subroutine calchim(ptimestep,pplay,pplev,pt,pdt,dist_sol,mu0, $ zzlay,zday,pq,pdq,dqchim,dqschim,dqcloud, $ dqscloud) c implicit none c c======================================================================= c c subject: c -------- c c Prepare the call for the photochemical module, and send back the c tendencies from photochemistry in the chemical species mass mixing ratios c c Author: Sebastien Lebonnois (08/11/2002) c ------- c update 12/06/2003 for water ice clouds and compatibility with dust c update 07/2003 for coupling with thermosphere (Monica Angelats-i-Coll) c update 03/05/2005 cosmetic changes (Franck Lefevre) c c Arguments: c ---------- c c Input: c c ptimestep timestep (s) c pplay(ngridmx,nlayermx) Pressure at the middle of the layers (Pa) c pplev(ngridmx,nlayermx+1) Intermediate pressure levels (Pa) c pt(ngridmx,nlayermx) Temperature (K) c pdt(ngridmx,nlayermx) Temperature tendency (K) c dist_sol distance of the sun (AU) c mu0(ngridmx) cos of solar zenith angle (=1 when sun at zenith) c pq(ngridmx,nlayermx,nqmx) Advected fields, ie chemical species here c pdq(ngridmx,nlayermx,nqmx) Previous tendencies on pq c c Output: c c dqchim(ngridmx,nlayermx,nqmx) ! tendencies on pq due to chemistry c dqschim(ngridmx,nqmx) ! tendencies on qsurf c c======================================================================= c Declarations : c -------------- #include "dimensions.h" #include "dimphys.h" #include "chimiedata.h" #include "tracer.h" #include "comcstfi.h" #include "callkeys.h" #include "fisice.h" #include "conc.h" c Arguments : c ----------- c inputs: c ------- real ptimestep real pplay(ngridmx,nlayermx) ! pressure at the middle of the layers real zzlay(ngridmx,nlayermx) ! pressure at the middle of the layers real pplev(ngridmx,nlayermx+1) ! intermediate pressure levels real pt(ngridmx,nlayermx) ! temperature real pdt(ngridmx,nlayermx) ! temperature tendency real dist_sol ! distance of the sun (AU) real mu0(ngridmx) ! cos of solar zenith angle (=1 when sun at zenith) real pq(ngridmx,nlayermx,nqmx) ! tracers mass mixing ratio real pdq(ngridmx,nlayermx,nqmx) ! previous tendencies real zday ! date (time since Ls=0, in martian days) c outputs: c -------- real dqchim(ngridmx,nlayermx,nqmx) ! tendencies on pq due to chemistry real dqschim(ngridmx,nqmx) ! tendencies on qsurf real dqcloud(ngridmx,nlayermx,nqmx)! tendencies on pq due to condensation real dqscloud(ngridmx,nqmx) ! tendencies on qsurf c Local variables : c ----------------- character*5 str5 integer ig,l,iq, i_co2, i_o integer foundswitch, lswitch real zq(ngridmx,nlayermx,nqmx) ! pq+pdq*ptimestep before chemistry ! new mole fraction after real colden(ngridmx,nqmx) ! Column densities (cm-2) real zt(ngridmx,nlayermx) ! temperature c c for each column of atmosphere: c real zpress(nlayermx) ! Pressure (mbar) real zdens(nlayermx) ! Density (cm-3) real ztemp(nlayermx) ! Temperature (K) real zlocal(nlayermx) ! Altitude (km) real zycol(nlayermx,nqmx) ! Composition (mole fractions) real szacol ! Solar zenith angle real jo3(nlayermx) ! Photodissociation rate O3->O1D (s-1) c c for output: c real zdens3d(ngridmx,nlayermx) ! Density (cm-3) real jo3_3d(ngridmx,nlayermx) ! Photodissociation rate O3->O1D (s-1) real surfice(ngridmx,nlayermx) ! Surface of ice particules (um2/cm3) logical output logical firstcall data firstcall/.true./ save firstcall c c scheme A: 1 ; scheme B: 2 c integer scheme data scheme/2/ c