subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf,zday, & albedo,albedo_equivalent,emis,mu0,pplev,pplay,zzlev, & pt,tsurf,fract,dist_star, & dtlw,dtsw,fluxsurf_lw, & fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw, & fluxabs_sw,fluxtop_dn, & OLR_nu,OSR_nu, & int_dtaui,int_dtauv,popthi,popthv,poptci,poptcv, & lastcall) use mod_phys_lmdz_para, only : is_master use radinc_h use radcommon_h use gases_h USE tracer_h use callkeys_mod, only: global1d, szangle use comcstfi_mod, only: pi, mugaz, cpp use callkeys_mod, only: diurnal,tracer,seashaze,corrk_recombin, & strictboundcorrk,specOLR,diagdtau, & tplanckmin,tplanckmax,callclouds,Fcloudy use geometry_mod, only: latitude implicit none !================================================================== ! ! Purpose ! ------- ! Solve the radiative transfer using the correlated-k method for ! the gaseous absorption and the Toon et al. (1989) method for ! scatttering due to aerosols. ! ! Authors ! ------- ! Emmanuel 01/2001, Forget 09/2001 ! Robin Wordsworth (2009) ! ! Modified ! -------- ! Jan Vatant d'Ollone (2018) ! --> corrk recombining case ! B. de Batz de Trenquelléon (2023) ! --> Titan's haze and could optics ! --> clear/dark columns method ! --> optical diagnostics ! !================================================================== !----------------------------------------------------------------------- ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid ! Layer #1 is the layer near the ground. ! Layer #nlayer is the layer at the top. !----------------------------------------------------------------------- ! INPUT INTEGER,INTENT(IN) :: ngrid ! Number of atmospheric columns. INTEGER,INTENT(IN) :: nlayer ! Number of atmospheric layers. REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! Tracers (X/kg). INTEGER,INTENT(IN) :: nq ! Number of tracers. REAL,INTENT(IN) :: qsurf(ngrid,nq) ! Tracers on surface (kg.m-2). REAL,INTENT(IN) :: zday ! Time elapsed since Ls=0 (sols). REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV) ! Spectral Short Wavelengths Albedo. By MT2015 REAL,INTENT(IN) :: emis(ngrid) ! Long Wave emissivity. REAL,INTENT(IN) :: mu0(ngrid) ! Cosine of sun incident angle. REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). REAL,INTENT(IN) :: zzlev(ngrid,nlayer+1) ! Altitude at the atmospheric layer boundaries (ref : local surf). REAL,INTENT(IN) :: pt(ngrid,nlayer) ! Air temperature (K). REAL,INTENT(IN) :: tsurf(ngrid) ! Surface temperature (K). REAL,INTENT(IN) :: fract(ngrid) ! Fraction of day. REAL,INTENT(IN) :: dist_star ! Distance star-planet (AU). logical,intent(in) :: lastcall ! Signals last call to physics. ! OUTPUT REAL,INTENT(OUT) :: dtlw(ngrid,nlayer) ! Heating rate (K/s) due to LW radiation. REAL,INTENT(OUT) :: dtsw(ngrid,nlayer) ! Heating rate (K/s) due to SW radiation. REAL,INTENT(OUT) :: fluxsurf_lw(ngrid) ! Incident LW flux to surf (W/m2). REAL,INTENT(OUT) :: fluxsurf_sw(ngrid) ! Incident SW flux to surf (W/m2) REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid) ! Absorbed SW flux by the surface (W/m2). By MT2015. REAL,INTENT(OUT) :: fluxtop_lw(ngrid) ! Outgoing LW flux to space (W/m2). REAL,INTENT(OUT) :: fluxabs_sw(ngrid) ! SW flux absorbed by the planet (W/m2). REAL,INTENT(OUT) :: fluxtop_dn(ngrid) ! Incident top of atmosphere SW flux (W/m2). REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI) ! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1). REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV) ! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1). REAL,INTENT(OUT) :: albedo_equivalent(ngrid) ! Spectrally Integrated Albedo. For Diagnostic. By MT2015 REAL,INTENT(OUT) :: int_dtaui(ngrid,nlayer,L_NSPECTI) ! IR optical thickness of layers within narrowbands for diags (). REAL,INTENT(OUT) :: int_dtauv(ngrid,nlayer,L_NSPECTV) ! VI optical thickness of layers within narrowbands for diags (). ! Diagnostics REAL,INTENT(OUT) :: popthi(ngrid,nlayer,L_NSPECTI,5) ! IR optical properties of haze within narrowbands (dtau,tau,k,w,g). REAL,INTENT(OUT) :: popthv(ngrid,nlayer,L_NSPECTV,5) ! VI optical properties of haze within narrowbands (dtau,tau,k,w,g). REAL,INTENT(OUT) :: poptci(ngrid,nlayer,L_NSPECTI,5) ! IR optical properties of haze and clouds within narrowbands (dtau,tau,k,w,g). REAL,INTENT(OUT) :: poptcv(ngrid,nlayer,L_NSPECTV,5) ! VI optical properties of haze and clouds within narrowbands (dtau,tau,k,w,g). !