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Chapter 1

Introduction

This document is a user manual for the Generic Climate Model developed by the Labora-
toire de Météorologie Dynamique of the CNRS in Paris. It corresponds to the version of the
model available since January 2011, that includes the new dynamic code lmdz3.3 and input
and output data in NetCDF format. The physical part includes generalized correlated-k
radiative transfer, generalized tracer transport, and a water cycle that includes water vapour
and ice transport, radiative and thermodynamic effects, and simple hydrology.

Chapter 2 of this document, to be read before any of the others, describes the main
features of the model. The model is divided into two relatively independent parts: (1)
The hydrodynamic code, which integrates the fluid mechanical primitive equations in time
over the globe, and (2) the physical parameterizations, which include the radiative transfer,
tracer transport / evolution, and surface-atmosphere interaction. It is followed by a list
of references for anyone requiring a detailed description of the physics and the numerical
formulation of the parameterizations (Chapter 4).

For your first contact with the model, Chapter 5 guides the user through a practice
simulation (choosing the initial states and parameters and visualizing the output files). The
document then describes the code used for the model, including a user computer manual
for compiling and running it (Chapter 6).

Chapter 7 describes the input/output data of the model. The input files are the files
needed to initialize the model (state of the atmosphere at instant t0 as well as a dataset of
boundary conditions). The output files are “historical files”, archives of the atmospheric
flow history as simulated by the model, the “diagfi files”, the “stats files”, the daily aver-
ages, and so on. Common ways of editing or visualizing these files (editor “ncdump” and
the graphics software “grads”) are also explained. Chapter 8 explains how to run a simula-
tion that includes the water cycle. Finally, Chapter 9 will help you to use a 1-dimensional
version of the model, which may be a simpler tool for some analysis work.
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Chapter 2

Main features of the model

2.1 Basic principles
The General Circulation Model (GCM) calculates the temporal evolution of the different
variables (listed below) that control or describe the planetary meteorology and climate at
different points of a 3D “grid” (see below) that covers the entire atmosphere.

From an initial state, the model calculates the evolution of these variables, timestep by
timestep:

• At instant t, we know variable Xt (temperature for example) at one point in the
atmosphere.

• We calculate the evolution (the tendencies) (∂X∂t )1 , (∂X∂t )2 , etc. arising from
each physical phenomenon, calculated by a parameterization of each of these phe-
nomenon (for example, heating due to absorption of solar radiation).

• At the next time step t + δt, we can calculate Xt+δt from Xt and (∂X∂t ). This is the
“integration” of the variables in time. (For example, Xt+δt = Xt + δt(∂X∂t )1 +

δt(∂X∂t )2 + ...)

The main task of the model is to calculate these tendencies (∂X∂t ) arising from the
different parameterized phenomena.

2.2 Dynamical-Physical separation
In practice, the 3D model operates in two parts:
- a dynamical part containing the numerical solution of the general equations for atmo-
spheric circulation. This part (including the programming) is common to all terrestrial-type
atmospheres, and applicable in certain cases to the upper atmospheres of gas giant planets.
- a physical part that is specific to the planet in question and which calculates the circula-
tion forcing and climatic details at each point.

The calculations for the dynamical part are made on a 3D grid with horizontal ex-
changes between the grid boxes, whereas the physical part can be seen as a juxtaposition
of atmosphere “columns” that do not interact with each other (see diagram 2.1).

The dynamical and physical parts deal with variables of different natures, and operate
on grids that are differently constructed. The temporal integration of the variables is based
on different numerical schemes (simple, such as the one above for the physical part, and
more complicated, the “Matsuno-Leapfrog” scheme for the dynamical part). The timesteps
are also different. The physical timestep is iphysiq times longer than the dynamical
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Figure 2.1: Physical/dynamical interface

timestep, as the solution of the dynamic equations requires a shorter timestep than the
forced calculation for the physical part.

In practice, the main program that handles the whole model (gcm.F) is located in the
dynamical part. When the temporal evolution is being calculated, at each timestep the
program calls the following:

1. Call to the subroutine that handles the total tendency calculation (∂X∂t ) arising from
the dynamical part (caldyn.F)

2. Integration of these dynamical tendencies to calculate the evolution of the variables
at the following timesteps (subroutine integrd.F)

3. Every iphysiq dynamical timestep, a call to the interface subroutine (calfis.F)
with the physical model (physiq.F90), that calculates the evolution of some of the
purely physical variables (e.g: surface temperature tsurf) and returns the tenden-
cies (∂X∂t ) arising from the physical part.

4. Integration of the physical variables (subroutine addfi.F)

5. Similarly, calculation and integration of tendencies due to the horizontal dissipation
and the “sponge layer” is done every idissip dynamical time step.

Remark: The physical part can be run separately for a 1-D calculation for a single column
using program rcm1d.F.

2.3 Grid boxes:
Examples of typical grid values are 64x48x25, 64x48x32 or 32x24x25 in longitudexlati-
tudexaltitude. Grid box size depends on the planetary radius: for Mars (radius∼3400 km),
for example, a 64x48 horizontal grid corresponds to grid boxes of the order of 330x220
kilometers near the equator.

2.3.1 Horizontal grids
Dynamics and physics use different grids. Figure 2.2 shows the correspondence and in-
dexing of the physical and dynamical grids as well as the different locations of variables
on these grids. To identify the coordinates of a variable (at one grid point up, down, right
or left) we use coordinates rlonu, rlatu, rlonv, rlatv (longitudes and latitudes, in
radians).
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Figure 2.2: Dynamical and physical grids for a 6 × 7 horizontal resolution. In the dynam-
ics (but not in the physics) winds u and v are on specific staggered grids. Other dynamical
variables are on the dynamical “scalar” grid. The physics uses the same “scalar” grid for all
the variables, except that nodes are indexed in a single vector containing NGRID=2+(JM-
1)×IM points when counting from the north pole. N.B.: In the Fortran program, the fol-
lowing variables are used: iim=IM , iip1=IM+1, jjm=JM , jjp1=JM+1.
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On the dynamical grid, values at i=1 are the same as at i=IM+1 as the latter node is
a redundant point (due to the periodicity in longitude, these two nodes are actualy located
at the same place). Similarly, the extreme j=1 and j=JM+1 nodes on the dynamical grid
(respectively corresponding to North and South poles) are duplicated IM+1 times.
In contrast, the physical grid does not contain redundant points (only one value for each
pole and no extra point along longitudes), as shown in figure 2.2. In practice, computa-
tions relative to the physics are made for a series of ngrid atmospheric columns, where
NGRID=IMx(JM-1)+2.

2.3.2 Vertical grids

[k
m

]

[k
m

]

Figure 2.3: Sketch illustrating the difference between hybrid and non-hybrid coordinates

The GCM was initially programmed using sigma coordinates σ = p/ps (atmospheric
pressure over surface pressure ratio) which had the advantage of using a constant domain
(σ = 1 at the surface and σ = 0 at the top of the atmosphere) whatever the underlying
topography. However, it is obvious that these coordinates significantly disturb the strato-
spheric dynamical representation as the topography is propagated to the top of the model
by the coordinate system. This problem can elegantly be solved by using a hybrid sigma-
P (sigma-pressure) hybrid coordinate which is equivalent to using σ coordinates near the
surface and gradually shifting to purely pressure p coordinates with increasing altitude.
Figure 2.3 illustrates the importance of using these hybrid coordinates compared to simple
σ coordinates. The distribution of the vertical layers is irregular, to enable greater precision
at ground level. In general we use 25 levels to describe the atmosphere to a height of 80 km,
32 levels for simulations up to 120 km, or 50 levels to rise up to thermosphere. The first
layer describes the first few meters above the ground, whereas the upper layers span several
kilometers. Figure 2.4 describes the vertical grid representation and associated variables.
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DYNAMICS PHYSICS
-------- -------
[coordinates ap(),bp()] [pressures]

ap(llm+1)=0,bp(llm+1)=0 **************************** plev(nlayer+1)=0
aps(llm),bps(llm) .. llm .......... nlayer ... play(nlayer)
ap(llm),bp(llm) **************************** plev(nlayer)
aps(llm-1),bps(llm-1) .. llm-1 ........ nlayer-1 . play(nlayer-1)
ap(llm-1),bp(llm-1) **************************** plev(nlayer-1)

: :
: :
: :

aps(2),bps(2) ... 2 ............. 2 .... play(2)
ap(2),bp(2) **************************** plev(2)
aps(1),bps(1) ... 1 ............. 1 .... play(1)
ap(1)=0,bp(1)=1 **********surface*********** plev(1)=Ps

Figure 2.4: Vertical grid description of the llm (or nlayer) atmospheric layers in
the programming code (llm is the variable used in the dynamical part, and nlayer is
used in the physical part). Variables ap, bp and aps, bps indicate the hybrid levels
at the interlayer levels and at middle of the layers respectively. Pressure at the interlayer
is Plev(l) = ap(l) + bp(l) × Ps and pressure in the middle of the layer is defined by
Play(l) = aps(l) + bps(l) × Ps, (where Ps is surface pressure). Sigma coordinates are
merely a specific case of hybrid coordinates such that aps = 0 and bps = P/Ps. Note
that for the hybrid coordinates, bps = 0 above ∼ 50 km, leading to purely pressure levels.
The user can choose whether to run the model using hybrid coordinates or not by setting
variable hybrid in run.def to True or False.
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2.4 Variables used in the model

2.4.1 Dynamical variables
The dynamical state variables are the atmospheric temperature, surface pressure, winds
and tracer concentrations. In practice, the formulation selected to solve the equations in the
dynamics is optimised using the following less “natural” variables:

- potential temperature θ (teta in the code), linked to temperature T by θ = T (P/Pref)
−κ

with κ = R/Cp (note that κ is called kappa in the dynamical code, and rcp in the
physical code). We take Pref = 610 Pa on Mars.

- surface pressure (ps in the code).

- mass the atmosphere mass in each grid box (masse in the code).

- the covariant meridional and zonal winds ucov and vcov. These variables are linked
to the ”natural” winds by ucov = cu * u and vcov = cv * v, where cu and
cv are constants that only depend on the latitude.

- mixing ratio of tracers in the atmosphere, typically expressed in kg/kg (array q in the
code).

ucov and vcov, “vectorial” variables, are stored on “scalari” grids u and v respec-
tively, in the dynamics (see section 2.2). teta, q, ps, masse, “scalar variables”, are
stored on the “scalar” grid of the dynamics.

2.4.2 Physical variables
In the physics, the state variables of the dynamics are transmitted via an interface that
interpolates the winds on the scalar grid (that corresponds to the physical grid) and trans-
forms the dynamical variables into more “natural” variables. Thus we have winds u and v
(m.s−1), temperature T (K), pressure at the middle of the layers play (Pa) and at interlayers
plev (Pa), tracers q, etc. (kg/kg) on the same grid.

Furthermore, the physics also handle the evolution of the purely physical state variables:

- tsurf surface temperature (K)

- tsoil temperature at different layers under the surface (K)

- emis surface emissivity

- alb surface albedo

- q2 wind variance, or more precisely the square root of the turbulent kinetic energy

- qsurf tracer on the surface (kg.m−2)

- rnat surface type (0 = ocean, 1 = continent)

- beta surface wetness (0→ 1 implies dry→ saturated)

- [anything else?]

9



2.4.3 Tracers
The model may include different types of tracers:

- condensed species (e.g., CO2, H2O, dust)

- chemically active species (in principle only at the moment)

- radiatively active gases (e.g., water vapor)

In the code, all tracers are stored in one three-dimensional array q, the third index of
which corresponds to each individual tracer. In input and output files (“start.nc”, “startfi.nc”,
see Section 5) tracers are stored separately using their individual names. Loading specific
tracers requires that the approriate tracer names are set in the traceur.def file (see Sec-
tion 7.2.3), and specific computations for given tracers (e.g. computing the water or CO2

cycles) is controlled by setting the corresponding options in the callphys.def file (see
Section 7.2.2).
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Chapter 3

3D Dynamical Code

3.1 Discretisation of the dynamical equations
Extrait de la note de Robert Sadourny, Phu Le Van et Frédéric Hourdin, Laboratoire de
Météorologie Dynamique.

[to be translated when I get the time...]
Le modèle climatique du LMD est bâti, comme tous les modèles de circulation générale

atmosphérique, sur la résolution numérique des équations primitives de la météorologie
décrites dans de nombreux ouvrages ?. L’analyse présentée ici a été menée sur la nouvelle
version de la dynamique du LMD écrite par Phu Le Van ? sur une formulation de Robert
Sadourny. Cette formulation diffère de l’ancienne essentiellement par deux points: dans la
nouvelle formulation, la répartition des points en longitude et en latitude peut être changée
arbitrairement. L’autre modification porte sur la répartition des points aux pôles1.

La coordonnée verticale du modèle est la pression normalisée par sa valeur à la surface:
σ = p/ps. On utilise en fait σ aux niveaux inter-couches et s = σκ au milieu des couches.
On note X et Y les coordonnées horizontales:

X (resp. Y ) est une fonction biunivoque de la longitude λ (resp. de la latitude φ).
Ces deux fonctions peuvent être choisies de façon arbitraire dans le modèle LMDZ ce qui
permet d’effectuer un zoom sur une région du globe particulière. Une grille de ce type est
montrée sur la Figure 3.1. Les variables scalaires (température potentielle θ = cpT/ps

κ,
géopotentiel Φ et pression de surface ps) sont évaluées aux points correspondant à des
couples de valeurs entières (X,Y ) = (i, j). Les variables dynamiques sont décalées par
rapport aux variables scalaires en utilisant une grille C dans la définition de Arakawa ?:
le vent zonal est calculé aux points (X,Y ) = (i + 1/2, j) et le vent méridien aux points
(X,Y ) = (i, j + 1/2). La disposition des variables sur la grille est illustrée sur la Fig-
ure 3.2.

