c======================================================================= PROGRAM start2archive_SSO c======================================================================= c c c Date: 01/1997 c ---- c c c Objet: Passage des fichiers netcdf d'etat initial "start" et c ----- "startfi" a un fichier netcdf unique "start_archive" c c "start_archive" est une banque d'etats initiaux: c On peut stocker plusieurs etats initiaux dans un meme fichier "start_archive" c (Veiller dans ce cas avoir un day_ini different pour chacun des start) c c c c======================================================================= use infotrac, only: infotrac_init, nqtot, tname use comsoil_h, only: nsoilmx, inertiedat,inertiesoil use surfdat_h, only: ini_surfdat_h, qsurf ! use comgeomphy, only: initcomgeomphy use filtreg_mod, only: inifilr USE mod_const_mpi, ONLY: COMM_LMDZ use control_mod, only: planet_type USE comvert_mod, ONLY: ap,bp USE comconst_mod, ONLY: daysec,dtphys,rad,g,r,cpp USE temps_mod, ONLY: day_ini,hour_ini USE iniphysiq_mod, ONLY: iniphysiq USE phyetat0_mod, ONLY: phyetat0 USE exner_hyb_m, ONLY: exner_hyb use comslope_mod, ONLY: nslope,def_slope,def_slope_mean, & subslope_dist USE comcstfi_h, only: pi ! AD: SSO parameters USE surfdat_h, ONLY: phisfi, albedodat, z0, z0_default, & zmea, zstd, zsig, zgam, zthe, hmons, summit, base implicit none include "dimensions.h" integer, parameter :: ngridmx = (2+(jjm-1)*iim - 1/jjm) include "paramet.h" include "comdissip.h" include "comgeom.h" include "netcdf.inc" c----------------------------------------------------------------------- c Declarations c----------------------------------------------------------------------- c variables dynamiques du GCM c ----------------------------- REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm) ! vents covariants REAL teta(ip1jmp1,llm) ! temperature potentielle REAL,ALLOCATABLE :: q(:,:,:) ! champs advectes REAL pks(ip1jmp1) ! exner (f pour filtre) REAL pk(ip1jmp1,llm) REAL pkf(ip1jmp1,llm) REAL phis(ip1jmp1) ! geopotentiel au sol REAL masse(ip1jmp1,llm) ! masse de l'atmosphere REAL ps(ip1jmp1) ! pression au sol REAL p3d(iip1, jjp1, llm+1) ! pression aux interfaces c Variable Physiques (grille physique) c ------------------------------------ REAL,ALLOCATABLE :: tsurf(:,:) ! Surface temperature REAL,ALLOCATABLE :: tsoil(:,:,:) ! Soil temperature REAL,ALLOCATABLE :: watercap(:,:) ! h2o ice layer REAL,ALLOCATABLE :: perennial_co2ice(:,:) ! co2 ice layer REAL tauscaling(ngridmx) ! dust conversion factor REAL totcloudfrac(ngridmx) ! sub-grid cloud fraction REAL q2(ngridmx,llm+1) REAL,ALLOCATABLE :: emis(:,:) REAL,ALLOCATABLE :: albedo(:,:,:) REAL wstar(ngridmx) DOUBLE PRECISION mem_Nccn_co2(ngridmx,llm) DOUBLE PRECISION mem_Mccn_co2(ngridmx,llm) DOUBLE PRECISION mem_Mh2o_co2(ngridmx,llm) INTEGER start,length PARAMETER (length = 100) REAL tab_cntrl_fi(length) ! tableau des parametres de startfi INTEGER*4 day_ini_fi c Variable naturelle / grille scalaire c ------------------------------------ REAL T(ip1jmp1,llm),us(ip1jmp1,llm),vs(ip1jmp1,llm) REAL,ALLOCATABLE :: tsurfS(:,:) REAL,ALLOCATABLE :: tsoilS(:,:,:) REAL,ALLOCATABLE :: inertiesoilS(:,:,:)! Variable Soil Thermal Inertia (obtained from PEM) REAL ithS(ip1jmp1,nsoilmx) ! Soil Thermal Inertia for inertie dat (present day climate) REAL,ALLOCATABLE :: watercapS(:,:) REAL,ALLOCATABLE :: perennial_co2iceS(:,:) ! co2 ice layer REAL tauscalingS(ip1jmp1) REAL totcloudfracS(ip1jmp1) REAL q2S(ip1jmp1,llm+1) REAL,ALLOCATABLE :: qsurfS(:,:,:) REAL,ALLOCATABLE :: emisS(:,:) REAL,ALLOCATABLE :: albedoS(:,:) REAL, ALLOCATABLE :: subslope_distS(:,:) ! AD: SSO parameters REAL zmeaS(ip1jmp1) REAL zsigS(ip1jmp1) REAL zstdS(ip1jmp1) REAL zgamS(ip1jmp1) REAL ztheS(ip1jmp1) REAL albedodatS(ip1jmp1) REAL z0S(ip1jmp1) REAL hmonsS(ip1jmp1) REAL summitS(ip1jmp1) REAL baseS(ip1jmp1) c Variables intermediaires : vent naturel, mais pas coord scalaire c---------------------------------------------------------------- REAL vn(ip1jm,llm),un(ip1jmp1,llm) c Autres variables c ----------------- LOGICAL startdrs INTEGER Lmodif REAL ptotal, co2icetotal REAL timedyn,timefi !fraction du jour dans start, startfi REAL date CHARACTER*2 str2 CHARACTER*80 fichier data fichier /'startfi'/ INTEGER ij, l,i,j,isoil,iq,islope character*80 fichnom integer :: ierr,ntime integer :: igcm_co2 integer :: nq,numvanle character(len=30) :: txt ! to store some text c Netcdf c------- integer varid,dimid,timelen INTEGER nid,nid1 c----------------------------------------------------------------------- c Initialisations c----------------------------------------------------------------------- CALL defrun_new(99, .TRUE. ) planet_type='mars' c======================================================================= c Lecture des donnees c======================================================================= ! Load tracer number and names: call infotrac_init ! allocate arrays: allocate(q(ip1jmp1,llm,nqtot)) fichnom = 'start.nc' CALL dynetat0(fichnom,vcov,ucov,teta,q,masse, . ps,phis,timedyn) c----------------------------------------------------------------------- c Initialisations c----------------------------------------------------------------------- CALL defrun_new(99, .FALSE. ) call iniconst call inigeom call inifilr ! Initialize the physics CALL iniphysiq(iim,jjm,llm, & (jjm-1)*iim+2,comm_lmdz, & daysec,day_ini,dtphys, & rlatu,rlatv,rlonu,rlonv, & aire,cu,cv,rad,g,r,cpp, & 1) fichnom = 'startfi.nc' Lmodif=0 allocate(tsurf(ngridmx,nslope)) allocate(tsoil(ngridmx,nsoilmx,nslope)) allocate(watercap(ngridmx,nslope)) allocate(perennial_co2ice(ngridmx,nslope)) allocate(emis(ngridmx,nslope)) allocate(albedo(ngridmx,2,nslope)) allocate(qsurfS(ip1jmp1,nqtot,nslope)) allocate(tsurfS(ip1jmp1,nslope)) allocate(tsoilS(ip1jmp1,nsoilmx,nslope)) allocate(inertiesoilS(ip1jmp1,nsoilmx,nslope)) allocate(watercapS(ip1jmp1,nslope)) allocate(perennial_co2iceS(ngridmx,nslope)) allocate(emisS(ip1jmp1,nslope)) allocate(albedoS(ip1jmp1,nslope)) allocate(subslope_distS(ip1jmp1,nslope)) CALL phyetat0 (fichnom,0,Lmodif,nsoilmx,ngridmx,llm,nqtot, & day_ini_fi,timefi,tsurf,tsoil,albedo,emis,q2,qsurf, & tauscaling,totcloudfrac,wstar,watercap,perennial_co2ice, & def_slope,def_slope_mean,subslope_dist) ierr = NF_OPEN (fichnom, NF_NOWRITE,nid1) IF (ierr.NE.NF_NOERR) THEN write(6,*)' Pb d''ouverture du fichier'//fichnom CALL ABORT ENDIF ierr = NF_INQ_VARID (nid1, "controle", varid) IF (ierr .NE. NF_NOERR) THEN PRINT*, "start2archive: Le champ est absent" CALL abort ENDIF #ifdef NC_DOUBLE ierr = NF_GET_VAR_DOUBLE(nid1, varid, tab_cntrl_fi) #else ierr = NF_GET_VAR_REAL(nid1, varid, tab_cntrl_fi) #endif IF (ierr .NE. NF_NOERR) THEN PRINT*, "start2archive: Lecture echoue pour " CALL abort ENDIF ierr = NF_CLOSE(nid1) c----------------------------------------------------------------------- c Controle de la synchro c----------------------------------------------------------------------- !mars a voir if ((day_ini_fi.ne.day_ini).or.