----------------------------------------------------------------------- ! Declaration of the variables required by correlated-k subroutines ! Numbered from top to bottom (unlike in the GCM) !----------------------------------------------------------------------- REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) ! Optical values for the optci/cv subroutines REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) ! IR REAL*8 dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8 taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS) REAL*8 wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8 cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS) ! VI REAL*8 dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) REAL*8 tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS) REAL*8 taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS) REAL*8 wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) REAL*8 cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) ! Temporary optical values for the optci/cv subroutines (clear column) REAL*8 dtaui_cc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8 dtauv_cc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) REAL*8 tauv_cc(L_NLEVRAD,L_NSPECTV,L_NGAUSS) REAL*8 taucumi_cc(L_LEVELS,L_NSPECTI,L_NGAUSS) REAL*8 taucumv_cc(L_LEVELS,L_NSPECTV,L_NGAUSS) REAL*8 wbari_cc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8 wbarv_cc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) REAL*8 cosbi_cc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8 cosbv_cc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) ! Temporary optical values for the optci/cv subroutines (dark column) REAL*8 dtaui_dc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8 dtauv_dc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) REAL*8 tauv_dc(L_NLEVRAD,L_NSPECTV,L_NGAUSS) REAL*8 taucumi_dc(L_LEVELS,L_NSPECTI,L_NGAUSS) REAL*8 taucumv_dc(L_LEVELS,L_NSPECTV,L_NGAUSS) REAL*8 wbari_dc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8 wbarv_dc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) REAL*8 cosbi_dc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8 cosbv_dc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) ! Optical diagnostics REAL*8 popt_hazei(L_LEVELS,L_NSPECTI,3) REAL*8 popt_hazev(L_LEVELS,L_NSPECTV,3) REAL*8 popt_cloudsi(L_LEVELS,L_NSPECTI,3) REAL*8 popt_cloudsv(L_LEVELS,L_NSPECTV,3) ! Temporary optical diagnostics (clear column) REAL*8 popt_hazei_cc(L_LEVELS,L_NSPECTI,3) REAL*8 popt_hazev_cc(L_LEVELS,L_NSPECTV,3) REAL*8 popt_cloudsi_cc(L_LEVELS,L_NSPECTI,3) REAL*8 popt_cloudsv_cc(L_LEVELS,L_NSPECTV,3) ! Temporary optical diagnostics (dark column) REAL*8 popt_hazei_dc(L_LEVELS,L_NSPECTI,3) REAL*8 popt_hazev_dc(L_LEVELS,L_NSPECTV,3) REAL*8 popt_cloudsi_dc(L_LEVELS,L_NSPECTI,3) REAL*8 popt_cloudsv_dc(L_LEVELS,L_NSPECTV,3) REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn REAL*8 nfluxoutv_nu(L_NSPECTV) ! Outgoing band-resolved VI flux at TOA (W/m2). REAL*8 nfluxtopi_nu(L_NSPECTI) ! Net band-resolved IR flux at TOA (W/m2). REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! For 1D diagnostic. REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) REAL*8 albi,acosz REAL*8 albv(L_NSPECTV) ! Spectral Visible Albedo. INTEGER ig,l,k,nw,iq,ip,ilay,it,lev2lay,cdcolumn,ng LOGICAL found real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) real*8 taugsurfi(L_NSPECTI,L_NGAUSS-1) ! Miscellaneous : character(len=100) :: message character(len=10),parameter :: subname="callcorrk" logical OLRz real*8 NFLUXGNDV_nu(L_NSPECTV) ! Included by MT for albedo calculations. REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation. REAL*8 surface_stellar_flux ! Stellar flux reaching the surface. Useful for equivalent albedo calculation. ! For variable haze REAL*8 seashazefact(L_LEVELS) ! For muphys optics REAL*8 pqmo(ngrid,nlayer,nmicro) ! Tracers for microphysics optics (X/m2). REAL*8 i2e(ngrid,nlayer) ! int 2 ext factor ( X.kg-1 -> X.m-2 for optics ) ! For corr-k recombining REAL*8 pqr(ngrid,L_PINT,L_REFVAR) ! Tracers for corr-k recombining (mol/mol). REAL*8 fact, tmin, tmax LOGICAL usept(L_PINT,L_NTREF) ! mask if pfref grid point will be used INTEGER inflay(L_PINT) ! nearest inferior GCM layer for pfgasref grid points !