On utilise en fait les composantes covariantes (ũ et ṽ) et contravariantes (˜̃u et ˜̃v) du vent
définies par

ũ = cuu et ˜̃u = u/cu avec cu = a cosφ (dλ/dX)

ṽ = cvv et ˜̃v = v/cv avec cv = a (dφ/dY )
(3.1)

où u et v sont les composantes physiques du vecteur vent horizontal. On introduit également:

la pression extensive: p̃s (pression au sol multipliée par l’aire de la maille).

1Aux pôles sont calculés: le vent méridien dans l’ancienne formulation et les variables scalaires dans la nou-
velle.
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les trois composantes du flux de masse:

U = p̃s
X ˜̃u, V = p̃s

Y ˜̃v et W = p̃sσ̇ avec σ̇ =
dσ

dt
(3.2)

le facteur de Coriolis multiplié par l’aire de la maille: f = 2Ω sinφcucv
où Ω est la vitesse de rotation de la planète.

la vorticité potentielle absolue:

Z =
F (δX ṽ − δY ũ) + f

p̃s
X,Y

(3.3)

l’énergie cinétique

K =
1

2

(
ũ˜̃u

X
+ ṽ˜̃v

Y
)

(3.4)

La notation δX signifie simplement qu’on effectue la différence entre deux points consécutifs
suivant la direction X . La notation aX signifie qu’on prend la moyenne arithmétique de
la quantité a suivant la direction X . F est un filtre longitudinale appliqué dans les régions
polaires. Les équations discrétisées sont écrites sous la forme suivante:

équations du mouvement:

∂ũ

∂t
−ZY V X,Y +δXF (Φ +K)+sθ

X
δXF (ps

κ)− ũa
Y,Y

δZW
X

p̃s
X
δZσ

+
δZ

(
W

X
ũa
Z
)

p̃s
X
δZσ

= Sũ

(3.5)
oú ũa est la composante zonale covariante du vecteur vent absolu: ũa = ũ+ cuaΩ cosφ et

∂ṽ

∂t
+Z

X
U
X,Y

+ δY F (Φ +K) + sθ
Y
δY F (ps

κ)− ṽ
X,X

δZW
Y

p̃s
Y
δZσ

+
δZ

(
W

Y
ṽ
Z
)

p̃s
X
δZσ

= Sṽ

(3.6)
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équation thermodynamique:

∂ (p̃sθ)

∂t
+ F

[
δX

(
θ
X
U
)

+ δY

(
θ
Y
V
)]

+
δZ

(
θ
Z
W
)

δZσ
= Sθ (3.7)

équation hydrostatique:
δZΦ = −pκsθ

z
δZs (3.8)

équations de continuité:

∂ps
∂t

= F

[∑
z

δZσ (δXU + δY V )

]
(3.9)

δZW = −δZσ
[
F (δXU + δY V ) +

∂ps
∂t

]
(3.10)

On a noté S les termes sources dans les différentes équations. Dans ces termes sources,
on distingue 1) d’une part les paramétrisations physiques mentionnées plus haut et qui font
intervenir pour une maille donnée du modèle, tous les points situés sur une même verticale
mais ceux-là seulement; 2) les opérateurs de dissipation horizontale, censés rendre compte
des échanges entre échelles explicitement représentées dans le modèle et échelles sous-
mailles. Ces opérateurs ont la structure de Laplaciens agissant sur des plans horizontaux
c’est à dire qu’il font intervenir un voisin de chaque côté dans les deux directions horizon-
tales. Cet opérateur est généralement itéré pour le rendre plus sélectif en échelle (plus on
itère un laplacien et plus son effet sur les petites échelles devient important relativement).

3.2 High latitude filters
Extract adapted from Forget et al. [1999]

At high latitude a filter is applied near the singularity in the grid at the pole in order to
satisfy the Courant-Friedrichs-Lewy numerical stability criterion without going to an ex-
cessively small timestep. In the original version of the dynamical code a classical Fourier
filter was used, but we found that because the Martian polar atmosphere appears to be much
more dynamically unstable than the Earth’s polar atmosphere, a more efficient formulation
(based on the grouping of adjacent gridpoints together) was necessary to avoid numerical
instability.

In practice the following technique is used in the subroutine called groupeun.F :

• The points are grouped in packets of 2ngroup at the poles(e.g. ngroup=3→ packets
of 8), then 2ngroup-1, 2ngroup-2, etc. in the lower latitudes moving away from the
pole

• The higher ngroup is, the more efficient the smoothing is, and the more stable the
model.

• BUT, iim must be divisible by 2ngroup !!!

3.3 Dissipation
Extract adapted from Forget et al. [1999]
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In the LMD grid point model, nonlinear interactions between explicitly resolved scales
and subgrid-scale processes are parameterized by applying a scale-selective horizontal dis-
sipation operator based on an n time iterated Laplacian ∆n. For the grid point model, for
instance, this can be written ∂q/∂t = ([−1]n/τdiss)(δx)2n∆nq where δx is the smallest
horizontal distance represented in the model and τdiss is the dissipation timescale for a st
ructure of scale δx. These operators are necessary to ensure the grid point model numerical
stability. In practice, the operator is separately applied to (1) potential temperature, (2) the
divergence of the flow, and (3) its vorticity. We respectively use n = 2, n = 1, and n = 2
in the grid point model.

Note: In practice, values of n and τdiss are adjustable and prescribed at the beginning
of each run, in run definition file “run.def” (cf. 7.2.1)

3.4 Sponge layer
Extract adapted from Forget et al. [1999]

In the upper levels a sponge layer is also used in both models in an attempt to reduce
spurious reflections of vertically propagating waves from the model top. Unlike the tra-
ditional Rayleigh friction formulation, this operates as a linear drag solely on the eddy
components of the vorticity and divergence fields and is not scale-selective. The timescales
on which it operates are typically half a day, 1 day, and 2 days at the three uppermost levels,
respectively.

Note: the sponge layer “timescale” values and their extensions in altitude are ad-
justable and prescribed at the beginning of each run, in run definition file “run.def”
(cf. 7.2.1)
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Chapter 4

Physical parameterizations of the
generic model: some references

4.1 General
The Generic Climate Model uses a large number of physical parameterizations based on
various scientific theories. Some also use specific numerical methods. A list of these
parameterizations is given below, along with the most appropriate references for each one.
Most of these documents can be found at
http://www.lmd.jussieu.fr/mars.html.

General references: No documents attempt to give a complete scientific description of
the current version of the GCM. Here’s a reference to a Mars GCM description:

• Forget et al. [1999] (article published in the JGR)

• “Updated Detailed Design Document for the Model” (ESA contract, Work Package
6, 1999, available on the web) which is simply a compilation of the preceding article
with a few additions that were published separately.

4.2 Radiative transfer
The radiative transfer parameterizations are used to calculate the heating and cooling ratios
in the atmosphere and the radiative flux at the surface.

[TO WRITE: IMPORTANT SECTION - REFERENCES HERE ARE FOR MARS
ONLY]

4.2.1 Absorption/emission and diffusion by dust:
Dust spatial distribution

( dustopacity)

• Vertical distribution and description of “MGS” and “Viking” scenarios in the ESA re-
port Mars Climate Database V3.0 Detailed Design Document by Lewis et al. (2001),
available on the web.

• For the “MY24” scenario, dust distribution obtained from assimilation of TES data
is used (and read via the readtesassim routine).
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Thermal IR radiation

( lwmain)

• Numerical method: Toon et al. [1989]

• Optical properties of dust: Forget [1998]

Solar radiation

( swmain)

• Numerical method: Fouquart and Bonel [1980]

• Optical properties of dust: see the discussion in Forget et al. [1999], which quotes
Ockert-Bell et al. [1997] and Clancy and Lee [1991].

4.3 Subgrid atmospheric dynamical processes

4.3.1 Turbulent diffusion in the upper layer
( vdifc)

• Implicit numerical scheme in the vertical: see the thesis of Laurent Li (LMD, Uni-
versité Paris 7, 1990), Appendix C2.

• Calculation of the turbulent diffusion coefficients: Forget et al. [1999].

4.3.2 Convection
( convadj)

See Hourdin et al. [1993]

4.4 Surface thermal conduction
(soil)

Thesis of Frédéric Hourdin (LMD, Université Paris 7, 1992) : section 3.3 (equations)
and Appendix A (Numerical scheme).

4.5 CO2 Condensation
In Forget et al. [1998] (article published in Icarus):
- Numerical method for calculating the condensation and sublimation levels at the surface
and in the atmosphere ( newcondens) explained in the appendix.
- Description of the numerical scheme for calculating the evolution of CO2 snow emissivity
(co2snow) explained in section 4.1

4.6 Tracer transport and sources
• “Van-Leer” transport scheme used in the dynamical part ( tracvl and vlsplt

in the dynamical part): Hourdin and Armengaud [1999]
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• Transport by turbulent diffusion (in vdifc), convection (in convadj), sedi-
mentation ( sedim), dust lifting by winds ( dustlift) : see note “Preliminary
design of dust lifting and transport in the Model” (ESA contract, Work Package 4,
1998, available on the web).

• Watercycle, see Montmessin et al. [2004]
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Chapter 5

Running the model: a practice
simulation

This chapter is meant for first-time users of the LMD model. As the best introduction to the
model is surely to run a simulation, here we explain how to go about it. All you will need
are files necessary to build the GCM (all are in the LMDZ.GENERIC directory) as well as
some initial states to initiate simulations (see below).
Once you have followed the example given below, you can then go on to change the control
parameters and the initial states as you wish. A more detailed description of the model’s
organization as well as associated inputs and outputs are given in sections 6 and 7.

5.1 Installing the model from SVN
The first thing is to download the model from our SVN server. If you cannot use SVN, just
find an old school way to get a copy of the basic model directory LMDZ.GENERIC (and
all the other source files needed for visualization) and download it to your account. Then
start directly from the fifth point.

• Go to the directory where you want to download the model. Not that only one directory
(the root directory) will be added in the current directory.

• If svn is installed on your system, set up the root directory by tipping

svn co "http://svn.lmd.jussieu.fr/Planeto/trunk" -N Name_of_root_directory
cd Name_of_root_directory

• You can now download one of the LMDZ models (for Generic, Mars, Venus, Titan, ...)
by tipping

svn update LMDZ.MODEL_YOU_WANT

For the Generic model, just tipe

svn update LMDZ.GENERIC

The contents of the directory that has been created are described in Chapter 6.

• For visualization of the simulations, yo will need some utilities that we might as well
download now by doing
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svn update UTIL

• Now we must set up the makegcm script that will perform the compilation of the model.
Go into the LMDZ.GENERIC directory and edit the appropriate makegcm_mycompiler
(hereafter called makegcm), where mycompiler is the compiler that you want to
use. There are two important environment variables concerning source files that are
initialized by makegcm and that we need to set properly:

1. LMDGCM, the path to the source files. By default, the line

setenv LMDGCM ‘readlink -f $scriptdir‘

allows makegcm to assume that it is executed in the root source directory so
that this should work without any change. If makegcm does not find the source,
you can enter manually the path by changing the above line by

setenv LMDGCM "path/to/source/directory/LMDZ.GENERIC"

2. LIBOGCM, the path to the compilation directory where all object files will be
kept. By default, the line

setenv LIBOGCM $LMDGCM/libo

specifies that source will be kept in a libo directory created in LMDZ.GENERIC.
You can also change that if needed.

• Install NetCDF http://www.unidata.ucar.edu/packages/netcdf/INSTALL.html and set en-
vironment variables NCDFINC and NCDFLIB:

The latest version of the NetCDF package is available on the web at the following
address: http://www.unidata.ucar.edu/software/netcdf along with instructions
for building (or downloading precompiled binaries of) the library.

Once the NetCDF library has been compiled (or downloaded), you should have
access to the library libnetcdf.a itself, the various files (netcdf.inc,
netcdf.mod, ...) to include in programs, and basic NetCDF software (nc-
dump and ncgen).

To ensure that during compilation, the model can find the NetCDF library and in-
clude files, you must declare environment variables NCDFLIB and NCDFINC.

NCDFLIBmust contain the path to the directory containing the object library libnetcdf.a
and NCDFINCmust contain the path to the directory containing the include files
(netcdf.inc,...)
As for LMDGCM variable, these variables can be declared by changing the right
line in makegcm

setenv NCDFINC /wherever/is/netcdf/include
setenv NCDFLIB /wherever/is/netcdf/lib

For example, if working at LMD and with ifort, the path is

setenv NCDFINC /donnees/emlmd/netcdf64-4.0.1_ifort/include
setenv NCDFLIB /donnees/emlmd/netcdf64-4.0.1_ifort/lib

• Install software for loading and displaying NetCDF files such as GrAdS (http://grads.iges.org/grads/),
Ferret (http://ferret.wrc.noaa.gov/Ferret), or Python. Some visualization scripts, es-
pecially for Python, can be found in the UTIL directory and will be described later.
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• Finally, make sure that you have access to all the executables needed for building and
using the model and remember to set environment variables to the correct corre-
sponding pathes (note that if you do not want to have to redefine these every session,
you should put the definitions in the corresponding .cshrc or .bashrc files).