(abs(timefi-timedyn).gt.1.e-10)) if ((mod(day_ini_fi,669).ne.mod(day_ini,669))) & stop ' Probleme de Synchro entre start et startfi !!!' c ***************************************************************** c Option : Reinitialisation des dates dans la premieres annees : do while (day_ini.ge.669) day_ini=day_ini-669 enddo c ***************************************************************** CALL pression(ip1jmp1, ap, bp, ps, p3d) call exner_hyb(ip1jmp1, ps, p3d, pks, pk, pkf) c======================================================================= c Transformation EN VARIABLE NATURELLE / GRILLE SCALAIRE si necessaire c======================================================================= c Les variables modeles dependent de la resolution. Il faut donc c eliminer les facteurs responsables de cette dependance c (pour utiliser newstart) c======================================================================= c----------------------------------------------------------------------- c Vent (depend de la resolution horizontale) c----------------------------------------------------------------------- c c ucov --> un et vcov --> vn c un --> us et vn --> vs c c----------------------------------------------------------------------- call covnat(llm,ucov, vcov, un, vn) call wind_scal(un,vn,us,vs) c----------------------------------------------------------------------- c Temperature (depend de la resolution verticale => de "sigma.def") c----------------------------------------------------------------------- c c h --> T c c----------------------------------------------------------------------- DO l=1,llm DO ij=1,ip1jmp1 T(ij,l)=teta(ij,l)*pk(ij,l)/cpp !mars deduit de l'equation dans newstart ENDDO ENDDO c----------------------------------------------------------------------- c Variable physique c----------------------------------------------------------------------- c c tsurf --> tsurfS c tsoil --> tsoilS c inertiesoil ---> inertiesoilS c emis --> emisS c q2 --> q2S c qsurf --> qsurfS c tauscaling --> tauscalingS c totcloudfrac --> totcloudfracS c c----------------------------------------------------------------------- do islope=1,nslope call gr_fi_dyn(1,ngridmx,iip1,jjp1,tsurf(:,islope), & tsurfS(:,islope)) call gr_fi_dyn(1,ngridmx,iip1,jjp1,watercap(:,islope), & watercapS(:,islope)) call gr_fi_dyn(1,ngridmx,iip1,jjp1,perennial_co2ice(:,islope), & perennial_co2iceS(:,islope)) call gr_fi_dyn(nsoilmx,ngridmx,iip1,jjp1,tsoil(:,:,islope), & tsoilS(:,:,islope)) call gr_fi_dyn(nsoilmx,ngridmx,iip1,jjp1,inertiesoil(:,:,islope), & inertiesoilS(:,:,islope)) ! Note: thermal inertia "inertiedat" is in comsoil.h call gr_fi_dyn(1,ngridmx,iip1,jjp1,emis(:,islope), & emisS(:,islope)) call gr_fi_dyn(1,ngridmx,iip1,jjp1,albedo(:,1,islope), & albedoS(:,islope)) call gr_fi_dyn(nqtot,ngridmx,iip1,jjp1,qsurf(:,:,islope), & qsurfS(:,:,islope)) call gr_fi_dyn(1,ngridmx,iip1,jjp1,subslope_dist(:,islope), & subslope_distS(:,islope)) enddo call gr_fi_dyn(nsoilmx,ngridmx,iip1,jjp1,inertiedat,ithS) call gr_fi_dyn(llm+1,ngridmx,iip1,jjp1,q2,q2S) call gr_fi_dyn(1,ngridmx,iip1,jjp1,tauscaling,tauscalingS) call gr_fi_dyn(1,ngridmx,iip1,jjp1,totcloudfrac,totcloudfracS) ! AD: for SSO parameters call gr_fi_dyn(1,ngridmx,iip1,jjp1,zmea,zmeaS) call gr_fi_dyn(1,ngridmx,iip1,jjp1,zstd,zstdS) call gr_fi_dyn(1,ngridmx,iip1,jjp1,zsig,zsigS) call gr_fi_dyn(1,ngridmx,iip1,jjp1,zthe,ztheS) call gr_fi_dyn(1,ngridmx,iip1,jjp1,zgam,zgamS) call gr_fi_dyn(1,ngridmx,iip1,jjp1,albedodat,albedodatS) call gr_fi_dyn(1,ngridmx,iip1,jjp1,z0,z0S) call gr_fi_dyn(1,ngridmx,iip1,jjp1,hmons,hmonsS) call gr_fi_dyn(1,ngridmx,iip1,jjp1,summit,summitS) call