======================================================================= ! I. Initialization on every call !======================================================================= ! How much light do we get ? do nw=1,L_NSPECTV stel(nw)=stellarf(nw)/(dist_star**2) end do ! Convert (microphysical) tracers for optics: X.kg-1 --> X.m-2 ! NOTE: it should be moved somewhere else: calmufi performs the same kind of ! computations... waste of time... i2e(:,1:nlayer) = ( pplev(:,1:nlayer)-pplev(:,2:nlayer+1) ) / gzlat(:,1:nlayer) pqmo(:,:,:) = 0.0 DO iq=1,nmicro pqmo(:,:,iq) = pq(:,:,iq)*i2e(:,:) ENDDO ! Default value for fixed species for whom vmr has been taken ! into account while computing high-resolution spectra if (corrk_recombin) pqr(:,:,:) = 1.0 !----------------------------------------------------------------------- do ig=1,ngrid ! Starting Big Loop over every GCM column !----------------------------------------------------------------------- ! Recombine reference corr-k if needed if (corrk_recombin) then ! NB : To have decent CPU time recombining is not done on all gridpoints and wavelenghts but we ! calculate a gasi/v_recomb variable on the reference corrk-k T,P grid (only for T,P values ! who match the atmospheric conditions ) which is then processed as a standard pre-mix in ! optci/v routines, but updated every time tracers on the ref P grid have varied > 1%. ! Extract tracers for variable radiative species ! Also find the nearest GCM layer under each ref pressure do ip=1,L_PINT ilay=0 found = .false. do l=1,nlayer if ( pplay(ig,l) .gt. 10.0**(pfgasref(ip)+2.0) ) then ! pfgasref=log(p[mbar]) found=.true. ilay=l endif enddo if (.not. found ) then ! set to min do iq=1,L_REFVAR if ( radvar_mask(iq) ) then pqr(ig,ip,iq) = pq(ig,1,radvar_indx(iq)) / rat_mmol(radvar_indx(iq)-nmicro) ! mol/mol endif enddo else if (ilay==nlayer) then ! set to max do iq=1,L_REFVAR if ( radvar_mask(iq) ) then pqr(ig,ip,iq) = pq(ig,nlayer,radvar_indx(iq)) / rat_mmol(radvar_indx(iq)-nmicro) ! mol/mol endif enddo else ! standard fact = ( 10.0**(pfgasref(ip)+2.0) - pplay(ig,ilay+1) ) / ( pplay(ig,ilay) - pplay(ig,ilay+1) ) ! pfgasref=log(p[mbar]) do iq=1,L_REFVAR if ( radvar_mask(iq) ) then pqr(ig,ip,iq) = pq(ig,ilay,radvar_indx(iq))**fact * pq(ig,ilay+1,radvar_indx(iq))**(1.0-fact) pqr(ig,ip,iq) = pqr(ig,ip,iq) / rat_mmol(radvar_indx(iq)-nmicro) ! mol/mol endif enddo endif ! if ilay==nlayer endif ! if not found inflay(ip) = ilay enddo ! ip=1,L_PINT ! NB : The following usept is a trick to call recombine only for the reference T-P ! grid points that are useful given the temperature range at this altitude ! It saves a looot of time - JVO 18 usept(:,:) = .true. do ip=1,L_PINT-1 if ( inflay(ip+1)==nlayer ) then usept(ip,:) = .false. endif if ( inflay(ip) == 0 ) then usept(ip+1:,:) = .false. endif if ( usept(ip,1) ) then ! if not all false tmin = minval(pt(ig,max(inflay(ip+1)+1,1):min(inflay(ip)+1,nlayer))) tmax = maxval(pt(ig,max(inflay(ip+1)+1,1):min(inflay(ip)+1,nlayer))) do it=1,L_NTREF-1 if ( tgasref(it+1) .lt. tmin ) then usept(ip,it) = .false. endif enddo do it=2,L_NTREF if ( tgasref(it-1) .gt. tmax ) then usept(ip,it) = .false. endif enddo ! in case of out-of-bounds if ( tgasref(1) .lt. tmin ) usept(ip,1) = .true. if ( tgasref(L_NTREF) .gt. tmax ) usept(ip,L_NTREF) = .true. endif enddo ! ip=1,L_PINT-1 ! deal with last bound if ( inflay(L_PINT-1).ne.0 ) usept(L_PINT,:) = usept(L_PINT-1,:) do ip=1,L_PINT ! Recombine k at (useful only!) reference T-P values if tracers or T have enough varied do it=1,L_NTREF if ( usept(ip,it) .eqv. .false. ) cycle do l=1,L_REFVAR if ( abs( (pqr(ig,ip,l) - pqrold(ip,l)) / max(1.0e-30,pqrold(ip,l))) .GT. 0.01 & ! +- 1% .or. ( useptold(ip,it) .eqv. .false. ) ) then ! in case T change but not the tracers call recombin_corrk( pqr(ig,ip,:),ip,it ) exit ! one is enough to trigger the update endif enddo enddo enddo ! ip=1,L_PINT useptold(:,:)=usept(:,:) endif ! if corrk_recombin !