- UNIX function make

- a Fortran compiler

- ncdump

- grads (or ferret)

5.2 Installing the model without SVN
Create an alias so that the compilation script makegcm is available from anywhere (more
convinient than having to type the full path to the script, or copying it over where you want
to run it). The makegcm script is in the LMDZ.GENERIC directory, which is referenced
by the LMDGCM variable, so:
If using Csh:

alias makegcm $LMDGCM’/makegcm’

if using Bash:

alias makegcm=$LMDGCM/makegcm

5.3 Compiling the LMDZ.GENERIC model (sequential only)
Two options exist to compile the model.

1. Create an alias so that the compilation script makegcm is available from anywhere.
If using Csh:

alias makegcm ’path/to/LMDZ.GENERIC/makegcm’

if using Bash:

alias makegcm=path/to/LMDZ.GENERIC/makegcm

Then the compilation is done by tipping

makegcm -options gcm

This solution can be convenient but is less flexible if you want to compile the model
in many different configurations and keep track of it.

2. Create and edit an executable script (that we will call compile) in the directory
where you will want to run the model. Put the line

/path/to/the/model/I/use/makegcm -options gcm
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The advantage of this option is that the compile is present in all of the working
directories where the model is ran, allowing you to keep track of the options used.

Just remains to choose the options. The basic options are as follows

makegcm -d LONxLATxALT -p std -t XX -s YY -b IRxVI gcm

where LONxLATxALT are the number of grid cells in longitude, latitude and altitude, XX
is the number of tracers, YY is the number of scatterers that will be taken into account in
the radiative code and IRxVI is the number of spectral bands in the thermal emission and
stellar part of the radiative code. The option -debug is available with most compilers.
The code runs much more slowly but can output more user friendly bug report messages.

- Example 1: Compiling the generic model at grid resolution 64x48x20 for example,
type (in compliance with the manual for the makegcm function given in section 6.4)

makegcm -d 64x48x20 -p std gcm

You can find executable gcm.e (the compiled model) in the directory where you ran the
makegcm command.

- Example 2: Compiling the generic model with 2 tracers (e.g. water vapour and ice to
simulate the water cycle):

makegcm -d 32x32x20 -t 2 -p std gcm

- Example 3: Compiling the the generic model to check for and trace errors (with ifort
compiler - useful for debugging - warning, the model then runs very slowly!):

makegcm -d 32x32x20 -p std -O "-g -fpe0 -traceback" gcm

5.4 Compiling the LMDZ.COMMON model (sequential
or parallel)

1. Prerequisites:

• Downloaded LMDZ.COMMON and LMDZ.OTHER MODEL containing the
physic you want.

• Available MPI library and wrapped compiler (mpif90, mpiifort,...)

• Optional (but recommended) fcm:

– LMD: /distrib/local/fcm/bin
– Ciclad: /home/millour/FCM V1.2/bin
– Gnome: /san/home/millour/FCM V1.2/bin
– Other: fcm is just a collection of perl scripts; can be copied over on any

other machine, or simply downloaded using svn:
svn checkout http://forge.ipsl.jussieu.fr/fcm/svn/PATCHED/FCM V1.2

2. Then choose the physic you want to couple with the LMDZ.COMMON dynamic
core by creating a symbolic link in the LMDZ.COMMON/libf directory.
If you want to use mars physic:

cd LMDZ.COMMON/libf
ln -s path/to/LMDZ.MARS/libf/phymars .
ln -s path/to/LMDZ.MARS/libf/aeronomars .

Here, we want the LMDZ.GENERIC physic phystd:
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cd LMDZ.COMMON/libf
ln -s path/to/LMDZ.GENERIC/libf/phystd .

3. To compile in LMDZ.COMMON directory:

./makelmdz_fcm -s XX -t XX -d LONxLATxALT -b IRxVI -p physicSuffix
-arch archFile [-parallel mpi/mpi_omp] gcm

• physicSuffix is mars for phymars, std for phystd...

• archFile is the name of configuration files from LMDZ.COMMON/arch: use
CICLADifort the ifort compiler in a CICLAD environment, X64_ADA for
the ADA architecture...

• To compile in parallel with mpi, add -parallel mpi option. By default it
is serial code.

• For hybrid MPI-OpenMP parallelisation, add -parallel mpi_omp option.

• For faster compilation, the option -j N uses N simultaneous tasks.

• -full option forces full (re)-compilation from scratch.

• Created program is in LMDZ.COMMON/bin directory, with dimensions in-
cluded in the program name. e.g.: gcm 64x48x29 phymars para.e

NB: It is possible to compile without fcm by replacing makelmdz_fcm by makelmdz.
Created program is in LMDZ.COMMON directory and named gcm.e.

5.5 Input files (initial states and def files)
- In directory LMDZ.GENERIC/deftank you will find some examples of run parameter
files (.def files) which the model needs at runtime. The four files the model requires
(they must be in the same directory as the executable gcm.e) are: run.def (described in
section 7.2) callphys.def (see section 7.2.2), gases.def, z2sig.def and traceur.def.

The example .def files given in the deftank directory are for various configurations
(e.g. model resolution, planet type), copy (and eventually rename these files to match the
generic names) to the directory where you will run the model.

- Copy initial condition files start.nc and startfi.nc (described in section 7.2) to the same
directory.
You can extract such files from start archive ‘banks of initial states’ (i.e. files which con-
tain collections of initial states from stndard scenarios and which can thus be used to check
if the model is installed correctly) stored on the LMD website at
http://www.lmd.jussieu.fr/˜forget/datagcm/Starts. See section 5.10
for a description of how to proceed to extract start files from start archives.

[NOTE: WITH THE GENERIC MODEL WE ALMOST ALWAYS START FROM
“startplanet” FILES]

5.6 Running the model
IMPORTANT: The following line MUST be in file run.def (or callphys.def):

planet_type = mars

for using LMDZ.MARS model or
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z2sig.def

z2sig.def

run.def
callphys.def

diagfi.nc

run.def
callphys.def

z2sig.def

Creation of the initial state

GCMSimulation 2

Simulation 1 GCM
run.def

callphys.def

Newstart

start.nc

surface.nc

start_archive.nc

restart.nc restartfi.nc

startfi.nc

stats.nc

Figure 5.1: Input/output data
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planet_type = generic

for using LMDZ.GENERIC model.

• To run the serial gcm.e interactively:
Once you have the program gcm.e, input files start.nc startfi.nc, and parameter files
run.def, callphys.def, gases.def, traceur.def, and z2sig.def in the same directory,
simply execute the program to run a simulation:

gcm.e

You might need more memory. Use ulimit -s unlimited to change user lim-
its.
You might also want to keep all messages and diagnostics written to standard output
(i.e. the screen). You should then redirect the standard output (and error) to some
file, e.g. gcm.out:
If using Csh:

gcm.e >! gcm.out

If using Bash:

gcm.e > gcm.out 2>&1

• To run the MPI-parallel gcm.e interactively:

mpirun -np N gcm.e > gcm.out 2>&1

-np N specifies the number of procs to run on.
IMPORTANT: one MUST use the mpirun command corresponding to the mpif90
compiler specified in the arch file.
Output files (restart.nc, diagfi.nc ,etc.) are just as when running in serial. But stan-
dard output messages are written by each process.
If using chained simulations (run mcd/run0 scripts), then the command line to run
the gcm in run0 must be adapted for local settings.
NB: LMDZ.COMMON dynamics set to run in double precision, so keep NC_DOUBLE
declaration (and real to double precision promotion) in the arch files.

• To run the hybrid parallel gcm.e interactively:

export OMP_NUM_THREADS=2
export OMP_STACKSIZE=2500MB
mpirun -np 2 gcm.e > gcm.out 2>&1

In this exemple, each of the 2 process MPI have 2 OpenMP tasks with a 2500MB
memory.

• To run the MPI-parallel gcm.e with a job scheduler (different on each machine):

PBS example (on Ciclad):
#PBS -S /bin/bash
#PBS -N job_mpi08
#PBS -q short
#PBS -j eo
#PBS -l "nodes=1:ppn=8"
# go to directory where the job was launched
cd $PBS_O_WORKDIR
mpirun gcm_64x48x29_phymars_para.e > gcm.out 2>&1

25



LoadLeveler example (on Gnome):
# @ job_name = job_mip8
# standard output file
# @ output = job_mpi8.out.$(jobid)
# standard error file
# @ error = job_mpi8.err.$(jobid)
# job type
# @ job_type = mpich
# @ blocking = unlimited
# time
# @ class = AP
# Number of procs
# @ total_tasks = 8
# @ resources=ConsumableCpus(1) ConsumableMemory(2500 mb)
# @ queue
set -vx
mpirun gcm_32x24x11_phymars_para.e > gcm.out 2>&1

LoadLeveler example (on Ada):
module load intel/2012.0
# @ output = output.$(jobid)
# @ error = $(output)
# @ job_type = parallel
## Number of MPI process
# @ total_tasks = 8
## Memory used by each MPI process
# @ as_limit = 2500mb
# @ wall_clock_limit=01:00:00
# @ core_limit = 0
# @ queue
set -x
poe ./gcm.e -labelio yes > LOG 2>&1

• To run the hybrid MPI/OpenMP-parallel gcm.e with a job scheduler (different on
each machine):

LoadLeveler example (on Gnome):
# @ job_name = job_mip8
# standard output file
# @ output = job_mpi8.out.$(jobid)
# standard error file
# @ error = job_mpi8.err.$(jobid)
# job type
# @ job_type = mpich
# @ blocking = unlimited
# time
# @ class = AP
# Number of procs
# @ total_tasks = 8
# @ resources=ConsumableCpus(1) ConsumableMemory(5000 mb)
# @ queue
set -vx
export OMP_NUM_THREADS=2 #sinon par defaut, lance 8 threads OpenMP
export OMP_STACKSIZE=2500MB
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mpirun gcm_32x24x11_phymars_para.e > gcm.out 2>&1

IMPORTANT: ConsumableMemory must be equal to OMP NUM THREADSxOMP STACKSIZE.
In this case, we are using 8x2 cores.

LoadLeveler example (on Ada):
module load intel/2012.0
# @ output = output.$(jobid)
# @ error = $(output)
# @ job_type = parallel
## Number of MPI process
# @ total_tasks = 8
## Number of OpenMP tasks attached to each MPI process
# @ parallel_threads = 2
## Memory used by each MPI process
# @ as_limit = 5gb
# @ wall_clock_limit=01:00:00
# @ core_limit = 0
# @ queue
set -x
export OMP_STACKSIZE=2500MB
poe ./gcm.e -labelio yes > LOG 2>&1

IMPORTANT: In this case, each core needs 2.5gb and we are using 2 OpenMP tasks
for each MPI process so as_limit = 2× 2.5.

5.7 Visualizing the output files
As the model runs it generates output files diagfi.nc and stats.nc files. The former contains
instantaneous values of various fields and the later statistics (over the whole run) of some
variables.

5.7.1 Using GrAds to visualize outputs
If you have never used the graphic software GrAds, we strongly recommend spending half
an hour to familiarize yourself with it by following the demonstration provided for that
purpose. The demo is fast and easy to follow and you will learn the basic commands. To
do this read file

/distrib/local/grads/sample

For example, to visualize files diagfi.nc and stats.nc
NetCDF files diagfi.nc and stats.nc can be accessed directly using GrAdS

thanks to utility program gradsnc, (the user does not need to intervene).

To visualize the temperature in the 5th layer using file diagfi.nc for example:

- GrAdS session:

grads return

return (opens a landscape window)

ga-> sdfopen diagfi.nc

ga-> query file (displays info about the open file, including the name of the
stored variables. Shortcut: q file)
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ga-> set z 5 (fixes the altitude to the 5th layer)

ga-> set t 1 (fixes the time to the first stored value)

ga-> query dims (indicates the fixed values for the 4 dimensions. Shortcut: q
dims)

ga-> display temp (displays the temperature card for the 5th layer and for
the first time value stored. Shortcut: d T)

ga-> clear (clears the display. Shortcut: c)

ga-> set gxout shaded (not a contour plot, but a shaded one)

ga-> display temp

ga-> set gxout contour (returns to contour mode to display the levels)

ga-> display temp (superimposes the contours if the clear command is not
used)

5.8 Resuming a simulation
At the end of a simulation, the model generates restart files (files restart.nc and
restartfi.nc) which contain the final state of the model. As shown in figure 5.1,
these files (which are of the same format as the start files) can later be used as initial states
for a new simulation.

The restart files just need to be renamed:

mv restart.nc start.nc
mv restartfi.nc startfi.nc

and running a simulation with these will in fact resume the simulation from where the
previous run ended.

5.9 Chain simulations
In practice, we recommend running a chain of simulations lasting several days or longer
(or hundreds of days at low resolution).

To do this, a script named run0 is available in LMDZ.GENERIC/deftank , which
should be used as follows:

• Set the length of each simulation in run.def (i.e. set the value of nday)

• Set the maximum number of simulations at the beginning of the run0 script (i.e. set
the value of nummax)

• Copy start files start.nc startfi.nc over and rename them start0.nc
startfi0.nc.

• Run script run0

run0 runs a series of simulations that generate the indexed output files (e.g. start1,
startfi1, diagfi1, etc.) including files lrun1, lrun2, etc. containing the redi-
rection of the display and the information about the run.

NOTE: to restart a series of simulations after a first series (for example, starting from
start5 and startfi5), just write the index of the initial files (e.g. 5) in the file
named num run. If num run exists, the model will start from the index written in
num run. If not it will start from, start0 and startfi0.
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NOTE: A script is available for performing annual runs with 12 seasons at 30o solar
longitude as it is in the database (script run mcd, also found in directory deftank). This
script functions with script run0. Just set the number of simulations to 1 in run0. Then
copy run.def into run.def.ref and set nday to 9999 in this file. To start from startN.c, edit
the file run mcd and comment (with a #) the N months already created and describe N in
num run. Then run run mcd.