gr_fi_dyn(1,ngridmx,iip1,jjp1,base,baseS) c======================================================================= c Info pour controler c======================================================================= DO iq=1,nqtot if (trim(tname(iq)) .eq. "co2") then igcm_co2=iq endif enddo ptotal = 0. co2icetotal = 0. DO j=1,jjp1 DO i=1,iim DO islope=1,nslope ptotal=ptotal+aire(i+(iim+1)*(j-1))*ps(i+(iim+1)*(j-1))/g co2icetotal = co2icetotal + & qsurfS(i+(iim+1)*(j-1),igcm_co2,islope)* & aire(i+(iim+1)*(j-1))* & subslope_distS(i+(iim+1)*(j-1),islope)/ & cos(pi*def_slope_mean(islope)) ENDDO ENDDO ENDDO write(*,*)'Ancienne grille : masse de l''atm :',ptotal write(*,*)'Ancienne grille : masse de la glace CO2 :',co2icetotal c----------------------------------------------------------------------- c Passage de "ptotal" et "co2icetotal" par tab_cntrl_fi c----------------------------------------------------------------------- tab_cntrl_fi(49) = ptotal tab_cntrl_fi(50) = co2icetotal c======================================================================= c Ecriture dans le fichier "start_archive" c======================================================================= c----------------------------------------------------------------------- c Ouverture de "start_archive" c----------------------------------------------------------------------- ierr = NF_OPEN ('start_archive.nc', NF_WRITE,nid) c----------------------------------------------------------------------- c si "start_archive" n'existe pas: c 1_ ouverture c 2_ creation de l'entete dynamique ("ini_archive") c----------------------------------------------------------------------- c ini_archive: c On met dans l'entete le tab_cntrl dynamique (1 a 16) c On y ajoute les valeurs du tab_cntrl_fi (a partir de 51) c En plus les deux valeurs ptotal et co2icetotal (99 et 100) c----------------------------------------------------------------------- if (ierr.ne.NF_NOERR) then write(*,*)'OK, Could not open file "start_archive.nc"' write(*,*)'So let s create a new "start_archive"' ierr = NF_CREATE('start_archive.nc', & IOR(NF_CLOBBER,NF_64BIT_OFFSET), nid) call ini_archive(nid,day_ini,phis,ithS,tab_cntrl_fi, & def_slope,subslope_distS) endif c----------------------------------------------------------------------- c Ecriture de la coordonnee temps (date en jours) c----------------------------------------------------------------------- date = day_ini + hour_ini ierr= NF_INQ_VARID(nid,"Time",varid) ierr= NF_INQ_DIMID(nid,"Time",dimid) ierr= NF_INQ_DIMLEN(nid,dimid,timelen) ntime=timelen+1 write(*,*) "******************" write(*,*) "ntime",ntime write(*,*) "******************" #ifdef NC_DOUBLE ierr= NF_PUT_VARA_DOUBLE(nid,varid,ntime,1,date) #else ierr= NF_PUT_VARA_REAL(nid,varid,ntime,1,date) #endif if (ierr.ne.NF_NOERR) then write(*,*) "time matter ",NF_STRERROR(ierr) stop endif c----------------------------------------------------------------------- c Ecriture des champs (co2ice,emis,ps,Tsurf,T,u,v,q2,q,qsurf) c----------------------------------------------------------------------- c ATTENTION: q2 a une couche de plus!!!! c Pour creer un fichier netcdf lisible par grads, c On passe donc une des couches de q2 a part c comme une variable 2D (la couche au sol: "q2surf") c Les lmm autres couches sont nommees "q2atm" (3D) c----------------------------------------------------------------------- call write_archive(nid,ntime,'watercap','couche de glace h2o', & 'kg/m2',2,watercapS) call write_archive(nid,ntime,'perennial_co2ice','couche de glace