======================================================================= ! II. Transformation of the GCM variables !======================================================================= ! Albedo and Emissivity. albi=1-emis(ig) ! Long Wave. DO nw=1,L_NSPECTV ! Short Wave loop. albv(nw)=albedo(ig,nw) ENDDO if ((ngrid.eq.1).and.(global1d)) then ! Fixed zenith angle 'szangle' in 1D simulations w/ globally-averaged sunlight. acosz = cos(pi*szangle/180.0) print*,'acosz=',acosz,', szangle=',szangle else acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude. endif !----------------------------------------------------------------------- ! Pressure and temperature !----------------------------------------------------------------------- DO l=1,nlayer plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep tlevrad(2*l) = pt(ig,nlayer+1-l) tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 END DO plevrad(1) = 0. plevrad(2) = 0. !! Trick to have correct calculations of fluxes in gflux(i/v).F, but the pmid levels are not impacted by this change. tlevrad(1) = tlevrad(2) tlevrad(2*nlayer+1)=tsurf(ig) pmid(1) = max(pgasmin,0.0001*plevrad(3)) pmid(2) = pmid(1) tmid(1) = tlevrad(2) tmid(2) = tmid(1) DO l=1,L_NLAYRAD-1 tmid(2*l+1) = tlevrad(2*l+1) tmid(2*l+2) = tlevrad(2*l+1) pmid(2*l+1) = plevrad(2*l+1) pmid(2*l+2) = plevrad(2*l+1) END DO pmid(L_LEVELS) = plevrad(L_LEVELS) tmid(L_LEVELS) = tlevrad(L_LEVELS) !!Alternative interpolation: ! pmid(3) = pmid(1) ! pmid(4) = pmid(1) ! tmid(3) = tmid(1) ! tmid(4) = tmid(1) ! DO l=2,L_NLAYRAD-1 ! tmid(2*l+1) = tlevrad(2*l) ! tmid(2*l+2) = tlevrad(2*l) ! pmid(2*l+1) = plevrad(2*l) ! pmid(2*l+2) = plevrad(2*l) ! END DO ! pmid(L_LEVELS) = plevrad(L_LEVELS-1) ! tmid(L_LEVELS) = tlevrad(L_LEVELS-1) ! Test for out-of-bounds pressure. if(plevrad(3).lt.pgasmin)then print*,'Minimum pressure is outside the radiative' print*,'transfer kmatrix bounds, exiting.' call abort elseif(plevrad(L_LEVELS).gt.pgasmax)then print*,'Maximum pressure is outside the radiative' print*,'transfer kmatrix bounds, exiting.' call abort endif ! Test for out-of-bounds temperature. do k=1,L_LEVELS if(tlevrad(k).lt.tgasmin)then print*,'Minimum temperature is outside the radiative' print*,'transfer kmatrix bounds' print*,"k=",k," tlevrad(k)=",tlevrad(k) print*,"tgasmin=",tgasmin if (strictboundcorrk) then call abort else print*,'***********************************************' print*,'we allow model to continue with tlevrad=tgasmin' print*,' ... we assume we know what you are doing ... ' print*,' ... but do not let this happen too often ... ' print*,'***********************************************' !tlevrad(k)=tgasmin endif elseif(tlevrad(k).gt.tgasmax)then ! print*,'Maximum temperature is outside the radiative' ! print*,'transfer kmatrix bounds, exiting.' ! print*,"k=",k," tlevrad(k)=",tlevrad(k) ! print*,"tgasmax=",tgasmax if (strictboundcorrk) then call abort else ! print*,'***********************************************' ! print*,'we allow model to continue with tlevrad=tgasmax' ! print*,' ... we assume we know what you are doing ... ' ! print*,' ... but do not let this happen too often ... ' ! print*,'***********************************************' !tlevrad(k)=tgasmax endif endif if (tlevrad(k).lt.tplanckmin) then print*,'Minimum temperature is outside the boundaries for' print*,'Planck function integration set in callphys.def, aborting.' print*,"k=",k," tlevrad(k)=",tlevrad(k) print*,"tplanckmin=",tplanckmin message="Minimum temperature outside Planck function bounds - Change tplanckmin in callphys.def" call abort_physic(subname,message,1) else if (tlevrad(k).gt.tplanckmax) then print*,'Maximum