MODULE optcv_pluto_mod IMPLICIT NONE CONTAINS SUBROUTINE OPTCV_pluto(DTAUV,TAUV,TAUCUMV,PLEV, & QXVAER,QSVAER,GVAER,WBARV,COSBV, & TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR) use radinc_h, only: L_NLAYRAD, L_NLEVRAD, L_LEVELS, L_NSPECTV, L_NGAUSS, L_REFVAR, NAERKIND use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig use gases_h, only: gfrac, ngasmx, igas_H2, igas_H2O, igas_He, igas_N2, & igas_CH4, igas_N2 use comcstfi_mod, only: g, r, mugaz use callkeys_mod, only: kastprof,continuum,graybody,callgasvis use recombin_corrk_mod, only: corrk_recombin, gasv_recomb use tpindex_mod, only: tpindex implicit none !================================================================== ! ! Purpose ! ------- ! Calculates shortwave optical constants at each level. ! ! Authors ! ------- ! Adapted from the NASA Ames code by R. Wordsworth (2009) ! !================================================================== ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL ! IT CALCUALTES FOR EACH LAYER, FOR EACH SPECRAL INTERVAL IN THE VISUAL ! LAYER: WBAR, DTAU, COSBAR ! LEVEL: TAU ! ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code ! layer L. NW is spectral wavelength interval, ng the Gauss point index. ! ! TLEV(L) - Temperature at the layer boundary ! PLEV(L) - Pressure at the layer boundary (i.e. level) ! GASV(NT,NPS,NW,NG) - Visual CO2 k-coefficients ! !----------------------------------------------------------------------C real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS) real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) real*8 PLEV(L_LEVELS) real*8 TMID(L_LEVELS), PMID(L_LEVELS) real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) ! For aerosols real*8 QXVAER(L_LEVELS,L_NSPECTV,NAERKIND) real*8 QSVAER(L_LEVELS,L_NSPECTV,NAERKIND) real*8 GVAER(L_LEVELS,L_NSPECTV,NAERKIND) real*8 TAUAERO(L_LEVELS,NAERKIND) real*8 TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND) real*8 TAEROS(L_LEVELS,L_NSPECTV,NAERKIND) integer L, NW, NG, K, NG1(L_NSPECTV), LK, IAER integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) real*8 ANS, TAUGAS real*8 TAURAY(L_NSPECTV) real*8 TRAY(L_LEVELS,L_NSPECTV) real*8 DPR(L_LEVELS), U(L_LEVELS) real*8 LCOEF(4), LKCOEF(L_LEVELS,4) real*8 taugsurf(L_NSPECTV,L_NGAUSS-1), TRAYAER ! mixing ratio variables real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS) real*8 KCOEF(4) integer NVAR(L_LEVELS) ! temporary variables for multiple aerosol calculation real*8 atemp(L_NLAYRAD,L_NSPECTV) real*8 btemp(L_NLAYRAD,L_NSPECTV) real*8 ctemp(L_NLAYRAD,L_NSPECTV) ! variables for k in units m^-1 real*8 rho, dz !======================================================================= ! Determine the total gas opacity throughout the column, for each ! spectral interval, NW, and each Gauss point, NG. ! Calculate the continuum opacities, i.e., those that do not depend on ! NG, the Gauss index. taugsurf(:,:) = 0.0 do K=2,L_LEVELS DPR(K) = PLEV(K)-PLEV(K-1) ! rho = PLEV(K)/(R*TMID(K)) rho = PMID(K)/(R*TMID(K)) dz = -DPR(k)/(g*rho) U(k) = Cmk*DPR(k) call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) do LK=1,4 LKCOEF(K,LK) = LCOEF(LK) end do end do ! levels ! Spectral dependance of aerosol absorption do iaer=1,naerkind do NW=1,L_NSPECTV do K=2,L_LEVELS TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) end do end do end do ! Rayleigh scattering do NW=1,L_NSPECTV