SUBROUTINE vdif_cd(ngrid,nlay,pz0, & pg,pz,pu,pv,wstar,pts,ph,pcdv,pcdh) USE comcstfi_h use turb_mod, only: turb_resolved IMPLICIT NONE c======================================================================= c c Subject: computation of the surface drag coefficient using the c ------- approch developed by Loui for ECMWF. c c Author: Frederic Hourdin 15 /10 /93 c Modified by : Arnaud Colaitis 03/08/11 c ------- c c Arguments: c ---------- c c inputs: c ------ c ngrid size of the horizontal grid c pg gravity (m s -2) c pz(ngrid,nlay) height of layers c pu(ngrid,nlay) u component of the wind c pv(ngrid,nlay) v component of the wind c pts(ngrid) surface temperature c ph(ngrid) potential temperature T*(p/ps)^kappa c c outputs: c -------- c pcdv(ngrid) Cd for the wind c pcdh(ngrid) Cd for potential temperature c c======================================================================= c c----------------------------------------------------------------------- c Declarations: c ------------- #include "callkeys.h" c Arguments: c ---------- INTEGER, INTENT(IN) :: ngrid,nlay REAL, INTENT(IN) :: pz0(ngrid) REAL, INTENT(IN) :: pg,pz(ngrid,nlay) REAL, INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) REAL, INTENT(IN) :: pts(ngrid),ph(ngrid,nlay) REAL, INTENT(IN) :: wstar(ngrid) REAL, INTENT(OUT) :: pcdv(ngrid),pcdh(ngrid) ! momentum and heat drag coefficient c Local: c ------ INTEGER ig REAL karman,nu ! Von Karman constant and fluid kinematic viscosity LOGICAL firstcal DATA karman,nu/.41,0.001/ DATA firstcal/.true./ SAVE karman,nu !$OMP THREADPRIVATE(karman,nu) c Local(2): c --------- REAL z1,zcd0 REAL rib(ngrid) ! Bulk Richardson number REAL rig(ngrid) ! Gradient Richardson number REAL fm(ngrid) ! stability function for momentum REAL fh(ngrid) ! stability function for heat REAL z1z0,z1z0t ! ratios z1/z0 and z1/z0T c phim = 1+betam*zeta or (1-bm*zeta)**am c phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah REAL betam, betah, alphah, bm, bh, lambda c ah and am are assumed to be -0.25 and -0.5 respectively REAL cdn(ngrid),chn(ngrid) ! neutral momentum and heat drag coefficient REAL pz0t ! initial thermal roughness length. (local) REAL ric ! critical richardson number REAL reynolds(ngrid) ! reynolds number for UBL REAL prandtl(ngrid) ! prandtl number for UBL REAL pz0tcomp(ngrid) ! computed z0t REAL ite REAL residual REAL zu2(ngrid) c----------------------------------------------------------------------- c couche de surface: c ------------------ c Original formulation : if(.not.callrichsl) then DO ig=1,ngrid z1=1.E+0 + pz(ig,1)/pz0(ig) zcd0=karman/log(z1) zcd0=zcd0*zcd0 pcdv(ig)=zcd0 pcdh(ig)=zcd0 ENDDO ! print*,'old : cd,ch; ',pcdv,pcdh else reynolds(:)=0. c New formulation (AC) : c phim = 1+betam*zeta or (1-bm*zeta)**am c phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah c am=-0.25, ah=-0.5 pz0t = 0. ! for the sake of simplicity pz0tcomp(:) = 0.1*pz0(:) rib(:)=0. pcdv(:)=0. pcdh(:)=0. c this formulation assumes alphah=1., implying betah=betam c We use Dyer et al. parameters, as they cover a broad range of Richardson numbers : bm=16. !UBL bh=16. !UBL alphah=1. betam=5. !SBL