temperature is outside the boundaries for' print*,'Planck function integration set in callphys.def, aborting.' print*,"k=",k," tlevrad(k)=",tlevrad(k) print*,"tplanckmax=",tplanckmax message="Maximum temperature outside Planck function bounds - Change tplanckmax in callphys.def" call abort_physic(subname,message,1) endif enddo do k=1,L_NLAYRAD+1 if(tmid(k).lt.tgasmin)then print*,'Minimum temperature is outside the radiative' print*,'transfer kmatrix bounds, exiting.' print*,"k=",k," tmid(k)=",tmid(k) print*,"tgasmin=",tgasmin if (strictboundcorrk) then call abort else print*,'***********************************************' print*,'we allow model to continue with tmid=tgasmin' print*,' ... we assume we know what you are doing ... ' print*,' ... but do not let this happen too often ... ' print*,'***********************************************' tmid(k)=tgasmin endif elseif(tmid(k).gt.tgasmax)then ! print*,'Maximum temperature is outside the radiative' ! print*,'transfer kmatrix bounds, exiting.' ! print*,"k=",k," tmid(k)=",tmid(k) ! print*,"tgasmax=",tgasmax if (strictboundcorrk) then call abort else ! print*,'***********************************************' ! print*,'we allow model to continue with tmid=tgasmin' ! print*,' ... we assume we know what you are doing ... ' ! print*,' ... but do not let this happen too often ... ' ! print*,'***********************************************' tmid(k)=tgasmax endif endif enddo !======================================================================= ! III. Calling the main radiative transfer subroutines !======================================================================= Cmk(:) = 0.01 * 1.0 / (gzlat(ig,:) * mugaz * 1.672621e-27) ! q_main=1.0 assumed. gzlat_ig(:) = gzlat(ig,:) ! Compute the haze seasonal modulation factor if (seashaze) call season_haze(zday,latitude(ig),plevrad,seashazefact) !----------------------------------------------------------------------- ! Short Wave Part !----------------------------------------------------------------------- ! Clear column : cdcolumn = 0 call optcv(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tmid,pmid, & dtauv_cc,tauv_cc,taucumv_cc,wbarv_cc,cosbv_cc,tauray,taugsurf,seashazefact,& popt_hazev_cc,popt_cloudsv_cc,cdcolumn) ! Dark column : cdcolumn = 1 call optcv(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tmid,pmid, & dtauv_dc,tauv_dc,taucumv_dc,wbarv_dc,cosbv_dc,tauray,taugsurf,seashazefact,& popt_hazev_dc,popt_cloudsv_dc,cdcolumn) ! Mean opacity, ssa and asf : where ((exp(-dtauv_cc(:,:,:)).ge.1.d-40) .and. (exp(-dtauv_dc(:,:,:)).ge.1.d-40)) dtauv(:,:,:) = -log((1-Fcloudy)*exp(-dtauv_cc(:,:,:)) + Fcloudy*exp(-dtauv_dc(:,:,:))) elsewhere dtauv(:,:,:) = dtauv_dc(:,:,:) ! No need to average... endwhere do ng = 1, L_NGAUSS do nw = 1, L_NSPECTV taucumv(1,nw,ng) = 0.0d0 do k = 2, L_LEVELS if ((exp(-taucumv_cc(k,nw,ng)).ge.1.d-40) .and. (exp(-taucumv_dc(k,nw,ng)).ge.1.d-40)) then taucumv(k,nw,ng) = taucumv(k-1,nw,ng) - log((1-Fcloudy)*exp(-taucumv_cc(k,nw,ng)) + Fcloudy*exp(-taucumv_dc(k,nw,ng))) else taucumv(k,nw,ng) = taucumv(k-1,nw,ng) + taucumv_dc(k,nw,ng) ! No need to average... end if end do do l = 1, L_NLAYRAD tauv(l,nw,ng) = taucumv(2*l,nw,ng) end do tauv(l,nw,ng) = taucumv(2*L_NLAYRAD+1,nw,ng) end do end do wbarv = (dtauv_cc*wbarv_cc + dtauv_dc*wbarv_dc) / (dtauv_cc + dtauv_dc) cosbv = (dtauv_cc*wbarv_cc*cosbv_cc + dtauv_dc*wbarv_dc*cosbv_dc) / (dtauv_cc*wbarv_cc + dtauv_dc*wbarv_dc) ! Diagnostics for haze : where (popt_hazev_cc(:,:,1) .lt. 1.d-30) popt_hazev_cc(:,:,1) = 1.d-30 endwhere where (popt_hazev_dc(:,:,1) .lt. 1.d-30) popt_hazev_dc(:,:,1) = 1.d-30 endwhere popt_hazev(:,:,1) = -log( (1-Fcloudy)*exp(-popt_hazev_cc(:,:,1)) + Fcloudy*exp(-popt_hazev_dc(:,:,1)) ) popt_hazev(:,:,2) = ((popt_hazev_cc(:,:,1)*popt_hazev_cc(:,:,2) + popt_hazev_dc(:,:,1)*popt_hazev_dc(:,:,2)) & / (popt_hazev_cc(:,:,1) + popt_hazev_dc(:,:,1))) where ((popt_hazev_cc(:,:,2).gt.0.0D0) .or. (popt_hazev_dc(:,:,2).gt.0.0D0)) popt_hazev(:,:,3) = (popt_hazev_cc(:,:,1)*popt_hazev_cc(:,:,2)*popt_hazev_cc(:,:,3) + popt_hazev_dc(:,:,1)*popt_hazev_dc(:,:,2)*popt_hazev_dc(:,:,3)) & / (popt_hazev_cc(:,:,1)*popt_hazev_cc(:,:,2) + popt_hazev_dc(:,:,1)*popt_hazev_dc(:,:,2)) elsewhere