do K=2,L_LEVELS TRAY(K,NW) = TAURAY(NW) * DPR(K) end do end do ! we ignore K=1... hope this is ok... do K=2,L_LEVELS do NW=1,L_NSPECTV TRAYAER = TRAY(K,NW) ! TRAYAER is Tau RAYleigh scattering, plus AERosol opacity do iaer=1,naerkind TRAYAER = TRAYAER + TAEROS(K,NW,IAER) end do do NG=1,L_NGAUSS-1 ! Now compute TAUGAS ! Interpolate between water mixing ratios ! WRATIO = 0.0 if the requested water amount is equal to, or outside the ! the water data range if (L_REFVAR.eq.1)then ! added by RW for special no variable case KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) else KCOEF(1) = GASV(MT(K),MP(K),NVAR(K),NW,NG) + WRATIO(K)* & (GASV(MT(K),MP(K),NVAR(K)+1,NW,NG) - & GASV(MT(K),MP(K),NVAR(K),NW,NG)) KCOEF(2) = GASV(MT(K),MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & (GASV(MT(K),MP(K)+1,NVAR(K)+1,NW,NG) - & GASV(MT(K),MP(K)+1,NVAR(K),NW,NG)) KCOEF(3) = GASV(MT(K)+1,MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & (GASV(MT(K)+1,MP(K)+1,NVAR(K)+1,NW,NG) - & GASV(MT(K)+1,MP(K)+1,NVAR(K),NW,NG)) KCOEF(4) = GASV(MT(K)+1,MP(K),NVAR(K),NW,NG) + WRATIO(K)* & (GASV(MT(K)+1,MP(K),NVAR(K)+1,NW,NG) - & GASV(MT(K)+1,MP(K),NVAR(K),NW,NG)) endif ! Interpolate the gaseous k-coefficients to the requested T,P values ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) TAUGAS = U(k)*ANS TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS DTAUKV(K,nw,ng) = TAUGAS + TRAYAER ! write(21,*) 'TB17 taugas',K,NW,ng,TAUGAS end do ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), ! which holds continuum opacity only NG = L_NGAUSS DTAUKV(K,nw,ng) = TRAYAER ! Scattering end do end do !======================================================================= ! Now the full treatment for the layers, where besides the opacity ! we need to calculate the scattering albedo and asymmetry factors !TAUAEROLK(:,:,:) = 1.e-20 ! TB17 do iaer=1,naerkind DO NW=1,L_NSPECTV DO K=2,L_LEVELS TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo !TAUAEROLK(K,NW,IAER) = max(TAUAEROLK(K,NW,IAER),1.e-20) ! TB17 end do ENDDO ENDDO !print*, 'TBbug TAUAEROLK =', TAUAEROLK DO NW=1,L_NSPECTV DO L=1,L_NLAYRAD-1 K = 2*L+1 atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind)) btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ? btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) END DO ! L vertical loop ! Last level L = L_NLAYRAD K = 2*L+1 atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind)) btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ? btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) END DO ! NW spectral loop DO NG=1,L_NGAUSS DO NW=1,L_NSPECTV DO L=1,L_NLAYRAD-1 K = 2*L+1 DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) END DO ! L vertical loop ! Last level L = L_NLAYRAD K = 2*L+1 DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) !print*, 'TB22 : WBARV(L)=',WBARV(L,NW,NG),NW,NG !print*, 'TB22 : ctemp(L)=',ctemp(L,NW),NW !print*, 'TB22 : dtauv(L)=',DTAUV(L,NW,NG),NW,NG END DO ! NW spectral loop END DO ! NG Gauss loop ! Total extinction optical depths DO NG=1,L_NGAUSS ! full gauss loop DO NW=1,L_NSPECTV TAUV(1,NW,NG)=0.0D0 DO L=1,L_NLAYRAD TAUV(L+1,NW,NG)=TAUV(L,NW,NG)+DTAUV(L,NW,NG) END DO TAUCUMV(1,NW,NG)=0.0D0 DO K=2,L_LEVELS TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) END DO END DO END DO ! end full gauss loop return end subroutine optcv_pluto END MODULE optcv_pluto_mod