co2', & 'kg/m2',2,perennial_co2iceS) call write_archive(nid,ntime,'tauscaling', & 'dust conversion factor',' ',2,tauscalingS) call write_archive(nid,ntime,'totcloudfrac', & 'sub grid cloud fraction',' ',2,totcloudfracS) call write_archive(nid,ntime,'emis','grd emis',' ',2,emisS) call write_archive(nid,ntime,'albedo','surface albedo',' ', & 2,albedoS) call write_archive(nid,ntime,'ps','Psurf','Pa',2,ps) call write_archive(nid,ntime,'tsurf','surf T','K',2,tsurfS) call write_archive(nid,ntime,'temp','temperature','K',3,t) call write_archive(nid,ntime,'u','Vent zonal','m.s-1',3,us) call write_archive(nid,ntime,'v','Vent merid','m.s-1',3,vs) call write_archive(nid,ntime,'q2surf','wind variance','m2.s-2',2, . q2S) call write_archive(nid,ntime,'q2atm','wind variance','m2.s-2',3, . q2S(1,2)) ! AD: SSO parameters call write_archive(nid,ntime,'ZMEA','zmea',' ',2,zmeaS) call write_archive(nid,ntime,'ZSTD','zstd',' ',2,zstdS) call write_archive(nid,ntime,'ZSIG','zsig',' ',2,zsigS) call write_archive(nid,ntime,'ZTHE','zthe',' ',2,ztheS) call write_archive(nid,ntime,'ZGAM','zgam',' ',2,zgamS) call write_archive(nid,ntime,'albedodat','albedodat', & ' ',2,albedodatS) call write_archive(nid,ntime,'z0','z0',' ',2,z0S) call write_archive(nid,ntime,'summit','summit', & ' ',2,summitS) call write_archive(nid,ntime,'hmons','hmons',' ',2,hmonsS) call write_archive(nid,ntime,'base','base',' ',2,baseS) c----------------------------------------------------------------------- c Ecriture du champs q ( q[1,nqtot] ) c----------------------------------------------------------------------- do iq=1,nqtot c write(str2,'(i2.2)') iq c call write_archive(nid,ntime,'q'//str2,'tracer','kg/kg', c . 3,q(1,1,iq)) call write_archive(nid,ntime,tname(iq),'tracer','kg/kg', & 3,q(1,1,iq)) end do c----------------------------------------------------------------------- c Ecriture du champs qsurf ( qsurf[1,nqtot] ) c----------------------------------------------------------------------- do iq=1,nqtot c write(str2,'(i2.2)') iq c call write_archive(nid,ntime,'qsurf'//str2,'Tracer on surface', c $ 'kg.m-2',2,qsurfS(1,iq)) txt=trim(tname(iq))//"_surf" call write_archive(nid,ntime,txt,'Tracer on surface', & 'kg.m-2',2,qsurfS(:,iq,:)) enddo c----------------------------------------------------------------------- c Ecriture du champs tsoil ( Tg[1,10] ) c----------------------------------------------------------------------- c "tsoil" Temperature au sol definie dans 10 couches dans le sol c Les 10 couches sont lues comme 10 champs c nommees Tg[1,10] c do isoil=1,nsoilmx c write(str2,'(i2.2)') isoil c call write_archive(nid,ntime,'Tg'//str2,'Ground Temperature ', c . 'K',2,tsoilS(1,isoil)) c enddo ! Write soil temperatures tsoil call write_archive(nid,ntime,'tsoil','Soil temperature', & 'K',-3,tsoilS(:,:,:)) ! Write soil thermal inertia call write_archive(nid,ntime,'inertiesoil','Soil TI', & 'J.s-1/2.m-2.K-1',-3,inertiesoilS(:,:,:)) ! Write soil thermal inertia for current climate call write_archive(nid,ntime,'inertiedat', & 'Soil thermal inertia', & 'J.s-1/2.m-2.K-1',-3,ithS) ! Write (0D) volumetric heat capacity (stored in comsoil.h) ! call write_archive(nid,ntime,'volcapa', ! & 'Soil volumetric heat capacity', ! & 'J.m-3.K-1',0,volcapa) ! Note: no need to write volcapa, it is stored in "controle" table ierr=NF_CLOSE(nid) c----------------------------------------------------------------------- c Fin c----------------------------------------------------------------------- write(*,*) "startarchive: all is well that ends well" end