popt_hazev(:,:,3) = 0.0D0 endwhere ! Diagnostics for clouds : if (callclouds) then where (popt_cloudsv_cc(:,:,1) .lt. 1.d-30) popt_cloudsv_cc(:,:,1) = 1.d-30 endwhere where (popt_cloudsv_dc(:,:,1) .lt. 1.d-30) popt_cloudsv_dc(:,:,1) = 1.d-30 endwhere popt_cloudsv(:,:,1) = -log( (1-Fcloudy)*exp(-popt_cloudsv_cc(:,:,1)) + Fcloudy*exp(-popt_cloudsv_dc(:,:,1)) ) popt_cloudsv(:,:,2) = ((popt_cloudsv_cc(:,:,1)*popt_cloudsv_cc(:,:,2) + popt_cloudsv_dc(:,:,1)*popt_cloudsv_dc(:,:,2)) & / (popt_cloudsv_cc(:,:,1) + popt_cloudsv_dc(:,:,1))) where ((popt_cloudsv_cc(:,:,2).gt.0.0D0) .or. (popt_cloudsv_dc(:,:,2).gt.0.0D0)) popt_cloudsv(:,:,3) = (popt_cloudsv_cc(:,:,1)*popt_cloudsv_cc(:,:,2)*popt_cloudsv_cc(:,:,3) + popt_cloudsv_dc(:,:,1)*popt_cloudsv_dc(:,:,2)*popt_cloudsv_dc(:,:,3)) & / (popt_cloudsv_cc(:,:,1)*popt_cloudsv_cc(:,:,2) + popt_cloudsv_dc(:,:,1)*popt_cloudsv_dc(:,:,2)) elsewhere popt_cloudsv(:,:,3) = 0.0D0 endwhere endif if(fract(ig) .ge. 1.0e-4) then ! Only during daylight. if((ngrid.eq.1).and.(global1d))then do nw=1,L_NSPECTV stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle end do else do nw=1,L_NSPECTV stel_fract(nw)= stel(nw) * fract(ig) end do endif call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & acosz,stel_fract, & nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu, & fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) else ! During the night, fluxes = 0. nfluxtopv = 0.0d0 fluxtopvdn = 0.0d0 nfluxoutv_nu(:) = 0.0d0 nfluxgndv_nu(:) = 0.0d0 do l=1,L_NLAYRAD fmnetv(l)=0.0d0 fluxupv(l)=0.0d0 fluxdnv(l)=0.0d0 end do end if ! Equivalent Albedo Calculation (for OUTPUT). MT2015 if(fract(ig) .ge. 1.0e-4) then ! equivalent albedo makes sense only during daylight. surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV)) if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive. DO nw=1,L_NSPECTV albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw) ENDDO albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV)) else albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. endif else albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. endif !----------------------------------------------------------------------- ! Long Wave Part !----------------------------------------------------------------------- ! Clear column : cdcolumn = 0 call optci(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tlevrad,tmid,pmid,& dtaui_cc,taucumi_cc,cosbi_cc,wbari_cc,taugsurfi,seashazefact, & popt_hazei_cc,popt_cloudsi_cc,cdcolumn) ! Dark column : cdcolumn = 1 call optci(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tlevrad,tmid,pmid,& dtaui_dc,taucumi_dc,cosbi_dc,wbari_dc,taugsurfi,seashazefact, & popt_hazei_dc,popt_cloudsi_dc,cdcolumn) ! Mean opacity, ssa and asf : where ((exp(-dtaui_cc(:,:,:)).ge.1.d-40) .and. (exp(-dtaui_dc(:,:,:)).ge.1.d-40)) dtaui(:,:,:) = -log((1-Fcloudy)*exp(-dtaui_cc(:,:,:)) + Fcloudy*exp(-dtaui_dc(:,:,:))) elsewhere dtaui(:,:,:) = dtaui_dc(:,:,:) ! No need to average... endwhere do ng = 1, L_NGAUSS do nw = 1, L_NSPECTI taucumi(1,nw,ng) = 0.0d0 do k = 2, L_LEVELS if ((exp(-taucumi_cc(k,nw,ng)).ge.1.d-40) .and. (exp(-taucumi_dc(k,nw,ng)).ge.1.d-40)) then taucumi(k,nw,ng) = taucumi(k-1,nw,ng) - log((1-Fcloudy)*exp(-taucumi_cc(k,nw,ng)) + Fcloudy*exp(-taucumi_dc(k,nw,ng))) else taucumi(k,nw,ng) = taucumi(k-1,nw,ng) + taucumi_dc(k,nw,ng) ! No need to average... end if end do end do end do where ((wbari_cc.gt.0.0D0) .or. (wbari_dc.gt.0.0D0)) wbari = (dtaui_cc*wbari_cc + dtaui_dc*wbari_dc) / (dtaui_cc + dtaui_dc) cosbi = (dtaui_cc*wbari_cc*cosbi_cc + dtaui_dc*wbari_dc*cosbi_dc) / (dtaui_cc*wbari_cc + dtaui_dc*wbari_dc) elsewhere wbari = 0.0D0 cosbi = 0.0D0 endwhere ! Diagnostics for haze : where (popt_hazei_cc(:,:,1) .lt. 1.d-30) popt_hazei_cc(:,:,1) = 1.d-30 endwhere where (popt_hazei_dc(:,:,1) .lt. 1.d-30) popt_hazei_dc(:,:,1) = 1.d-30 endwhere