5.10 Creating and modifying initial states

5.10.1 Using program “newstart”
When working with the generic model, it is common to start with simple initial conditions
(e.g., isothermal, motionless atmosphere). For this we create an initial state using newstart.
In practice, we usually take an old initial state, and simply modify it.

Like the GCM, the program newstart must be compiled (using the makegcm script)
to the required grid resolution. For example:

makegcm -d 32x32x20 -p std newstart

Then run

newstart.e

The program then gives you two options:

From which kind of files do you want to create newstart and startfi files
0 - from a file start_archive
1 - from files start and startfi

• - Option “1” allows you to read and modify the information needed to create a new
initial state from the files start.nc, startfi.nc

• - Option “0” allows you to read and modify the information needed to create a new
initial state from file start_archive.nc (whatever the start_archive.nc grid
resolution is).

If you use tracers, make sure that they are taken into account in your start files (either start
or start archive).

Then answer to the various questions in the scroll menu. These questions allow you to
modify the initial state for the following parameters.

First set of questions:
Change values in tab_cntrl ? :
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
(Current values given above)

(3) day_ini : Initial day (=0 at Ls=0)
(19) z0 : surface roughness (m)
(21) emin_turb : minimal energy (PBL)
(20) lmixmin : mixing length (PBL)
(26) emissiv : ground emissivity
(24 et 25) emisice : CO2 ice max emissivity
(22 et 23) albedice : CO2 ice cap albedos
(31 et 32) iceradius : mean scat radius of CO2 snow
(33 et 34) dtemisice : time scale for snow metamorphism
(27) tauvis : mean dust vis. reference opacity
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(35) volcapa : soil volumetric heat capacity
(18) obliquit : planet obliquity (deg)
(17) peri_day : periastron date (sols since Ls=0)
(15) periastr : min. star-planet dist (Mkm)
(16) apoastr : max. star-planet (Mkm)
(14) year_day : length of year (in sols)
(5) rad : radius of the planet (m)
(6) omeg : planet rotation rate (rad/s)
(7) g : gravity (m/s2)
(8) mugaz : molecular mass of the atmosphere (g/mol)
(9) rcp : r/Cp
(10) daysec : length of a sol (s)

Second set of questions :
flat : no topography ("aquaplanet")
bilball : uniform albedo and thermal inertia
coldspole : cold subsurface and high albedo at S.pole
qname : change tracer name
q=0 : ALL tracer =zero
q=x : give a specific uniform value to one tracer
ini_q : tracers initialisation for chemistry, water and ice
ini_q-H2O : tracers initialisation for chemistry and ice
ini_q-iceH2O : tracers initialisation for chemistry only
noglacier : Remove tropical H2O ice if |lat|<45
watercapn : H20 ice on permanent N polar cap
watercaps : H20 ice on permanent S polar cap
oborealis : H2O ice across Vastitas Borealis
iceball : Thick ice layer all over surface
wetstart : start with a wet atmosphere
isotherm : Isothermal Temperatures, wind set to zero
radequi : Earth-like rad. eq. temperature profile and winds set to zero
co2ice=0 : remove CO2 polar cap
ptot : change total pressure
emis : change surface emissivity
therm_ini_s : Set soil thermal inertia to reference suface values

Program newstart.e creates files restart.nc and restartfi.nc that you gen-
erally need to rename (for instance rename them in start0.nc and startfi0.nc if you want to
use run0 or run mcd, starting with season 0; rename them start.nc and startfi.nc
if you just want to perform one run with gcm.e).

5.10.2 Creating the initial start archive.nc file
Archive file start archive.nc is created from files start.nc and startfi.nc
by program start2archive. Program start2archive compiles to the same grid resolution as
the start.nc and startfi.nc grid resolution. For example:

makegcm -d 32x32x20 -p std start2archive

Then run start2archive.e

You now have a start_archive.nc file for one season that you can use with newstart.
If you want to gather other states obtained at other times of year, rerun start2archive.e
with the start.nc and startfi.nc corresponding to these. These additional initial
states will automatically be added to the start archive.nc file present in the direc-
tory.

5.10.3 Changing the horizontal or vertical grid resolution
To run at a different grid resolution than available initial conditions files, one needs to use
tools newstart and start2archive
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For example, to create initial states at grid resolution 32×24×25 from NetCDF files
start and startfi at grid resolution 64×48×32 :

• Create file start_archive.nc with start2archive.e compiled at grid resolu-
tion 64×48×32 using old file z2sig.def used previously

• Create files newstart.nc and newstartfi.nc with newstart.e compiled at
grid resolution 32×24×25, using new file z2sig.def

[NOT RELEVANT??] If you want to create starts files with tracers for 50 layers using
a start archive.nc obtained for 32 layers, do not forget to use the ini_q option
in newstart in order to correctly initialize tracers value for layer 33 to layer 50. You just
have to answer yes to the question on thermosphere initialization if you want to initialize
the thermosphere part only (l=33 to l=50), and no if you want to initialize tracers for all
layers (l=0 to l=50).
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Chapter 6

Program organization and
compilation script

All the elements of the LMD model are in the LMDZ.GENERIC directory (and subdi-
rectories). As explained in Section 5, this directory should be associated with environment
variable LMDGCM:
If using Csh:

setenv LMDGCM /where/you/put/the/model/LMDZ.GENERIC

If using Bash:

export LMDGCM=/where/you/put/the/model/LMDZ.GENERIC

Here is a brief description of the LMDZ.GENERIC directory contents:

libf/ All the model FORTRAN Sources (.F or .F90)
and include files (.h) organised in sub-directories
(physics (phystd), dynamics (dyn3d), filters (filtrez)...)

deftank/ A collection of examples of parameter files required
to run the GCM (run.def, callphys.def, ...)

makegcm Script that should be used to compile the GCM as well
as related utilities (newstart, start2archive, testphys1d)

create_make_gcm Executable used to create the makefile.
This command is run automatically by
"makegcm" (see below).

6.1 Organization of the model source files
The model source files are stored in various sub directories in directory libf. These sub-
directories correspond to the different parts of the model:

grid: mainly made up of ”dimensions.h” file, which contains the parameters that define
the model grid, i.e. the number of points in longitude (IIM), latitude (JJM) and
altitude (LLM), as well as the number of tracers (NQMX).

dyn3d: contains the dynamical subroutines.
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bibio: contains some generic subroutines not specifically related to physics or dynamics
but used by either or both.

phymars: contains the physics routines.

filtrez: contains the longitudinal filter sources applied in the upper latitudes, where the
Courant-Friedrich-Levy stability criterion is violated.

6.2 Programming
The model is written in Fortran-77 and Fortran-90.

• The program sources are written in “file.F” or “file.F90” files. The extension .F
is the standard extension for fixed-form Fortran and the extension .F90 is for free-
form Fortran. These files must be preprocessed (by aC preprocessor such as (cpp))
before compilation (this behaviour is, for most compilers, implicitly obtained but
using a capital F in the extention of the file names).

• Constants are placed in COMMON declarations, located in the common “include”
files ”file.h”

• In general, variables are passed from subroutine to subroutine as arguments (and
never as COMMON blocks).

• In some parts of the code, for “historical” reasons, the following rule is sometimes
used: in the subroutine, the variables (ex: name) passed as an argument by the
calling program are given the prefix p (ex: pname) while the local variables are
given the prefix z (ex: zname). As a result, several variables change their prefix
(and thus their name) when passing from a calling subroutine to a called subroutine.
We’re trying to eliminate this as the code is developed.

6.3 Model organization
Figure 6.1 describes the main subroutines called by physiq.F. OBSOLETE - FOR MARS
ONLY!!!

6.4 Compiling the model
Technically, the model is compiled using the Unix utility make. The file makefile,
which describes the code dependencies and requirements, is created automatically by the
script

create_make_gcm

This utility script recreates the makefile file when necessary, for example, when a source
file has been added or removed since the last compilation.

None of this is visible to the user. To compile the model just run the command

makegcm

with adequate options (e.g. makegcm -d 62x48x32 -p mars gcm), as discussed
below and described in section 5.3.

The makegcm command compiles the model (gcm) and related utilities (newstart,
start2archive, testphys1d). A detailed description of how to use it and of the various
parameters that can be supplied is given in the help manual below (which will also be given
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Figure 6.1: Organigram of subroutine function physiq.F90
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by the makegcm -h command).
Note that before compiling the GCM with makegcm you should have set the environment
variable LIBOGCM to a path where intermediate objects and libraries will be generated.
If using Csh:

setenv LIBOGCM /where/you/want/objects/to/go/libo

If using Bash:

export LIBOGCM=/where/you/want/objects/to/go/libo

Help manual for the makegcm script

makegcm [Options] prog

The makegcm script:
-------------------

1. compiles a series of subroutines located in the $LMDGCM/libf
sub-directories.
The objects are then stored in the libraries in $LIBOGCM.

2. then, makegcm compiles program prog.f located by default in
$LMDGCM/libf/dyn3d and makes the link with the libraries.

Environment Variables ’$LMDGCM’ and ’$LIBOGCM’
must be set as environment variables or directly
in the makegcm file.

The makegcm command is used to control the different versions of the model
in parallel, compiled using the compilation options
and the various dimensions, without having to recompile the whole model.

The FORTRAN libraries are stored in directory $LIBOGCM.

OPTIONS:
--------

The following options can either be defined by default by editing the
makegcm "script", or in interactive mode:

-d imxjmxlm where im, jm, and lm are the number of longitudes,
latitudes and vertical layers respectively.

-t ntrac Selects the number of tracers present in the model

Options -d and -t overwrite file
$LMDGCM/libf/grid/dimensions.h
which contains the 3 dimensions of the
horizontal grid
im, jm, lm plus the number of tracers passively advected
by the dynamics ntrac,
in 4 PARAMETER FORTRAN format
with a new file:
$LMDGCM/libf/grid/dimension/dimensions.im.jm.lm.tntrac
If the file does not exist already
it is created by the script
$LMDGCM/libf/grid/dimension/makdim

-p PHYS Selects the set of physical parameterizations
you want to compile the model with.
The model is then compiled using the physical
parameterization sources in directory:
$LMDGCM/libf/phyPHYS
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-g grille Selects the grid type.
This option overwrites file
$LMDGCM/libf/grid/fxyprim.h
with file
$LMDGCM/libf/grid/fxy_grille.h
the grid can take the following values:
1. reg - the regular grid
2. sin - to obtain equidistant points in terms of sin(latitude)
3. new - to zoom into a part of the globe

-O "compilation options" set of fortran compilation options to use

-include path
Used if the subroutines contain #include files (ccp) that
are located in directories that are not referenced by default.

-adjnt Compiles the adjoint model to the dynamical code.

-filtre filter
To select the longitudinal filter in the polar regions.
"filter" corresponds to the name of a directory located in
$LMDGCM/libf. The standard filter for the model is "filtrez"
which can be used for a regular grid and for a
grid with longitudinal zoom.

-link "-Ldir1 -lfile1 -Ldir2 -lfile2 ..."
Adds a link to FORTRAN libraries
libfile1.a, libfile2.a ...
located in directories dir1, dir2 ...respectively
If dirn is a directory with an automatic path
(/usr/lib ... for example)
there is no need to specify -Ldirn.
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Chapter 7

Input/Output

7.1 NetCDF format
GCM input/output data are written in NetCDF format (Network Common Data Form).
NetCDF is an interface used to store and access geophysical data, and a library that pro-
vides an implementation of this interface. The NetCDF library also defines a machine-
independent format for representing scientific data. Together, the interface, library and
format support the creation, access and sharing of scientific data. NetCDF was developed
at the Unidata Program Center in Boulder, Colorado. The freely available source can be
obtained from the Unidata websitehttp://www.unidata.ucar.edu/software/netcdf.

A data set in NetCDF format is a single file, as it is self-descriptive.

7.1.1 NetCDF file editor: ncdump
The editor is included in the NetCDF library. By default it generates an ASCII representa-
tion as standard output from the NetCDF file specified at the input.

Main commands for ncdump

ncdump diagfi.nc

dump contents of NetCDF file diagfi.nc to standard output (i.e. the screen).

ncdump -c diagfi.nc

Displays the coordinate variable values (variables which are also dimensions), as well as
the declarations, variables and attribute values. The values of the non-coordinate variable
data are not displayed at the output.

ncdump -h diagfi.nc

Shows only the informative header of the file, which is the declaration of the dimensions,
variables and attributes, but not the values of these variables. The output is identical to that
in option -c except for the fact that the coordinated variable values are not included.

ncdump -v var1,...,varn diagfi.nc

The output includes the specific variable values, as well as all the dimensions, variables
and attributes. More that one variable can be specified in the list following this option.
The list must be a simple argument for the command, and must not contain any spaces. If
no variable is specified, the command displays all the values of the variables in the file by
default.
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Figure 7.1: Example of temperature data (in this case for present-day Mars) at a given time
using GrADS visualization

7.1.2 Graphic visualization of the NetCDF files using GrAds
GrAdS (The Grid Analysis and Display System) is a graphic software developed by Brian
Doty at the ”Center for Ocean-Land-Atmosphere (COLA)”.