betah=5. !SBL lambda=(sqrt(bh/bm))/alphah ric=betah/(betam**2) DO ig=1,ngrid ite=0. residual=abs(pz0tcomp(ig)-pz0t) do while((residual .gt. 0.01*pz0(ig)) .and. (ite .lt. 10.)) pz0t=pz0tcomp(ig) if ((pu(ig,1) .ne. 0.) .or. (pv(ig,1) .ne. 0.)) then c Classical Richardson number formulation c rib(ig) = (pg/ph(ig,1))*pz(ig,1)*(ph(ig,1)-pts(ig)) c & /(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1)) c Richardson number formulation proposed by D.E. England et al. (1995) ! zu2=MAX(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1),0.25*wstar(ig)**2) ! zu2=pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) ! zu2(ig)=MAX(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1), & ! & (0.3*wstar(ig))**2) zu2(ig)=pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) & + (log(1.+0.7*wstar(ig) + 2.3*wstar(ig)**2))**2 if(turb_resolved) then zu2(ig)=MAX(zu2(ig),1.) endif ! zu2(ig)=pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) + (0.5*wstar(ig))**2 ! we add the wstar to simulate ! bulk Ri changes due to subgrid wind feeding the thermals ! rig(ig) = (pg/ph(ig,1))*((pz(ig,1)-pz0(ig))**2 ! & /(pz(ig,1)-pz0t))*(ph(ig,1)-pts(ig)) ! & /zu2 rib(ig) = (pg/pts(ig)) ! & *pz(ig,1)*pz0(ig)/sqrt(pz(ig,1)*pz0t) & *sqrt(pz(ig,1)*pz0(ig)) & *(((log(pz(ig,1)/pz0(ig)))**2)/(log(pz(ig,1)/pz0t))) & *(ph(ig,1)-pts(ig)) & /zu2(ig) else print*,'warning, infinite Richardson at surface' print*,pu(ig,1),pv(ig,1) rib(ig) = ric ! traiter ce cas ! endif z1z0=pz(ig,1)/pz0(ig) z1z0t=pz(ig,1)/pz0t cdn(ig)=karman/log(z1z0) cdn(ig)=cdn(ig)*cdn(ig) chn(ig)=cdn(ig)*log(z1z0)/log(z1z0t) c Stable case : if (rib(ig) .gt. 0.) then c From D.E. England et al. (95) prandtl(ig)=1. if(rib(ig) .lt. ric) then c Assuming alphah=1. and bh=bm for stable conditions : fm(ig)=((ric-rib(ig))/ric)**2 fh(ig)=((ric-rib(ig))/ric)**2 else c For Ri>Ric, we consider Ri->Infinity => no turbulent mixing at surface ! fm(ig)=0. ! fh(ig)=0. fm(ig)=1. fh(ig)=1. endif c Unstable case : else c From D.E. England et al. (95) fm(ig)=sqrt(1.-lambda*bm*rib(ig)) fh(ig)=(1./alphah)*((1.-lambda*bh*rib(ig))**0.5)* & (1.-lambda*bm*rib(ig))**0.25 prandtl(ig)=alphah*((1.-lambda*bm*rib(ig))**0.25)/ & ((1.-lambda*bh*rib(ig))**0.5) endif reynolds(ig)=karman*sqrt(fm(ig)) & *sqrt(zu2(ig)) c & *sqrt(pu(ig,1)**2 + pv(ig,1)**2) & *pz0(ig)/(log(z1z0)*nu) pz0tcomp(ig)=pz0(ig)*exp(-karman*7.3* & (reynolds(ig)**0.25)*(prandtl(ig)**0.5)+5*karman) residual = abs(pz0t-pz0tcomp(ig)) ite = ite+1 ! print*, "iteration nnumber, residual",ite,residual enddo ! of while pz0t=0. c Drag computation : pcdv(ig)=cdn(ig)*fm(ig) pcdh(ig)=chn(ig)*fh(ig) ENDDO ! ! print*,'new : cd,ch; ',pcdv,pcdh ! Some useful diagnostics : ! call WRITEDIAGFI(ngrid,'RiB', ! & 'Bulk Richardson nb','no units', ! & 2,rib) ! call WRITEDIAGFI(ngrid,'RiG', ! & 'Grad Richardson nb','no units', ! & 2,rig) ! call WRITEDIAGFI(ngrid,'Pr', ! & 'Prandtl nb','no units', ! & 0,prandtl) ! call WRITEDIAGFI(ngrid,'Re', ! & 'Reynolds nb','no units', ! & 0,reynolds) ! call WRITEDIAGFI(ngrid,'z0tcomp', ! & 'computed z0t','m', ! & 2,pz0tcomp) endif !of if call richardson surface layer RETURN END