popt_hazei(:,:,1) = -log( (1-Fcloudy)*exp(-popt_hazei_cc(:,:,1)) + Fcloudy*exp(-popt_hazei_dc(:,:,1)) ) popt_hazei(:,:,2) = (popt_hazei_cc(:,:,1)*popt_hazei_cc(:,:,2) + popt_hazei_dc(:,:,1)*popt_hazei_dc(:,:,2)) & / (popt_hazei_cc(:,:,1) + popt_hazei_dc(:,:,1)) where ((popt_hazei_cc(:,:,2).gt.0.0D0) .or. (popt_hazei_dc(:,:,2).gt.0.0D0)) popt_hazei(:,:,3) = (popt_hazei_cc(:,:,1)*popt_hazei_cc(:,:,2)*popt_hazei_cc(:,:,3) + popt_hazei_dc(:,:,1)*popt_hazei_dc(:,:,2)*popt_hazei_dc(:,:,3)) & / (popt_hazei_cc(:,:,1)*popt_hazei_cc(:,:,2) + popt_hazei_dc(:,:,1)*popt_hazei_dc(:,:,2)) elsewhere popt_hazei(:,:,3) = 0.0D0 endwhere ! Diagnostics for clouds : if (callclouds) then where (popt_cloudsi_cc(:,:,1) .lt. 1.d-30) popt_cloudsi_cc(:,:,1) = 1.d-30 endwhere where (popt_cloudsi_dc(:,:,1) .lt. 1.d-30) popt_cloudsi_dc(:,:,1) = 1.d-30 endwhere popt_cloudsi(:,:,1) = -log( (1-Fcloudy)*exp(-popt_cloudsi_cc(:,:,1)) + Fcloudy*exp(-popt_cloudsi_dc(:,:,1)) ) popt_cloudsi(:,:,2) = ((popt_cloudsi_cc(:,:,1)*popt_cloudsi_cc(:,:,2) + popt_cloudsi_dc(:,:,1)*popt_cloudsi_dc(:,:,2)) & / (popt_cloudsi_cc(:,:,1) + popt_cloudsi_dc(:,:,1))) where ((popt_cloudsi_cc(:,:,2).gt.0.0D0) .or. (popt_cloudsi_dc(:,:,2).gt.0.0D0)) popt_cloudsi(:,:,3) = (popt_cloudsi_cc(:,:,1)*popt_cloudsi_cc(:,:,2)*popt_cloudsi_cc(:,:,3) + popt_cloudsi_dc(:,:,1)*popt_cloudsi_dc(:,:,2)*popt_cloudsi_dc(:,:,3)) & / (popt_cloudsi_cc(:,:,1)*popt_cloudsi_cc(:,:,2) + popt_cloudsi_dc(:,:,1)*popt_cloudsi_dc(:,:,2)) elsewhere popt_cloudsi(:,:,3) = 0.0D0 endwhere endif call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, & wnoi,dwni,cosbi,wbari,nfluxtopi,nfluxtopi_nu, & fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) !----------------------------------------------------------------------- ! Transformation of the correlated-k code outputs ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) ! Flux incident at the top of the atmosphere fluxtop_dn(ig)=fluxtopvdn fluxtop_lw(ig) = real(nfluxtopi) fluxabs_sw(ig) = real(-nfluxtopv) fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD)) fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) ! Flux absorbed by the surface. By MT2015. fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig)) if(fluxtop_dn(ig).lt.0.0)then print*,'Achtung! fluxtop_dn has lost the plot!' print*,'fluxtop_dn=',fluxtop_dn(ig) print*,'acosz=',acosz print*,'temp= ',pt(ig,:) print*,'pplay= ',pplay(ig,:) call abort endif ! Spectral output, for exoplanet observational comparison if(specOLR)then do nw=1,L_NSPECTI OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth end do do nw=1,L_NSPECTV !GSR_nu(ig,nw)=nfluxgndv_nu(nw) OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth end do endif ! Finally, the heating rates DO l=2,L_NLAYRAD dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & *gzlat(ig,L_NLAYRAD+1-l)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & *gzlat(ig,L_NLAYRAD+1-l)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) END DO ! These are values at top of atmosphere dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & *gzlat(ig,L_NLAYRAD)/(cpp*scalep*(plevrad(3)-plevrad(1))) dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & *gzlat(ig,L_NLAYRAD)/(cpp*scalep*(plevrad(3)-plevrad(1))) ! Optical thickness diagnostics (added by JVO) if (diagdtau) then do l=1,L_NLAYRAD do nw=1,L_NSPECTV int_dtauv(ig,l,nw) = 0.0d0 DO k=1,L_NGAUSS ! Output exp(-tau) because gweight ponderates exp and not tau itself int_dtauv(ig,l,nw)= int_dtauv(ig,l,nw) + exp(-dtauv(l,nw,k))*gweight(k) ENDDO enddo do nw=1,L_NSPECTI int_dtaui(ig,l,nw) = 0.0d0 DO k=1,L_NGAUSS ! Output exp(-tau) because gweight ponderates exp and not tau itself int_dtaui(ig,l,nw)= int_dtaui(ig,l,nw) + exp(-dtaui(l,nw,k))*gweight(k) ENDDO enddo enddo endif ! Diagnostics : optical properties of haze and clouds (dtau, tau, k, w, g) : do l = 2, L_LEVELS, 2 lev2lay = L_NLAYRAD+1 - l/2 ! Visible : do nw = 1, L_NSPECTV popthv(ig,lev2lay,nw,:) = 0.0d0 poptcv(ig,lev2lay,nw,:) = 0.0d0 ! Optical thickness (dtau) : popthv(ig,lev2lay,nw,1) = (popt_hazev(l,nw,1) + popt_hazev(l+1,nw,1)) / 2.0 if (callclouds) then