One of its functions is to enable data stored in NetCDF format to be visualized directly.
In figure 7.1 for example, we can see the GrADS visualization of the temperature data at
a given moment. However, unlike NetCDF, GrADS only recognizes files where all the
variables are stored on the same horizontal grid. These variables can be in 1, 2, 3 or 4
dimensions (X,Y,Z and t).

GrADS can also be obtained on the WWWhttp://grads.iges.org/grads/.

7.2 Input and parameter files
The (3D version of the) GCM requires the input of two initialization files (in NetCDF for-
mat):
-start.nc contains the initial states of the dynamical variables.
-startfi.nc contains the initial states of the physical variables.
Note that collections of initial states can be retreived at:
http://www.lmd.jussieu.fr/˜forget/datagcm/Starts
Extracting start.nc and startfi.nc from these archived requires using program
newstart, as described in section 5.10.

To run, the GCM also requires the four following parameter files (ascii text files):
-run.def the parameters of the dynamical part of the program, and the temporal integration
of the model.
-callphys.def the parameters for calling the physical part.
-traceur.def the names of the tracer to use.
-z2sig.def the vertical distribution of the atmospheric layers.
Examples of these parameter files can be found in the LMDZ.MARS/deftank directory.

38



7.2.1 run.def
A typical run.def file is given as an example below. The choice of variables to be set
is simple (e.g. nday number of modeled days to run), while the others do not need to be
changed for normal use.
The format of the run.def file is quite straightforward (and flexible): values given to
parameters must be given as:

parameter = value

Any blank line or line beginning with symbol # is a comment, and instruction lines may
be written in any order. Moreover, not specifying a parameter/value set (e.g. deleting it or
commenting it out) means you want the GCM to use a default built-in value. Additionally,
one may use a specific keyword INCLUDEDEF to specify another (text) file in which to
also read values of parameters; e.g.:

INCLUDEDEF=callphys.def

Here are some details about some of the parameters which may be set in run.def:

• day step, the number of dynamical steps per day to use for the time integration. This
needs to be large enough for the model to remain stable (this is related to the CFL sta-
bility criterion which essentially depends on the horizontal resolution of the model).
On Mars, in theory, the GCM can run with day step=480 using the 64×48 grid,
but model stability improves when this number is higher: day step=960 is recom-
mended when using the 64×48 grid. According to the CFL criterion, day step
should vary in proportion with the resolution: for example day step=480 using
the 32×24 horizontal resolution. Note that day step must also be divisible by
iperiod. For other planets... [FINISH]

• tetagdiv, tetagrot, tetatemp control the dissipation intensity. It is better to limit the
dissipation intensity (tetagdiv, tetagrot, tetatemp should not be too low). However
the model diverges if tetagdiv, tetagrot, tetatemp are too high, especially if there is a
lot of dust in the atmosphere.
Example used with nitergdiv=1 and nitergrot=niterh=2 :
- using the 32×24 grid tetagdiv=6000 s ; tetagrot=tetatemp=30000 s
- using the 64×48 grid: tetagdiv=3000 s ; tetagrot=tetatemp=9000 s

• idissip is the time step used for the dissipation: dissipation is computed and added
every idissip dynamical time step. If idissip is too short, the model waste
time in these calculations. But if idissip is too long, the dissipation will not be
parametrized correctly and the model will be more likely to diverge. A check must be
made, so that: idissip< tetagdiv×daystep/86400 (same rule for tetagrot
and tetatemp). This is tested automatically during the run.

• iphysiq is the time step used for the physics: physical tendencies are computed every
iphysiq dynamical time step. In practice, we usually set the physical time step to
be of the order of half an hour. We thus generally set iphysiq= day step/48

Example of run.def file:

#------------------------------
# Parametres de controle du run
#------------------------------

# Nombre de jours d’integration
nday=669

# nombre de pas par jour (multiple de iperiod) ( ici pour dt = 1 min )
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day_step = 960

# periode pour le pas Matsuno (en pas)
iperiod=5

# periode de sortie des variables de controle (en pas)
iconser=120

# periode d’ecriture du fichier histoire (en jour)
iecri=100

# periode de stockage fichier histmoy (en jour)
periodav=60.

# periode de la dissipation (en pas)
idissip=5

# choix de l’operateur de dissipation (star ou non star )
lstardis=.true.

# avec ou sans coordonnee hybrides
hybrid=.true.

# nombre d’iterations de l’operateur de dissipation gradiv
nitergdiv=1

# nombre d’iterations de l’operateur de dissipation nxgradrot
nitergrot=2

# nombre d’iterations de l’operateur de dissipation divgrad
niterh=2

# temps de dissipation des plus petites long.d ondes pour u,v (gradiv)
tetagdiv=10000.

# temps de dissipation des plus petites long.d ondes pour u,v(nxgradrot)
tetagrot=10000.

# temps de dissipation des plus petites long.d ondes pour h ( divgrad)
tetatemp=10000.

# coefficient pour gamdissip
coefdis=0.

# choix du shema d’integration temporelle (Matsuno ou Matsuno-leapfrog)
purmats=.false.

# avec ou sans physique
physic=.true.

# periode de la physique (en pas)
iphysiq=20

# choix d’une grille reguliere
grireg=.true.

# frequence (en pas) de l’ecriture du fichier diagfi
ecritphy=1920

# longitude en degres du centre du zoom
clon=63.

# latitude en degres du centre du zoom
clat=0.

# facteur de grossissement du zoom,selon longitude
grossismx=1.
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# facteur de grossissement du zoom ,selon latitude
grossismy=1.

# Fonction f(y) hyperbolique si = .true. , sinon sinusoidale
fxyhypb=.false.

# extension en longitude de la zone du zoom ( fraction de la zone totale)
dzoomx= 0.

# extension en latitude de la zone du zoom ( fraction de la zone totale)
dzoomy=0.

# raideur du zoom en X
taux=2.

# raideur du zoom en Y
tauy=2.

# Fonction f(y) avec y = Sin(latit.) si = .TRUE. , Sinon y = latit.
ysinus= .false.

# Avec sponge layer
callsponge = .true.

# Sponge: mode0(u=v=0), mode1(u=umoy,v=0), mode2(u=umoy,v=vmoy)
mode_sponge= 2

# Sponge: hauteur de sponge (km)
hsponge= 90

# Sponge: tetasponge (secondes)
tetasponge = 50000

# some definitions for the physics, in file ’callphys.def’
INCLUDEDEF=callphys.def

7.2.2 callphys.def
The callphys.def file (along the same format as the run.def file) contains parame-
ter/value sets for the physics.

Example of callphys.def file:

## Orbit / general options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# Run with or without tracer transport ?
tracer = .true.
# Diurnal cycle ? if diurnal=false, diurnally averaged solar heating
diurnal = .true.
# Seasonal cycle ? if season=false, Ls stays constant, to value set in "start"
season = .true.
# Tidally resonant orbit ? must have diurnal=false, correct rotation rate in newstart
tlocked = .false.
# Tidal resonance ratio ? ratio T_orbit to T_rotation
nres = 10
# Write some more output on the screen ?
lwrite = .false.
# Save statistics in file "stats.nc" ?
callstats = .true.
# Test energy conservation of model physics ?
enertest = .true.

41



## Radiative transfer options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# call radiative transfer?
callrad = .true.
# the rad. transfer is computed every "iradia" physical timestep
iradia = 4
# call multilayer correlated-k radiative transfer ?
corrk = .true.
# folder in which correlated-k data is stored ?
corrkdir = CO2_H2Ovar
# call visible gaseous absorption in radiative transfer ?
callgasvis = .true.
# Include Rayleigh scattering in the visible ?
rayleigh = .true.
# Characteristic planetary equilibrium (black body) temperature
# This is used only in the aerosol radiative transfer setup. (see aerave.F)
tplanet = 215.
# Output spectral OLR in 1D/3D?
specOLR = .false.
# Output global radiative balance in file ’rad_bal.out’ - slow for 1D!!
meanOLR = .true.
# Variable gas species: Radiatively active ?
varactive = .true.
# Variable gas species: Fixed vertical distribution ?
varfixed = .false.
# Variable gas species: Saturation percentage value at ground ?
satval = 0.0

## Star type
## ˜˜˜˜˜˜˜˜˜
startype = 1
# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# The choices are:
#
# startype = 1 Sol (G2V-class main sequence)
# startype = 2 Ad Leo (M-class, synthetic)
# startype = 3 GJ644
# startype = 4 HD128167
# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# Stellar flux at 1 AU. Examples:
# 1366.0 W m-2 Sol today
# 1024.5 W m-2 Sol today x 0.75 = weak early Sun
# 18.462 W m-2 The feeble Gl581
# 19.960 W m-2 Gl581 with e=0.38 orbital average
Fat1AU = 1024.5

## Tracer and aerosol options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# Gravitational sedimentation of tracers (KEEP FALSE FOR NOW) ?
sedimentation = .false.

## Other physics options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# call turbulent vertical diffusion ?
calldifv = .true.
# call convective adjustment ?
calladj = .true.
# call thermal conduction in the soil ?
callsoil = .true.

#########################################
## extra specific options for Early Mars
#########################################

## Tracer and aerosol options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# Fixed aerosol distributions?
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aerofixed = .false.
# Varying H2O cloud fraction?
CLFvarying = .false.
# H2O cloud fraction?
CLFfixval = 0.5
# number mixing ratio of CO2 ice particles
Nmix_co2 = 100000.
# number mixing ratio of water ice particles
Nmix_h2o = 100000.

## Water options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜
# Model water cycle
water = .true.
# Model water cloud formation
watercond = .true.
# Model water precipitation (including coagulation etc.)
waterrain = .true.
# WATER: Precipitation threshold (simple scheme only) ?
rainthreshold = 0.0011
# Include hydrology ?
hydrology = .true.
# H2O snow (and ice) albedo ?
albedosnow = 0.5
# Maximum sea ice thickness ?
maxicethick = 0.05
# Freezing point of seawater (degrees C) ?
Tsaldiff = 0.0

## CO2 options
## ˜˜˜˜˜˜˜˜˜˜˜
# gas is non-ideal CO2 ?
nonideal = .false.
# call CO2 condensation ?
co2cond = .true.
# Set initial temperature profile to 1 K above CO2 condensation everywhere?
nearco2cond = .false.

7.2.3 traceur.def
Tracers in input (start.nc and startfi.nc) and output files (restart.nc and
restartfi.nc) are stored using individual tracer names (e.g. co2 for CO2 gas, h2o vap
for water vapour, h2o ice for water ice, ...).
The first line of the traceur.def file (an ASCII file) must contain the number of tracers
to load and use (this number should be the same as given to the -t option of the makegcm
script when the GCM was compiled), followed by the tracer names (one per line). Note
that if the corresponding tracers are not found in input files start.nc and startfi.nc,
then the tracer is initialized to zero.

Example of a traceur.def file: (with water vapour and ice tracers)

2
h2o_ice
h2o_vap

7.2.4 z2sig.def
The z2sig.def file contains the pseudo-altitudes (in km) at which the user wants to set
the vertical levels.
Note that levels should be unevenly spread, with a higher resolution near the surface in or-
der to capture the rapid variations of variables there. It is recommended to use the altitude
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levels as set in the z2sig.def file provided in the deftank directory.

Example of z2sig.def file

10.00000 H: atmospheric scale height (km) (used as a reference only)
0.0040 Typical pseudo-altitude (m) for 1st layer (z=H*log(sigma))
0.018 ,, ,, ,, ,, ,, ,, ,, ,, ,, 2nd layer, etc...
0.0400
0.1000
0.228200
0.460400
0.907000
1.73630
3.19040
5.54010
8.97780
13.5138
18.9666
25.0626
31.5527
38.4369
45.4369
52.4369

7.2.5 Initialization files: start and startfi
Files start.nc and startfi.nc, like all the NetCDF files of the GCM, are constructed
on the same model (see NetCDF file composition, figure 7.2). They contain:
- a header with a “control” variable followed by a series of variables defining the (physical
and dynamical) grids
- a series of non temporal variables that give information about surface conditions on the
planet.
- a “time” variable giving the values of the different instants at which the temporal variables
are stored (a single time value (t=0) for start, as it describes the dynamical initial states, and
no time values for startfi, as it describes only a physical state).

To visualize the contents of a start.nc file using the ncdump command:

ncdump -h start.nc

netcdf start {
dimensions:

index = 100 ;
rlonu = 33 ;
latitude = 25 ;
longitude = 33 ;
rlatv = 24 ;
altitude = 18 ;
interlayer = 19 ;
Time = UNLIMITED ; // (1 currently)

variables:
float controle(index) ;

controle:title = "Parametres de controle" ;
float rlonu(rlonu) ;

rlonu:title = "Longitudes des points U" ;
float rlatu(latitude) ;

rlatu:title = "Latitudes des points U" ;
float rlonv(longitude) ;
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DYNAMIQUE PHYSIQUE

Entête Entête

(ex: start) (ex: startfi)

1_ controle (tab_cntrl)

...

2_ hor_coor

4_ vert2_coor
3_ vert_coor

Conditions de surface Conditions de surface

sur la 
Informations

grille

1_ controle (tab_cntrl)

2_ rlonu
3_ rlatu
4_ rlonv

...

sur la 
Informations

grille

1_ phisinit 1_ phisfi
2_albedodat
4_zmea

...

temps

Valeur des instants auxquels
sont stockées les variables

temps

Valeur des instants auxquels
sont stockées les variables

Stockage des variables temporelles

...

