MODULE inigeomphy_mod CONTAINS SUBROUTINE inigeomphy(iim,jjm,nlayer, & nbp, communicator, & rlatu,rlatv,rlonu,rlonv,aire,cu,cv) USE mod_grid_phy_lmdz, ONLY: klon_glo, & ! number of atmospheric columns (on full grid) regular_lonlat ! regular longitude-latitude grid type USE mod_phys_lmdz_para, ONLY: klon_omp, & ! number of columns (on local omp grid) klon_omp_begin, & ! start index of local omp subgrid klon_omp_end, & ! end index of local omp subgrid klon_mpi_begin ! start indes of columns (on local mpi grid) USE geometry_mod, ONLY : init_geometry, init_geometry_cell_area_for_outputs USE physics_distribution_mod, ONLY : init_physics_distribution USE regular_lonlat_mod, ONLY : init_regular_lonlat, & east, west, north, south, & north_east, north_west, & south_west, south_east USE mod_interface_dyn_phys, ONLY : init_interface_dyn_phys USE nrtype, ONLY: pi USE comvert_mod, ONLY: preff, ap, bp, aps, bps, presnivs, & scaleheight, pseudoalt USE vertical_layers_mod, ONLY: init_vertical_layers IMPLICIT NONE ! ======================================================================= ! Initialisation of the physical constants and some positional and ! geometrical arrays for the physics ! ======================================================================= include "iniprint.h" INTEGER, INTENT (IN) :: nlayer ! number of atmospheric layers INTEGER, INTENT (IN) :: iim ! number of atmospheric columns along longitudes INTEGER, INTENT (IN) :: jjm ! number of atompsheric columns along latitudes INTEGER, INTENT(IN) :: nbp ! number of physics columns for this MPI process INTEGER, INTENT(IN) :: communicator ! MPI communicator REAL, INTENT (IN) :: rlatu(jjm+1) ! latitudes of the physics grid REAL, INTENT (IN) :: rlatv(jjm) ! latitude boundaries of the physics grid REAL, INTENT (IN) :: rlonv(iim+1) ! longitudes of the physics grid REAL, INTENT (IN) :: rlonu(iim+1) ! longitude boundaries of the physics grid REAL, INTENT (IN) :: aire(iim+1,jjm+1) ! area of the dynamics grid (m2) REAL, INTENT (IN) :: cu((iim+1)*(jjm+1)) ! cu coeff. (u_covariant = cu * u) REAL, INTENT (IN) :: cv((iim+1)*jjm) ! cv coeff. (v_covariant = cv * v) INTEGER :: ibegin, iend, offset INTEGER :: i,j,k CHARACTER (LEN=20) :: modname = 'inigeomphy' CHARACTER (LEN=80) :: abort_message REAL :: total_area_phy, total_area_dyn ! boundaries, on global grid REAL,ALLOCATABLE :: boundslon_reg(:,:) REAL,ALLOCATABLE :: boundslat_reg(:,:) ! global array, on full physics grid: REAL,ALLOCATABLE :: latfi_glo(:) REAL,ALLOCATABLE :: lonfi_glo(:) REAL,ALLOCATABLE :: cufi_glo(:) REAL,ALLOCATABLE :: cvfi_glo(:) REAL,ALLOCATABLE :: airefi_glo(:) REAL,ALLOCATABLE :: aire_glo(:) REAL,ALLOCATABLE :: boundslonfi_glo(:,:) REAL,ALLOCATABLE :: boundslatfi_glo(:,:) ! local arrays, on given MPI/OpenMP domain: REAL,ALLOCATABLE,SAVE :: latfi(:) REAL,ALLOCATABLE,SAVE :: lonfi(:) REAL,ALLOCATABLE,SAVE :: cufi(:) REAL,ALLOCATABLE,SAVE :: cvfi(:) REAL,ALLOCATABLE,SAVE :: airefi(:) REAL,ALLOCATABLE,SAVE :: airefi_for_outputs(:) REAL,ALLOCATABLE,SAVE :: boundslonfi(:,:) REAL,ALLOCATABLE,SAVE :: boundslatfi(:,:) INTEGER,ALLOCATABLE,SAVE :: ind_cell_glo_fi(:) !