poptcv(ig,lev2lay,nw,1) = (popt_cloudsv(l,nw,1) + popt_cloudsv(l+1,nw,1)) / 2.0 endif ! Opacity (tau) : do k = L_NLAYRAD, lev2lay, -1 popthv(ig,lev2lay,nw,2) = popthv(ig,lev2lay,nw,2) + popthv(ig,k,nw,1) if (callclouds) then poptcv(ig,lev2lay,nw,2) = poptcv(ig,lev2lay,nw,2) + poptcv(ig,k,nw,1) endif enddo ! Extinction (k) : popthv(ig,lev2lay,nw,3) = popthv(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) if (callclouds) then poptcv(ig,lev2lay,nw,3) = poptcv(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) endif ! Simple Scattering Albedo (w) and Asymmetry Parameter (g) : popthv(ig,lev2lay,nw,4) = (popt_hazev(l,nw,2) + popt_hazev(l+1,nw,2)) / 2.0 popthv(ig,lev2lay,nw,5) = (popt_hazev(l,nw,3) + popt_hazev(l+1,nw,3)) / 2.0 if (callclouds) then poptcv(ig,lev2lay,nw,4) = (popt_cloudsv(l,nw,2) + popt_cloudsv(l+1,nw,2)) / 2.0 poptcv(ig,lev2lay,nw,5) = (popt_cloudsv(l,nw,3) + popt_cloudsv(l+1,nw,3)) / 2.0 endif enddo ! Infra-Red do nw=1,L_NSPECTI popthi(ig,lev2lay,nw,:) = 0.0d0 poptci(ig,lev2lay,nw,:) = 0.0d0 ! Optical thickness (dtau) : popthi(ig,lev2lay,nw,1) = (popt_hazei(l,nw,1) + popt_hazei(l+1,nw,1)) / 2.0 if (callclouds) then poptci(ig,lev2lay,nw,1) = (popt_cloudsi(l,nw,1) + popt_cloudsi(l+1,nw,1)) / 2.0 endif ! Opacity (tau) : do k = L_NLAYRAD, lev2lay, -1 popthi(ig,lev2lay,nw,2) = popthi(ig,lev2lay,nw,2) + popthi(ig,k,nw,1) if (callclouds) then poptci(ig,lev2lay,nw,2) = poptci(ig,lev2lay,nw,2) + poptci(ig,k,nw,1) endif enddo ! Extinction (k) : popthi(ig,lev2lay,nw,3) = popthi(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) if (callclouds) then poptci(ig,lev2lay,nw,3) = poptci(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) endif ! Simple Scattering Albedo (w) and Asymmetry Parameter (g) : popthi(ig,lev2lay,nw,4) = (popt_hazei(l,nw,2) + popt_hazei(l+1,nw,2)) / 2.0 popthi(ig,lev2lay,nw,5) = (popt_hazei(l,nw,3) + popt_hazei(l+1,nw,3)) / 2.0 if (callclouds) then poptci(ig,lev2lay,nw,4) = (popt_cloudsi(l,nw,2) + popt_cloudsi(l+1,nw,2)) / 2.0 poptci(ig,lev2lay,nw,5) = (popt_cloudsi(l,nw,3) + popt_cloudsi(l+1,nw,3)) / 2.0 endif enddo enddo !----------------------------------------------------------------------- end do ! End of big loop over every GCM column. !----------------------------------------------------------------------- !----------------------------------------------------------------------- ! Additional diagnostics !----------------------------------------------------------------------- ! IR spectral output, for exoplanet observational comparison if(lastcall.and.(ngrid.eq.1))then ! could disable the 1D output, they are in the diagfi and diagspec... JL12 print*,'Saving scalar quantities in surf_vals.out...' print*,'psurf = ', pplev(1,1),' Pa' open(116,file='surf_vals.out') write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1), & real(-nfluxtopv),real(nfluxtopi) close(116) ! USEFUL COMMENT - Do Not Remove. ! ! if(specOLR)then ! open(117,file='OLRnu.out') ! do nw=1,L_NSPECTI ! write(117,*) OLR_nu(1,nw) ! enddo ! close(117) ! ! open(127,file='OSRnu.out') ! do nw=1,L_NSPECTV ! write(127,*) OSR_nu(1,nw) ! enddo ! close(127) ! endif ! OLR vs altitude: do it as a .txt file. OLRz=.false. if(OLRz)then print*,'saving IR vertical flux for OLRz...' open(118,file='OLRz_plevs.out') open(119,file='OLRz.out') do l=1,L_NLAYRAD write(118,*) plevrad(2*l) do nw=1,L_NSPECTI write(119,*) fluxupi_nu(l,nw) enddo enddo close(118) close(119) endif endif if (lastcall) then IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi ) IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv ) IF( ALLOCATED( gasi_recomb ) ) DEALLOCATE( gasi_recomb ) IF( ALLOCATED( gasv_recomb ) ) DEALLOCATE( gasv_recomb ) IF( ALLOCATED( pqrold ) ) DEALLOCATE( pqrold ) IF( ALLOCATED( useptold ) ) DEALLOCATE( useptold ) !$OMP BARRIER !$OMP MASTER IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref ) IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref ) IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref ) IF( ALLOCATED( gweight ) ) DEALLOCATE( gweight ) !$OMP END MASTER !$OMP BARRIER endif end subroutine callcorrk