...

t = 1

t = 2

t = 3

vcov
ucov

h
...

vcov
ucov

h
...

vcov
ucov

h
...

t = 1

t = 2

t = 3

co2ice

tsoil
tsurf

co2ice
tsurf
tsoil

...

co2ice
tsurf
tsoil

Stockage des variables temporelles

Figure 7.2: Organization of NetCDF files

rlonv:title = "Longitudes des points V" ;
float rlatv(rlatv) ;

rlatv:title = "Latitudes des points V" ;
float ap(interlayer) ;

ap:title = "Coef A: hybrid pressure levels" ;
float bp(interlayer) ;

bp:title = "Coef B: hybrid sigma levels" ;
float aps(altitude) ;

aps:title = "Coef AS: hybrid pressure at midlayers" ;
float bps(altitude) ;

bps:title = "Coef BS: hybrid sigma at midlayers" ;
float presnivs(altitude) ;
float latitude(latitude) ;

latitude:units = "degrees_north" ;
latitude:long_name = "North latitude" ;

float longitude(longitude) ;
longitude:long_name = "East longitude" ;
longitude:units = "degrees_east" ;

float altitude(altitude) ;
altitude:long_name = "pseudo-alt" ;
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altitude:units = "km" ;
altitude:positive = "up" ;

float cu(latitude, rlonu) ;
cu:title = "Coefficient de passage pour U" ;

float cv(rlatv, longitude) ;
cv:title = "Coefficient de passage pour V" ;

float aire(latitude, longitude) ;
aire:title = "Aires de chaque maille" ;

float phisinit(latitude, longitude) ;
phisinit:title = "Geopotentiel au sol" ;

float Time(Time) ;
Time:title = "Temps de simulation" ;
Time:units = "days since 1-01-01 00:00:00" ;

float ucov(Time, altitude, latitude, rlonu) ;
ucov:title = "Vitesse U" ;

float vcov(Time, altitude, rlatv, longitude) ;
vcov:title = "Vitesse V" ;

float teta(Time, altitude, latitude, longitude) ;
teta:title = "Temperature" ;

float h2o_ice(Time, altitude, latitude, longitude) ;
h2o_ice:title = "Traceur h2o_ice" ;

float h2o_vap(Time, altitude, latitude, longitude) ;
h2o_vap:title = "Traceur h2o_vap" ;

float masse(Time, altitude, latitude, longitude) ;
masse:title = "C est quoi ?" ;

float ps(Time, latitude, longitude) ;
ps:title = "Pression au sol" ;

// global attributes:
:title = "Dynamic start file" ;

}

List of contents of a startfi.nc file:

ncdump -h startfi.nc

netcdf startfi {
dimensions:

index = 100 ;
physical_points = 738 ;
subsurface_layers = 18 ;
nlayer_plus_1 = 19 ;
number_of_advected_fields = 3 ;

variables:
float controle(index) ;

controle:title = "Control parameters" ;
float soildepth(subsurface_layers) ;

soildepth:title = "Soil mid-layer depth" ;
float longitude(physical_points) ;

longitude:title = "Longitudes of physics grid" ;
float latitude(physical_points) ;

latitude:title = "Latitudes of physics grid" ;
float area(physical_points) ;

area:title = "Mesh area" ;
float phisfi(physical_points) ;

phisfi:title = "Geopotential at the surface" ;
float albedodat(physical_points) ;

albedodat:title = "Albedo of bare ground" ;
float ZMEA(physical_points) ;

ZMEA:title = "Relief: mean relief" ;
float ZSTD(physical_points) ;

ZSTD:title = "Relief: standard deviation" ;
float ZSIG(physical_points) ;

ZSIG:title = "Relief: sigma parameter" ;
float ZGAM(physical_points) ;

ZGAM:title = "Relief: gamma parameter" ;
float ZTHE(physical_points) ;
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ZTHE:title = "Relief: theta parameter" ;
float co2ice(physical_points) ;

co2_ice:title = "CO2 ice cover" ;
float inertiedat(subsurface_layers, physical_points) ;

inertiedat:title = "Soil thermal inertia" ;
float tsurf(physical_points) ;

tsurf:title = "Surface temperature" ;
float tsoil(subsurface_layers, physical_points) ;

tsoil:title = "Soil temperature" ;
float emis(physical_points) ;

emis:title = "Surface emissivity" ;
float q2(nlayer_plus_1, physical_points) ;

q2:title = "pbl wind variance" ;
float h2o_ice(physical_points) ;

h2o_ice:title = "tracer on surface" ;

// global attributes:
:title = "Physics start file" ;

}

Physical and dynamical headers There are two types of headers: one for the physical
headers, and one for the dynamical headers. The headers always begin with a “control’
variable (described below), that is allocated differently in the physical and dynamical parts.
The other variables in the header concern the (physical and dynamical) grids. They are the
following:

the horizontal coordinates
- rlonu, rlatu, rlonv, rlatv for the dynamical part,
- lati, long for the physical part,

the coefficients for passing from the physical grid to the dynamical grid
- cu,cv only in the dynamical header

and finally, the grid box areas
- aire for the dynamical part,
- area for the physical part.

Surface conditions The surface conditions are mostly given in the physical NetCDF files
by variables:
- phisfi for the initial state of surface geopotential,
- albedodat for the bare ground albedo,
- inertiedat for the surface thermal inertia,
- zmea, zstd, zsig, zgam and zthe for the subgrid scale topography.

For the dynamics:
- physinit for the initial state of surface geopotential

Remark: variables phisfi and physinit contain the same information (surface geopotential),
but phisfi gives the geopotential values on the physical grid, while physinit give the values
on the dynamical grid.

Physical and dynamical state variables To save disk space, the initialization files store
the variables used by the model, rather than the “natural” variables.

For the dynamics:
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- ucov and vcov the covariant winds
These variables are linked to the “natural” winds by
ucov = cu * u and vcov = cv * v

- teta the potential temperature,

or more precisely, the potential enthalpy linked to temperature T by θ = T
(

P
Pref

)−K
- the tracers,

- ps surface pressure.

- masse the atmosphere mass in each grid box.

“Vectorial” variables ucov and vcov are stored on “staggered” grids u and v respectively
(in the dynamics) (see section 2.2).
Scalar variables h, q (tracers), ps, masse are stored on the “scalar” grid of the dynamical
part.

For the physics:

- co2ice surface dry ice,

- tsurf surface temperature,

- tsoil temperatures at different layers under the surface,

- emis surface emissivity,

- q2 wind variance,
or more precisely, the square root of the turbulent kinetic energy.

- the surface “tracer” budget (kg.m−2),

All these variables are stored on the “physical” grid (see section 2.2).

The “control” array Both physical and dynamical headers of the GCM NetCDF files
start with a controle variable. This variable is an array of 100 reals (the vector called
tab cntrl in the program), which contains the program control parameters. Parameters
differ between the physical and dynamical sections, and examples of both are listed below.
The contents of table tab cntrl can also be checked with the command ncdump -ff
-v controle.

The ”control” array in the header of a dynamical NetCDF file: start

tab_cntrl(1) = FLOAT(iim) ! number of nodes along longitude
tab_cntrl(2) = FLOAT(jjm) ! number of nodes along latitude
tab_cntrl(3) = FLOAT(llm) ! number of atmospheric layers
tab_cntrl(4) = FLOAT(idayref) ! initial day
tab_cntrl(5) = rad ! radius of the planet
tab_cntrl(6) = omeg ! rotation of the planet (rad/s)
tab_cntrl(7) = g ! gravity (m/s2) ˜3.72 for Mars
tab_cntrl(8) = cpp
tab_cntrl(9) = kappa ! = r/cp
tab_cntrl(10) = daysec ! lenght of a sol (s) ˜88775
tab_cntrl(11) = dtvr ! dynamical time step (s)
tab_cntrl(12) = etot0 ! total energy
tab_cntrl(13) = ptot0 ! total pressure
tab_cntrl(14) = ztot0 ! total enstrophy
tab_cntrl(15) = stot0 ! total enthalpy
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tab_cntrl(16) = ang0 ! total angular momentum
tab_cntrl(17) = pa
tab_cntrl(18) = preff ! reference pressure (Pa)
tab_cntrl(19) = clon ! longitude of center of zoom
tab_cntrl(20) = clat ! latitude of center of zoom
tab_cntrl(21) = grossismx ! zooming factor, along longitude
tab_cntrl(22) = grossismy ! zooming factor, along latitude

tab_cntrl(24) = dzoomx ! extention (in longitude) of zoom
tab_cntrl(25) = dzoomy ! extention (in latitude) of zoom

tab_cntrl(27) = taux ! stiffness factor of zoom in longitude
tab_cntrl(28) = tauy ! stiffness factor of zoom in latitude

The ”controle” array in the header of a physical NetCDF file: startfi.nc

c Informations on the physics grid
tab_cntrl(1) = float(ngridmx) ! number of nodes on physics grid
tab_cntrl(2) = float(nlayermx) ! number of atmospheric layers
tab_cntrl(3) = day_ini + int(time) ! initial day
tab_cntrl(4) = time -int(time) ! initiale time of day

c Informations about Mars, used by dynamics and physics
tab_cntrl(5) = rad ! radius of Mars (m) ˜3397200
tab_cntrl(6) = omeg ! rotation rate (rad.s-1)
tab_cntrl(7) = g ! gravity (m.s-2) ˜3.72
tab_cntrl(8) = mugaz ! Molar mass of the atmosphere (g.mol-1) ˜43.49
tab_cntrl(9) = rcp ! = r/cp ˜0.256793 (=kappa dans dynamique)
tab_cntrl(10) = daysec ! length of a sol (s) ˜88775

tab_cntrl(11) = phystep ! time step in the physics
tab_cntrl(12) = 0.
tab_cntrl(13) = 0.

c Informations about Mars, only for physics
tab_cntrl(14) = year_day ! length of year (sols) ˜668.6
tab_cntrl(15) = periheli ! min. Sun-Mars distance (Mkm) ˜206.66
tab_cntrl(16) = aphelie ! max. SUn-Mars distance (Mkm) ˜249.22
tab_cntrl(17) = peri_day ! date of perihelion (sols since N. spring)
tab_cntrl(18) = obliquit ! Obliquity of the planet (deg) ˜23.98

c Boundary layer and turbulence
tab_cntrl(19) = z0 ! surface roughness (m) ˜0.01
tab_cntrl(20) = lmixmin ! mixing length ˜100
tab_cntrl(21) = emin_turb ! minimal energy ˜1.e-8

c Optical properties of polar caps and ground emissivity
tab_cntrl(22) = albedice(1) ! Albedo of northern cap ˜0.5
tab_cntrl(23) = albedice(2) ! Albedo of southern cap ˜0.5
tab_cntrl(24) = emisice(1) ! Emissivity of northern cap ˜0.95
tab_cntrl(25) = emisice(2) ! Emissivity of southern cap ˜0.95
tab_cntrl(26) = emissiv ! Emissivity of martian soil ˜.95
tab_cntrl(31) = iceradius(1) ! mean scat radius of CO2 snow (north)
tab_cntrl(32) = iceradius(2) ! mean scat radius of CO2 snow (south)
tab_cntrl(33) = dtemisice(1) ! time scale for snow metamorphism (north)
tab_cntrl(34) = dtemisice(2) ! time scale for snow metamorphism (south)

c dust aerosol properties
tab_cntrl(27) = tauvis ! mean visible optical depth

tab_cntrl(28) = 0.
tab_cntrl(29) = 0.
tab_cntrl(30) = 0.

! Soil properties:
tab_cntrl(35) = volcapa ! soil volumetric heat capacity
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7.3 Output files

7.3.1 NetCDF restart files - restart.nc and restartfi.nc
These files are of the exact same format as start.nc and startfi.nc

7.3.2 NetCDF file - diagfi.nc
NetCDF file diagfi.nc stores the instantaneous physical variables throughout the sim-
ulation at regular intervals (set by the value of parameter ecritphy in parameter file
run.def; note that ecritphy should be a multiple of iphysiq as well as a divisor of
day step).
Any variable from any sub-routine of the physics can be stored by calling subroutine
writediagfi

Illustrative example of the contents of a diagfi.nc file (using ncdump):
ncdump -h diagfi.nc

netcdf diagfi {
dimensions:

Time = UNLIMITED ; // (12 currently)
index = 100 ;
rlonu = 65 ;
latitude = 49 ;
longitude = 65 ;
rlatv = 48 ;
interlayer = 26 ;
altitude = 25 ;
subsurface_layers = 18 ;

variables:
float Time(Time) ;

Time:long_name = "Time" ;
Time:units = "days since 0000-00-0 00:00:00" ;

float controle(index) ;
controle:title = "Control parameters" ;

float rlonu(rlonu) ;
rlonu:title = "Longitudes at u nodes" ;

float latitude(latitude) ;
latitude:units = "degrees_north" ;
latitude:long_name = "North latitude" ;

float longitude(longitude) ;
longitude:long_name = "East longitude" ;
longitude:units = "degrees_east" ;

float altitude(altitude) ;
altitude:long_name = "pseudo-alt" ;
altitude:units = "km" ;
altitude:positive = "up" ;

float rlatv(rlatv) ;
rlatv:title = "Latitudes at v nodes" ;

float aps(altitude) ;
aps:title = "hybrid pressure at midlayers" ;
aps:units = "Pa" ;

float bps(altitude) ;
bps:title = "hybrid sigma at midlayers" ;
bps:units = "" ;

float ap(interlayer) ;
ap:title = "hybrid pressure at interlayers" ;
ap:units = "Pa" ;

float bp(interlayer) ;
bp:title = "hybrid sigma at interlayers" ;
bp:units = "" ;

float soildepth(subsurface_layers) ;
soildepth:long_name = "Soil mid-layer depth" ;
soildepth:units = "m" ;
soildepth:positive = "down" ;

50



float cu(latitude, rlonu) ;
cu:title = "Conversion coefficients cov <--> natural" ;

float cv(rlatv, longitude) ;
cv:title = "Conversion coefficients cov <--> natural" ;

float aire(latitude, longitude) ;
aire:title = "Mesh area" ;

float phisinit(latitude, longitude) ;
phisinit:title = "Geopotential at the surface" ;

float emis(Time, latitude, longitude) ;
emis:title = "Surface emissivity" ;
emis:units = "w.m-1" ;

float tsurf(Time, latitude, longitude) ;
tsurf:title = "Surface temperature" ;
tsurf:units = "K" ;

float ps(Time, latitude, longitude) ;
ps:title = "surface pressure" ;
ps:units = "Pa" ;

float co2ice(Time, latitude, longitude) ;
co2ice:title = "co2 ice thickness" ;
co2ice:units = "kg.m-2" ;

float mtot(Time, latitude, longitude) ;
mtot:title = "total mass of water vapor" ;
mtot:units = "kg/m2" ;

float icetot(Time, latitude, longitude) ;
icetot:title = "total mass of water ice" ;
icetot:units = "kg/m2" ;

float tauTES(Time, latitude, longitude) ;
tauTES:title = "tau abs 825 cm-1" ;
tauTES:units = "" ;

float h2o_ice_s(Time, latitude, longitude) ;
h2o_ice_s:title = "surface h2o_ice" ;
h2o_ice_s:units = "kg.m-2" ;

}

The structure of the file is thus as follows:

- the dimensions

- variable “time” containing the time of the timestep stored in the file (in Martian days
since the beginning of the run)

- variable “control” containing many parameters, as described above.