$OMP THREADPRIVATE (latfi,lonfi,cufi,cvfi,airefi,airefi_for_outputs) !$OMP THREADPRIVATE (boundslonfi,boundslatfi,ind_cell_glo_fi) ! Initialize Physics distibution and parameters and interface with dynamics IF (iim*jjm>1) THEN ! general 3D case CALL init_physics_distribution(regular_lonlat,4, & nbp,iim,jjm+1,nlayer,communicator) ELSE ! For 1D model CALL init_physics_distribution(regular_lonlat,4, & 1,1,1,nlayer,communicator) ENDIF CALL init_interface_dyn_phys ! init regular global longitude-latitude grid points and boundaries ALLOCATE(boundslon_reg(iim,2)) ALLOCATE(boundslat_reg(jjm+1,2)) ! specific handling of the -180 longitude scalar grid point boundaries boundslon_reg(1,east)=rlonu(1) boundslon_reg(1,west)=rlonu(iim)-2*PI DO i=2,iim boundslon_reg(i,east)=rlonu(i) boundslon_reg(i,west)=rlonu(i-1) ENDDO boundslat_reg(1,north)= PI/2 boundslat_reg(1,south)= rlatv(1) DO j=2,jjm boundslat_reg(j,north)=rlatv(j-1) boundslat_reg(j,south)=rlatv(j) ENDDO boundslat_reg(jjm+1,north)= rlatv(jjm) boundslat_reg(jjm+1,south)= -PI/2 ! Write values in module regular_lonlat_mod CALL init_regular_lonlat(iim,jjm+1, rlonv(1:iim), rlatu, & boundslon_reg, boundslat_reg) ! Generate global arrays on full physics grid ALLOCATE(latfi_glo(klon_glo),lonfi_glo(klon_glo)) ALLOCATE(cufi_glo(klon_glo),cvfi_glo(klon_glo)) ALLOCATE(airefi_glo(klon_glo)) ALLOCATE(aire_glo(klon_glo)) ALLOCATE(boundslonfi_glo(klon_glo,4)) ALLOCATE(boundslatfi_glo(klon_glo,4)) IF (klon_glo>1) THEN ! general case ! North pole latfi_glo(1)=rlatu(1) lonfi_glo(1)=0. cufi_glo(1) = cu(1) cvfi_glo(1) = cv(1) boundslonfi_glo(1,north_east)= PI boundslatfi_glo(1,north_east)= PI/2 boundslonfi_glo(1,north_west)= -PI boundslatfi_glo(1,north_west)= PI/2 boundslonfi_glo(1,south_west)= -PI boundslatfi_glo(1,south_west)= rlatv(1) boundslonfi_glo(1,south_east)= PI boundslatfi_glo(1,south_east)= rlatv(1) DO j=2,jjm DO i=1,iim k=(j-2)*iim+1+i latfi_glo(k)= rlatu(j) lonfi_glo(k)= rlonv(i) cufi_glo(k) = cu((j-1)*(iim+1)+i) cvfi_glo(k) = cv((j-1)*(iim+1)+i) boundslonfi_glo(k,north_east)=rlonu(i) boundslatfi_glo(k,north_east)=rlatv(j-1) if (i.eq.1) then ! special case for the first longitude's west bound boundslonfi_glo(k,north_west)=rlonu(iim)-2*PI boundslonfi_glo(k,south_west)=rlonu(iim)-2*PI else boundslonfi_glo(k,north_west)=rlonu(i-1) boundslonfi_glo(k,south_west)=rlonu(i-1) endif boundslatfi_glo(k,north_west)=rlatv(j-1) boundslatfi_glo(k,south_west)=rlatv(j) boundslonfi_glo(k,south_east)=rlonu(i) boundslatfi_glo(k,south_east)=rlatv(j) ENDDO ENDDO ! South pole latfi_glo(klon_glo)= rlatu(jjm+1) lonfi_glo(klon_glo)= 0. cufi_glo(klon_glo) = cu((iim+1)*jjm+1) cvfi_glo(klon_glo) = cv((iim+1)*jjm-iim) boundslonfi_glo(klon_glo,north_east)= PI boundslatfi_glo(klon_glo,north_east)= rlatv(jjm) boundslonfi_glo(klon_glo,north_west)= -PI boundslatfi_glo(klon_glo,north_west)= rlatv(jjm) boundslonfi_glo(klon_glo,south_west)= -PI boundslatfi_glo(klon_glo,south_west)= -PI/2 boundslonfi_glo(klon_glo,south_east)= PI boundslatfi_glo(klon_glo,south_east)= -PI/2 ! build airefi(), mesh area on physics grid CALL gr_dyn_fi(1,iim+1,jjm+1,klon_glo,aire,airefi_glo) ! Poles are single points on physics grid airefi_glo(1)=sum(aire(1:iim,1)) airefi_glo(klon_glo)=sum(aire(1:iim,jjm+1)) ! but we also want to store mesh area with poles as on dyn grid ! (for lon-lat outputs) CALL gr_dyn_fi(1,iim+1,jjm+1,klon_glo,aire,aire_glo) ! Sanity check: do total planet area match between physics and dynamics? total_area_dyn=sum(aire(1:iim,1:jjm+1)) total_area_phy=sum(airefi_glo(1:klon_glo)) IF (total_area_dyn/=total_area_phy) THEN WRITE (lunout, *) 'inigeomphy: planet total surface discrepancy !!!' WRITE (lunout, *) ' in the dynamics total_area_dyn=', total_area_dyn WRITE (lunout, *) ' but in the physics total_area_phy=', total_area_phy IF (abs(total_area_dyn-total_area_phy)>0.00001*total_area_dyn) THEN ! stop here if the relative difference is more than 0.001% abort_message = 'planet total surface discrepancy' CALL abort_gcm(modname, abort_message, 1) ENDIF ENDIF ELSE ! klon_glo==1, running the 1D model ! just copy over input values latfi_glo(1)=rlatu(1) lonfi_glo(1)=rlonv(1) cufi_glo(1)=cu(1) cvfi_glo(1)=cv(1) airefi_glo(1)=aire(1,1) aire_glo(1)=aire(1,1) boundslonfi_glo(1,north_east)=rlonu(1) boundslatfi_glo(1,north_east)=PI/2 boundslonfi_glo(1,north_west)=rlonu(2) boundslatfi_glo(1,north_west)=PI/2 boundslonfi_glo(1,south_west)=rlonu(2) boundslatfi_glo(1,south_west)=rlatv(1) boundslonfi_glo(1,south_east)=rlonu(1) boundslatfi_glo(1,south_east)=rlatv(1) ENDIF ! of IF (klon_glo>1) !$OMP PARALLEL ! Now generate local lon/lat/cu/cv/area/bounds arrays ALLOCATE(latfi(klon_omp),lonfi(klon_omp),cufi(klon_omp),cvfi(klon_omp)) ALLOCATE(airefi(klon_omp)) ALLOCATE(airefi_for_outputs(klon_omp)) ALLOCATE(boundslonfi(klon_omp,4)) ALLOCATE(boundslatfi(klon_omp,4)) ALLOCATE(ind_cell_glo_fi(klon_omp)) offset = klon_mpi_begin - 1 airefi(1:klon_omp) = airefi_glo(offset+klon_omp_begin:offset+klon_omp_end) airefi_for_outputs(1:klon_omp) = & aire_glo(offset+klon_omp_begin:offset+klon_omp_end) cufi(1:klon_omp) = cufi_glo(offset+klon_omp_begin:offset+klon_omp_end) cvfi(1:klon_omp) = cvfi_glo(offset+klon_omp_begin:offset+klon_omp_end) lonfi(1:klon_omp) = lonfi_glo(offset+klon_omp_begin:offset+klon_omp_end) latfi(1:klon_omp) = latfi_glo(offset+klon_omp_begin:offset+klon_omp_end) boundslonfi(1:klon_omp,:) = boundslonfi_glo(offset+klon_omp_begin:offset+klon_omp_end,:) boundslatfi(1:klon_omp,:) = boundslatfi_glo(offset+klon_omp_begin:offset+klon_omp_end,:) ind_cell_glo_fi(1:klon_omp)=(/ (i,i=offset+klon_omp_begin,offset+klon_omp_end) /) ! copy over local grid longitudes and latitudes CALL init_geometry(klon_omp,lonfi,latfi,boundslonfi,boundslatfi, & airefi,ind_cell_glo_fi,cufi,cvfi) ! copy over lon-lat mesh area for outputs (with polar "correction") CALL init_geometry_cell_area_for_outputs(klon_omp,airefi_for_outputs) ! copy over preff , ap(), bp(), etc CALL init_vertical_layers(nlayer,preff,scaleheight, & ap,bp,aps,bps,presnivs,pseudoalt) !$OMP END PARALLEL END SUBROUTINE inigeomphy END MODULE inigeomphy_mod