(L) = (PLANCKIR(NW,NT2)-PLANCKIR(NW,NT))/DTAU(L) B0(L) = PLANCKIR(NW,NT) END DO ! Take care of special lower layer L = L_NLAYRAD !if (W0(L).eq.1.) then ! W0(L) = 0.99999D0 !end if ALPHA(L) = SQRT( (1.0D0-W0(L))/(1.0D0-W0(L)*COSBAR(L)) ) LAMDA(L) = ALPHA(L)*(1.0D0-W0(L)*COSBAR(L))/UBARI ! Tsurf is used for 1st layer source function ! -- same results for most thin atmospheres ! -- and stabilizes integrations !NT = int(TLEV(2*L+1)*NTfac) - NTstart+1 !! For deep, opaque, thick first layers (e.g. Saturn) !! what is below works much better, not unstable, ... !! ... and actually fully accurate because 1st layer temp (JL) !NT = int(TLEV(2*L)*NTfac) - NTstart+1 !! (or this one yields same results !NT = int( (TLEV(2*L)+TLEV(2*L+1))*0.5*NTfac ) - NTstart+1 !NT2 = int(TLEV(2*L)*NTfac) - NTstart+1 NT2 = TLEV(2*L+1)*10.0D0-NTstart +1 NT = TLEV(2*L)*10.0D0-NTstart + 1 ! AB : PLANCKIR(NW,NT) is replaced by P1, the linear interpolation result for a temperature NT ! AB : idem for PLANCKIR(NW,NT2) and P2 !C1 = TLEV(2*L+1)*NTfac - int(TLEV(2*L+1)*NTfac) !C2 = TLEV(2*L) * NTfac - int(TLEV(2*L) * NTfac) !P1 = (1.0D0 - C1) * PLANCKIR(NW,NT) + C1 * PLANCKIR(NW,NT+1) !P2 = (1.0D0 - C2) * PLANCKIR(NW,NT2) + C2 * PLANCKIR(NW,NT2+1) !B1(L) = (P1 - P2) / DTAU(L) !B0(L) = P2 B1(L) = (PLANCKIR(NW,NT)-PLANCKIR(NW,NT2))/DTAU(L) B0(L) = PLANCKIR(NW,NT2) DO L=1,L_NLAYRAD GAMA(L) = (1.0D0-ALPHA(L))/(1.0D0+ALPHA(L)) TERM = UBARI/(1.0D0-W0(L)*COSBAR(L)) ! CPM1 AND CMM1 ARE THE CPLUS AND CMINUS TERMS EVALUATED ! AT THE TOP OF THE LAYER, THAT IS ZERO OPTICAL DEPTH CP(L) = B0(L)+B1(L)*DTAU(L) +B1(L)*TERM CM(L) = B0(L)+B1(L)*DTAU(L) -B1(L)*TERM CPM1(L) = B0(L)+B1(L)*TERM CMM1(L) = B0(L)-B1(L)*TERM ! CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE ! BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH. ! JL18 put CP and CM after the calculation of CPM1 and CMM1 to avoid unecessary calculations. !CP(L) = CPM1(L) +B1(L)*DTAU(L) !CM(L) = CMM1(L) +B1(L)*DTAU(L) END DO ! NOW CALCULATE THE EXPONENTIAL TERMS NEEDED ! FOR THE TRIDIAGONAL ROTATED LAYERED METHOD ! WARNING IF DTAU(J) IS GREATER THAN ABOUT 35 (VAX) ! WE CLIP IT TO AVOID OVERFLOW. DO L=1,L_NLAYRAD EP = EXP( MIN((LAMDA(L)*DTAU(L)),TAUMAX)) ! CLIPPED EXPONENTIAL EM = 1.0D0/EP E1(L) = EP+GAMA(L)*EM E2(L) = EP-GAMA(L)*EM E3(L) = GAMA(L)*EP+EM E4(L) = GAMA(L)*EP-EM END DO ! B81=BTOP ! RENAME BEFORE CALLING DSOLVER - used to be to set ! B82=BSURF ! them to real*8 - but now everything is real*8 ! R81=RSF ! so this may not be necessary ! DOUBLE PRECISION TRIDIAGONAL SOLVER CALL DSOLVER(NLAYER,GAMA,CP,CM,CPM1,CMM1,E1,E2,E3,E4,BTOP, * BSURF,RSF,XK1,XK2) ! NOW WE CALCULATE THE FLUXES AT THE MIDPOINTS OF THE LAYERS. DO L=1,L_NLAYRAD-1 DTAUK = TAUCUM(2*L+1)-TAUCUM(2*L) EP = EXP(MIN(LAMDA(L)*DTAUK,TAUMAX)) ! CLIPPED EXPONENTIAL EM = 1.0D0/EP TERM = UBARI/(1.D0-W0(L)*COSBAR(L)) ! CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE ! BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH CPMID = B0(L)+B1(L)*DTAUK +B1(L)*TERM CMMID = B0(L)+B1(L)*DTAUK -B1(L)*TERM FMIDP(L) = XK1(L)*EP + GAMA(L)*XK2(L)*EM + CPMID FMIDM(L) = XK1(L)*EP*GAMA(L) + XK2(L)*EM + CMMID ! FOR FLUX WE INTEGRATE OVER THE HEMISPHERE TREATING INTENSITY CONSTANT FMIDP(L) = FMIDP(L)*PI FMIDM(L) = FMIDM(L)*PI END DO ! And now, for the special bottom layer L = L_NLAYRAD EP = EXP(MIN((LAMDA(L)*DTAU(L)),TAUMAX)) ! CLIPPED EXPONENTIAL EM = 1.0D0/EP TERM = UBARI/(1.D0-W0(L)*COSBAR(L)) ! CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE ! BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH CPMID = B0(L)+B1(L)*DTAU(L) +B1(L)*TERM CMMID = B0(L)+B1(L)*DTAU(L) -B1(L)*TERM FMIDP(L) = XK1(L)*EP + GAMA(L)*XK2(L)*EM + CPMID FMIDM(L) = XK1(L)*EP*GAMA(L) + XK2(L)*EM + CMMID ! FOR FLUX WE INTEGRATE OVER THE HEMISPHERE TREATING INTENSITY CONSTANT FMIDP(L) = FMIDP(L)*PI FMIDM(L) = FMIDM(L)*PI ! FLUX AT THE PTOP LEVEL EP = 1.0D0 EM = 1.0D0 TERM = UBARI/(1.0D0-W0(1)*COSBAR(1)) ! CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE ! BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH CPMID = B0(1)+B1(1)*TERM CMMID = B0(1)-B1(1)*TERM FLUXUP = XK1(1)*EP + GAMA(1)*XK2(1)*EM + CPMID FLUXDN = XK1(1)*EP*GAMA(1) + XK2(1)*EM + CMMID ! FOR FLUX WE INTEGRATE OVER THE HEMISPHERE TREATING INTENSITY CONSTANT FTOPUP = (FLUXUP-FLUXDN)*PI END SUBROUTINE GFLUXI_OLD end module gfluxi_old_mod