- from “ rhonu” to ’phisinit”: a list of data describing the geometrical coordinates of the
data file, plus the surface topography

- finally, all the 2D or 3D data stored in the run.

7.3.3 Stats files
As an option (stats must be set to .true. in callphys.def), the model can accu-
mulate any variable from any subroutine of the physics by calling subroutine wstat

This save is performed at regular intervals 12 times a day. An average of the daily evo-
lutions over the whole run is calculated (for example, for a 10 day run, the averages of the
variable values at 0hTU, 2hTU, 4hTU,...24hTU are calculated), along with RMS standard
deviations of the variables. This ouput is given in file stats.nc.

Illustrative example of the contents of a stats.nc file (using ncdump):
ncdump -h stats.nc

netcdf stats {
dimensions:
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latitude = 49 ;
longitude = 65 ;
altitude = 25 ;
llmp1 = 26 ;
Time = UNLIMITED ; // (12 currently)

variables:
float Time(Time) ;

Time:title = "Time" ;
Time:units = "days since 0000-00-0 00:00:00" ;

float latitude(latitude) ;
latitude:title = "latitude" ;
latitude:units = "degrees_north" ;

float longitude(longitude) ;
longitude:title = "East longitude" ;
longitude:units = "degrees_east" ;

float altitude(altitude) ;
altitude:long_name = "altitude" ;
altitude:units = "km" ;
altitude:positive = "up" ;

float aps(altitude) ;
aps:title = "hybrid pressure at midlayers" ;
aps:units = "" ;

float bps(altitude) ;
bps:title = "hybrid sigma at midlayers" ;
bps:units = "" ;

float ps(Time, latitude, longitude) ;
ps:title = "Surface pressure" ;
ps:units = "Pa" ;

float ps_sd(Time, latitude, longitude) ;
ps_sd:title = "Surface pressure total standard deviation over th

e season" ;
ps_sd:units = "Pa" ;

float tsurf(Time, latitude, longitude) ;
tsurf:title = "Surface temperature" ;
tsurf:units = "K" ;

float tsurf_sd(Time, latitude, longitude) ;
tsurf_sd:title = "Surface temperature total standard deviation o

ver the season" ;
tsurf_sd:units = "K" ;

float co2ice(Time, latitude, longitude) ;
co2ice:title = "CO2 ice cover" ;
co2ice:units = "kg.m-2" ;

float co2ice_sd(Time, latitude, longitude) ;
co2ice_sd:title = "CO2 ice cover total standard deviation over t

he season" ;
co2ice_sd:units = "kg.m-2" ;

float fluxsurf_lw(Time, latitude, longitude) ;
fluxsurf_lw:title = "Thermal IR radiative flux to surface" ;
fluxsurf_lw:units = "W.m-2" ;

float fluxsurf_lw_sd(Time, latitude, longitude) ;
fluxsurf_lw_sd:title = "Thermal IR radiative flux to surface tot

al standard deviation over the season" ;
fluxsurf_lw_sd:units = "W.m-2" ;

float fluxsurf_sw(Time, latitude, longitude) ;
fluxsurf_sw:title = "Solar radiative flux to surface" ;
fluxsurf_sw:units = "W.m-2" ;

float fluxsurf_sw_sd(Time, latitude, longitude) ;
fluxsurf_sw_sd:title = "Solar radiative flux to surface total st

andard deviation over the season" ;
fluxsurf_sw_sd:units = "W.m-2" ;

float fluxtop_lw(Time, latitude, longitude) ;
fluxtop_lw:title = "Thermal IR radiative flux to space" ;
fluxtop_lw:units = "W.m-2" ;

float fluxtop_lw_sd(Time, latitude, longitude) ;
fluxtop_lw_sd:title = "Thermal IR radiative flux to space total

standard deviation over the season" ;
fluxtop_lw_sd:units = "W.m-2" ;

52



float fluxtop_sw(Time, latitude, longitude) ;
fluxtop_sw:title = "Solar radiative flux to space" ;
fluxtop_sw:units = "W.m-2" ;

float fluxtop_sw_sd(Time, latitude, longitude) ;
fluxtop_sw_sd:title = "Solar radiative flux to space total stand

ard deviation over the season" ;
fluxtop_sw_sd:units = "W.m-2" ;

float dod(Time, latitude, longitude) ;
dod:title = "Dust optical depth" ;
dod:units = "" ;

float dod_sd(Time, latitude, longitude) ;
dod_sd:title = "Dust optical depth total standard deviation over

the season" ;
dod_sd:units = "" ;

float temp(Time, altitude, latitude, longitude) ;
temp:title = "Atmospheric temperature" ;
temp:units = "K" ;

float temp_sd(Time, altitude, latitude, longitude) ;
temp_sd:title = "Atmospheric temperature total standard deviatio

n over the season" ;
temp_sd:units = "K" ;

float u(Time, altitude, latitude, longitude) ;
u:title = "Zonal (East-West) wind" ;
u:units = "m.s-1" ;

float u_sd(Time, altitude, latitude, longitude) ;
u_sd:title = "Zonal (East-West) wind total standard deviation ov

er the season" ;
u_sd:units = "m.s-1" ;

float v(Time, altitude, latitude, longitude) ;
v:title = "Meridional (North-South) wind" ;
v:units = "m.s-1" ;

float v_sd(Time, altitude, latitude, longitude) ;
v_sd:title = "Meridional (North-South) wind total standard devia

tion over the season" ;
v_sd:units = "m.s-1" ;

float w(Time, altitude, latitude, longitude) ;
w:title = "Vertical (down-up) wind" ;
w:units = "m.s-1" ;

float w_sd(Time, altitude, latitude, longitude) ;
w_sd:title = "Vertical (down-up) wind total standard deviation o

ver the season" ;
w_sd:units = "m.s-1" ;

float rho(Time, altitude, latitude, longitude) ;
rho:title = "Atmospheric density" ;
rho:units = "none" ;

float rho_sd(Time, altitude, latitude, longitude) ;
rho_sd:title = "Atmospheric density total standard deviation ove

r the season" ;
rho_sd:units = "none" ;

float q2(Time, altitude, latitude, longitude) ;
q2:title = "Boundary layer eddy kinetic energy" ;
q2:units = "m2.s-2" ;

float q2_sd(Time, altitude, latitude, longitude) ;
q2_sd:title = "Boundary layer eddy kinetic energy total standard

deviation over the season" ;
q2_sd:units = "m2.s-2" ;

float vmr_h2ovapor(Time, altitude, latitude, longitude) ;
vmr_h2ovapor:title = "H2O vapor volume mixing ratio" ;
vmr_h2ovapor:units = "mol/mol" ;

float vmr_h2ovapor_sd(Time, altitude, latitude, longitude) ;
vmr_h2ovapor_sd:title = "H2O vapor volume mixing ratio total sta

ndard deviation over the season" ;
vmr_h2ovapor_sd:units = "mol/mol" ;

float vmr_h2oice(Time, altitude, latitude, longitude) ;
vmr_h2oice:title = "H2O ice volume mixing ratio" ;
vmr_h2oice:units = "mol/mol" ;

float vmr_h2oice_sd(Time, altitude, latitude, longitude) ;
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vmr_h2oice_sd:title = "H2O ice volume mixing ratio total standar
d deviation over the season" ;

vmr_h2oice_sd:units = "mol/mol" ;
float mtot(Time, latitude, longitude) ;

mtot:title = "total mass of water vapor" ;
mtot:units = "kg/m2" ;

float mtot_sd(Time, latitude, longitude) ;
mtot_sd:title = "total mass of water vapor total standard deviat

ion over the season" ;
mtot_sd:units = "kg/m2" ;

float icetot(Time, latitude, longitude) ;
icetot:title = "total mass of water ice" ;
icetot:units = "kg/m2" ;

float icetot_sd(Time, latitude, longitude) ;
icetot_sd:title = "total mass of water ice total standard deviat

ion over the season" ;
icetot_sd:units = "kg/m2" ;

}

The structure of the file is simillar to the diagfi.nc file, except that, as stated before,
the average of variables are given for 12 times of the day and that RMS standard deviation
are also provided.
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Chapter 8

Water Cycle Simulation

To simulate the water cycle with the LMD Generic Model:

• In callphys.def, set tracer to true: tracer=.true.. In the radiative trans-
fer sub-section, chose an appropriate correlated-k database that includes the effect
of water vapour (e.g. corrkdir=CO2H2Ovar), and set varactive=.true.,
varfixed=.false.. In the water cycle sub-section you can chose various pa-
rameters - see below for a standard example.

## Orbit / general options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# Run with or without tracer transport ?
tracer = .true.
# Diurnal cycle ? if diurnal=false, diurnally averaged solar heating
diurnal = .true.
# Seasonal cycle ? if season=false, Ls stays constant, to value set in "start"
season = .true.
# Tidally resonant orbit ? must have diurnal=false, correct rotation rate in newstart
tlocked = .false.
# Tidal resonance ratio ? ratio T_orbit to T_rotation
nres = 10
# Write some more output on the screen ?
lwrite = .false.
# Save statistics in file "stats.nc" ?
callstats = .true.
# Test energy conservation of model physics ?
enertest = .true.

## Radiative transfer options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# call radiative transfer?
callrad = .true.
# the rad. transfer is computed every "iradia" physical timestep
iradia = 4
# call multilayer correlated-k radiative transfer ?
corrk = .true.
# folder in which correlated-k data is stored ?
corrkdir = CO2_H2Ovar
# call visible gaseous absorption in radiative transfer ?
callgasvis = .true.
# Include Rayleigh scattering in the visible ?
rayleigh = .true.
# Characteristic planetary equilibrium (black body) temperature
# This is used only in the aerosol radiative transfer setup. (see aerave.F)
tplanet = 215.
# Output spectral OLR in 1D/3D?
specOLR = .false.
# Output global radiative balance in file ’rad_bal.out’ - slow for 1D!!
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meanOLR = .true.
# Variable gas species: Radiatively active ?
varactive = .true.
# Variable gas species: Fixed vertical distribution ?
varfixed = .false.
# Variable gas species: Saturation percentage value at ground ?
satval = 0.0

## Star type
## ˜˜˜˜˜˜˜˜˜
startype = 1
# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# The choices are:
#
# startype = 1 Sol (G2V-class main sequence)
# startype = 2 Ad Leo (M-class, synthetic)
# startype = 3 GJ644
# startype = 4 HD128167
# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# Stellar flux at 1 AU. Examples:
# 1366.0 W m-2 Sol today
# 1024.5 W m-2 Sol today x 0.75 = weak early Sun
# 18.462 W m-2 The feeble Gl581
# 19.960 W m-2 Gl581 with e=0.38 orbital average
Fat1AU = 1024.5

## Tracer and aerosol options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# Gravitational sedimentation of tracers (just H2O ice for now) ?
sedimentation = .false.

## Other physics options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# call turbulent vertical diffusion ?
calldifv = .true.
# call convective adjustment ?
calladj = .true.
# call thermal conduction in the soil ?
callsoil = .true.

#########################################################################
## extra non-standard definitions for Early Mars
#########################################################################

## Tracer and aerosol options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# Fixed aerosol distributions?
aerofixed = .false.
# Varying H2O cloud fraction?
CLFvarying = .false.
# H2O cloud fraction?
CLFfixval = 1.0
# number mixing ratio of CO2 ice particles
Nmix_co2 = 100000.
# number mixing ratio of water ice particles
Nmix_h2o = 100000.

## Water options
## ˜˜˜˜˜˜˜˜˜˜˜˜˜
# Model water cycle
water = .true.
# Model water cloud formation
watercond = .true.
# Model water precipitation (including coagulation etc.)
waterrain = .true.
# WATER: Precipitation threshold (simple scheme only) ?
rainthreshold = 0.0011
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# Include hydrology ?
hydrology = .true.
# H2O snow (and ice) albedo ?
albedosnow = 0.5
# Maximum sea ice thickness ?
maxicethick = 0.05
# Freezing point of seawater (degrees C) ?
Tsaldiff = 0.0
# Evolve surface water sources ?
sourceevol = .true.

## CO2 options
## ˜˜˜˜˜˜˜˜˜˜˜
# gas is non-ideal CO2 ?
nonideal = .false.
# call CO2 condensation ?
co2cond = .true.
# Set initial temperature profile to 1 K above CO2 condensation everywhere?
nearco2cond = .false.

• You need to compile with at least 2 tracers. If you don’t have CO2 clouds, dust or
other tracers, compilation is done with the command lines:

makegcm -d 64x48x20 -t 2 -p std -b 32x36 newstart

makegcm -d 64x48x20 -t 2 -p std -b 32x36 gcm

Of course, you will also need an appropriate traceur.def file indicating you will
use tracers h2o vap and h2o ice; if you only run with 2 tracers, then the contents
of the traceur.def file should be:

2
h2o_ice
h2o_vap

Note that the order in which tracers are set in the traceur.def file is not impor-
tant.

• Run

Same as usual. Just make sure that your start files contains the initial states for
water, with an initial state for water vapour / ice in the atmosphere and ice / liquid on
the surface.
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Chapter 9

1D version of the generic model

The physical part of the model can be used to run 1D radiative-convective simulations (one
atmospheric column / globally averaged climate). In practice, the simulation is controlled
from a main program called rcm1d.F which, after initialization, then calls the master
subroutine of the physics physiq.F90 described in the previous chapters.

9.1 Compilation
- For example, to compile the generic model in 1D with 25 layers, type (in compliance with
the makegcm function manual described in section 6.4)

makegcm -d 25 -t 1 -b 32x36 -p std rcm1d

You can find executable rcm1d.e (the compiled model) in the directory from which you
ran the makegcm command.

9.2 1-D runs and input files
The 1D model does not use an initial state file (the simulation must be long enough to
obtain a balanced state). Thus, to generate a simulation simply type:

> rcm1d.e

The following example files are available in the deftank directory (copy them into
your working directory first):

- callphys.def : controls the options in the physics, just like for the 3D GCM.
- z2sig.def : controls the vertical discretization (no change needed, in general), func-

tions as with the 3D GCM.
- traceur.def : controls the tracer names (this file may not be present, as long as you

run without tracers (option tracer=.false. in callphys.def)
- run.def : controls the 1D run parameters and initializations (this is actually file

run.def.1d the deftank directory, which must be renamed run.def to be read by
the program).

The last file is different from the 3D GCM’s run.def input file, as it contains options
specific to the 1D model, as shown in the example below:

#-----------------------------------------------------------------------
# Run parameters for the rcm1d.e model
#-----------------------------------------------------------------------
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#### Time integration parameters
#
# Initial date (in martian sols ; =0 at Ls=0)
day0=0
# Initial local time (in hours, between 0 and 24)
time=0
# Number of time steps per sol
day_step=48
# Number of sols to run
ndt =400

#### Physical parameters
#
# Surface pressure (Pa)
psurf=7000.
# Gravity (msˆ-2)
g=3.72
# Molar mass of atmosphere (g)
mugaz=43.49
# Specific heat capacity of atmosphere?
cpp=744.5
# latitude (in degrees)
latitude=0.0
# orbital distance at perihelion (AU)
periastr=1.558
# orbital distance at aphelion (AU)
apoastr=1.558
# obliquity (degrees)
obliquit=0.0
# Solar zenith angle (degrees)
szangle=60.0

# Albedo of bare ground
albedo=0.2
# Emissivity of bare ground
emis=1.0
# Soil thermal inertia (SI)
inertia=400
# zonal eastward component of the geostrophic wind (m/s)
u=10.
# meridional northward component of the geostrophic wind (m/s)
v=0.
# Initial CO2 ice on the surface (kg.m-2)
co2ice=0
# hybrid vertical coordinate ? (.true. for hybrid and .false. for sigma levels)
hybrid=.false.
# autocompute vertical discretisation? (useful for exoplanet runs)
autozlevs=.false.
% pressure ceiling
pceil=40.0

###### Initial atmospheric temperature profile
#
# Type of initial temperature profile
# ichoice=1 Constant Temperature: T=tref
# ichoice=2 Savidjari profile (as Seiff but with dT/dz=cte)
# ichoice=3 Lindner (polar profile)
# ichoice=4 inversion
# ichoice=5 Seiff (standard profile, based on Viking entry)
# ichoice=6 constant T + gaussian perturbation (levels)
# ichoice=7 constant T + gaussian perturbation (km)
# ichoice=8 Read in an ascii file "profile"
ichoice=5
# Reference temperature tref (K)
tref=200
# Add a perturbation to profile if isin=1
isin=0
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# peak of gaussian perturbation (for ichoice=6 or 7)
pic=26.522
# width of the gaussian perturbation (for ichoice=6 or 7)
largeur=10
# height of the gaussian perturbation (for ichoice=6 or 7)
hauteur=30.

# some definitions for the physics, in file ’callphys.def’
INCLUDEDEF=callphys.def

Note that, just as for the 3D GCM run.def file, input parameters may be given in any
order, or even not given at all (in which case default values are used by the program).

9.3 Output data
During the entire 1D simulation, you can obtain output data for any variable from any phys-
ical subroutine by using subroutine writeg1d. This subroutine creates file g1d.nc
that can be read by GRADS. This subroutine is typically called at the end of subroutine
physiq .

Example of a call to subroutine writeg1d requesting temperature output: ( ngrid
horizontal point, nlayer layers, variable pt called “T” in K units):

CALL writeg1d(ngrid,nlayer,pt,’T’,’K’)
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Chapter 10

Zoomed simulations

The LMD GCM can use a zoom to enhance the resolution locally. In practice, one can
increase the latitudinal resolution on the one hand, and the longitudinal resolution on the
other hand.

10.1 To define the zoomed area
The zoom is defined in run.def. Here are the variables that you want to set:

• East longitude (in degrees) of zoom center clon

• latitude (in degrees) of zoom center clat

• zooming factors, along longitude grossismx. Typically 1.5, 2 or even 3 (see be-
low)

• zooming factors, along latitude grossismy. Typically 1.5, 2 or even 3 (see below)

• fxyhypb: must be set to ”T” for a zoom, whereas it must be F otherwise

• extention in longitude of zoomed area dzoomx. This is the total longitudinal exten-
sion of the zoomed region (degree).
It is recommended that grossismx × dzoomx < 200o

• extention in latitude of the zoomed region dzoomy. This is the total latitudinal
extension of the zoomed region (degree).
It is recommended that grossismy × dzoomy < 100o

• stiffness of the zoom along longitudes taux. 2 is for a smooth transition in longi-
tude, more means sharper transition.

• stiffness of the zoom along latitudes taux. 2 is for a smooth transition in latitude,
more means sharper transition.

10.2 Making a zoomed initial state
One must start from an initial state archive start archive.nc obtained from a previ-
ous simulation (see section 5.10) Then compile and run newstart.e using the run.def
file designed for the zoom.

After running newstart.e. The zoomed grid may be visualized using grads, for
instance. Here is a grads script that can be used to map the grid above a topography map:
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set mpdraw off
set grid off
sdfopen restart.nc
set gxout grid
set digsiz 0
set lon -180 180
d ps
close 1

*** replace the path to surface.nc in the following line:
sdfopen /u/forget/WWW/datagcm/datafile/surface.nc
set lon -180 180
set gxout contour
set clab off
set cint 3
d zMOL

10.3 Running a zoomed simulation and stability issue
• dynamical timestep Because of their higher resolution, zoomed simulation requires

a higher timestep. Therefore in run.def, the number of dynamical timestep per day
day step must be increased by more than grossismx or grossismy (twice
that if necessary). However, you can keep the same physical timestep (48/sol) and
thus increase iphysiq accordingly (iphysiq = day step/48).

• It has been found that when zooming in longitude, on must set ngroup=1 in dyn3d/groupeun.F.
Otherwise the run is less stable.

• The very first initial state made with newstart.e can be noisy and dynamically
unstable. It may be necessary to strongly increase the intensity of the dissipation and
increase day step in run.def for 1 to 3 sols, and then use less strict values.

• If the run remains very unstable and requires too much dissipation or a too small
timestep, a good tip to help stabilize the model is to decrease the vertical extension of
your run and the number of layer (one generally zoom to study near-surface process,
so 20 to 22 layers and a vertical extension up to 60 or 80 km is usually enough).
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Chapter 11

Changing the radiative transfer
properties

One of the key advantages of the LMD generic model is the ability to work with arbi-
trary gas and aerosol mixtures in the radiative transfer. In this chapter we describe how to
produce new correlated-k absorption coefficients and implement them in the GCM.

11.1 Producing the high-resolution data
We use the open-source software kspectrum to produce line-by-line (LBL) absorption
coefficients. Kspectrum is freely available online at

http://code.google.com/p/kspectrum/

See its user manual for general information on installation and basic usage.
To produce LBL data on a grid of pressure and temperature suitable for the GCM,

the program make_composition.F90 is used (available in the utilities folder of
the main GCM directory). This may be compiled with the script compile in the same
folder. Once this has been done, the two scripts prekspectrum and postkspectrum
are used to feed kspectrum the correct inputs and convert the LBL data to correlated-
k coefficients afterward. These scripts require three environment variables to be defined:
DWORK DIR, KSPEC DIR and BANDS DIR.

In the following example, we create a database with a mixed CO2 / H2O atmosphere
where CO2 is the dominant gas. First, the three environment variables are set as

DWORK_DIR=/san/home/rdword/corrk_data/CO2_H2Ovar
KSPEC_DIR=/san/home/rdword/kspectrum/kspec_1
BANDS_DIR=32x36

We then create a directory that includes files Q.dat, p.dat and T.dat to define
the number of gaseous species and pressure and temperature gridpoints. For each file the
first number gives the number of points / species. See the folder corrk_example in
utilities for the example we will describe here.

Typing prekspectrum results in the following prompt:

Name of atmosphere / planet:

The planet name is for reference only and does not affect the results. After this, the
values of the temperature, pressure and variable gas (H2O) grids are displayed, and you are
asked for the CO2 mixing ratio:
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Correlated-k temperature grid:
1. 100.0 K
2. 150.0 K
3. 200.0 K
4. 250.0 K
5. 300.0 K
6. 350.0 K
7. 400.0 K

Correlated-k pressure grid (mBar):
1. 1 x 10 ˆ-3 mBar
2. 1 x 10 ˆ-2 mBar
3. 1 x 10 ˆ-1 mBar
4. 1 x 10 ˆ 0 mBar
5. 1 x 10 ˆ 1 mBar
6. 1 x 10 ˆ 2 mBar
7. 1 x 10 ˆ 3 mBar
8. 1 x 10 ˆ 4 mBar
9. 1 x 10 ˆ 5 mBar

nmolec= 2
Temperature layers: 7
Pressure layers: 9
Mixing ratio layers: 7
Total: 441

Please enter vmr of CO2

We chose 1.0 as there are no other gases (the mixing ratio is automatically changed to
take into account the variable gas). After prekspectrum exits, we can view the resulting
composition.in file stored in the data/ directory of kspectrum:

Atmospheric composition input data file for planet: Zarmina
Number of atmospheric levels: 441
Number of molecules: 2

z (km) / P (atm) / T (K) / x[CO2] / x[H2O]
0.000000000E+00 0.986923267E-06 0.100E+03 0.99999E+00 0.10000E-06
0.000000000E+00 0.986923267E-06 0.150E+03 0.99999E+00 0.10000E-06
0.000000000E+00 0.986923267E-06 0.200E+03 0.99999E+00 0.10000E-06
...

Typing run_kspectrum in the kspectrum directory then submits the process as a
batch job. Beware: calculating LBL coefficients for multiple gases and several hundred p,
T values can take several weeks at current processing speeds!

11.2 Performing the correlated-k conversion
Once the LBL data is calculated, it’s time to convert it to correlated-k format. We do this
using a program generate_kmatrix.F90 which is also stored in the utilities
folder and is called by postkspectrum. In addition to the data generated by kspectrum
and the original .dat files, it requires definition of the spectral bands to be used in the
GCM. In this example we use a folder 32x36, containing files narrowbands_VI.in
and narrowbands_IR.in. These files define the number and widths all all bands in the
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visible and infrared, respectively. They can of course be modified depending on blackbody
temperatures and the tradeoff required between model speed and accuracy - the examples
given provide accurate results for planets around Sun-like or M-class stars with surface
temperatures in the 200-350 K range. postkspectrum moves the LBL database to the
DWORK DIR directory along with the script run kmatrix. When run kmatrix is
submitted in batch mode, it calls generate_kmatrix.exe automatically for both the
visible and the infrared. Correlated-k conversion is much quicker than the LBL calculation
- for this database on current (2011) systems it should take only a few hours.

11.3 Implementing the absorption data in the GCM
To use our new correlated-k coefficients, we symbolically link the correlated-k folder to
the datagcm directory defined in the GCM file phystd/datafile.h (it’s best to
avoid copying the data directly due to space considerations). All that is left is to change
corrkdir in callphys.def to the correct name (CO2_H2Ovar in this example).
Provided that we compile the GCM with the correct number of bands, e.g.

makegcm -d 32x32x20 -t 1 -b 32x36 -p std gcm

it will run automatically with the new radiative transfer. The GCM checks the radiative
transfer data on initialization vs. the values given in gases.def, to verify that thermo-
dynamic values (e.g. µgas, cp) match the correlated-k data in the model.
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