c======================================================================= c initialization of the chemistry (first call only) c======================================================================= c if (firstcall) then c if (photochem) then print*,'INIT CHEMISTRY' if (scheme .eq. 1) then print*,'Scheme A : A METTRE A JOUR !!' stop c call init_chimie_A else print*,'Scheme B' call init_chimie_B end if end if firstcall = .false. end if c c======================================================================= c loop over grid c======================================================================= c do ig = 1,ngridmx c c local updates c foundswitch = 0 do l = 1,nlayermx do iq = nqchem_min,nqmx zq(ig,l,iq) = pq(ig,l,iq) + pdq(ig,l,iq)*ptimestep zt(ig,l) = pt(ig,l) + pdt(ig,l) *ptimestep zycol(l,iq) = zq(ig,l,iq) * mmean(ig,l)/mmol(iq) enddo zpress(l) = pplay(ig,l)/100. ztemp(l) = zt(ig,l) zdens(l) = zpress(l)/(kb*1.e4*ztemp(l)) zlocal(l) = zzlay(ig,l)/1000. c c search for switch index between regions c if (photochem .and. thermochem) then if (foundswitch .eq. 0 .and. pplay(ig,l).lt.1.e-3) then lswitch = l foundswitch=1 end if end if if ( .not. photochem) then lswitch = 22 end if if (.not. thermochem) then lswitch = min(33,nlayermx+1) end if c c ice surface area in microns^2/cm^3 c c = 4 pi r^2 * [ zq * mugaz/NA / (rhoice*4/3 pi r^3) ] *zdens c = 3/r * [ zq * mugaz/NA / rhoice ] *zdens c with r in microns, rhoice = 0.92e-12 g microns^-3 and zdens in cm^-3 c if (iceparty) then zycol(l,nqmx-1) = (3.e-6/rice(ig,l))*zq(ig,l,nqmx-1) $ *(mugaz/6.022e23)*zdens(l)/0.92e-12 c write(*,*) "rice=",rice(ig,l)," m / zdens=",zdens(l), c $ " cm-3 / icesurf=",zycol(l,nqmx-1)," microns^2/cm^3" surfice(ig,l) = zycol(l,nqmx-1) end if c end do c szacol = acos(mu0(ig))*180./pi c c======================================================================= c call chemical subroutine c======================================================================= c if (photochem) then if (scheme .eq. 1) then print*,'Scheme A : A METTRE A JOUR !!' c call photochemist_A(zycol,szacol,ptimestep, c $ zpress,ztemp,zdens,dist_sol) else call photochemist_B(lswitch,zycol,szacol,ptimestep, $ zpress,ztemp,zdens,dist_sol,jo3) end if end if if (thermochem) then call chemthermos(ig,lswitch,zycol,ztemp,zdens,zpress, $ zlocal,szacol,ptimestep,zday) end if c c======================================================================= c tendencies c======================================================================= c c must be 0. for water ice: c if (iceparty) then do l = 1,nlayermx dqchim(ig,l,nqmx-1) = 0. end do end if c c tendency for CO2 = - sum of others for lower atmosphere c tendency for O = - sum of others for upper atmosphere c do l = 1,nlayermx if (l .lt. lswitch) then do iq = nqchem_min,nqmx if ((noms(iq) .ne. "co2") .and. $ (noms(iq) .ne. "ice")) then dqchim(ig,l,iq) = (zycol(l,iq)*mmol(iq)/mmean(ig,l) $ - zq(ig,l,iq))/ptimestep else if (noms(iq) .eq. "co2") then i_co2 = iq dqchim(ig,l,iq) = 0. end if dqschim(ig,iq) = 0. end do do iq = nqchem_min,nqmx if (noms(iq) .ne. "co2") then dqchim(ig,l,i_co2) = dqchim(ig,l,i_co2) $ - dqchim(ig,l,iq) end if end do else if (l .ge. lswitch) then do iq = nqchem_min,nqmx if ((noms(iq).ne."o") .and.(noms(iq) .ne."ice")) then dqchim(ig,l,iq) = (zycol(l,iq)*mmol(iq) $ /mmean(ig,l) $ - zq(ig,l,iq))/ptimestep else if (noms(iq) .eq. "o") then i_o = iq dqchim(ig,l,iq) = 0. end if enddo do iq = nqchem_min,nqmx if (noms(iq) .ne. "o") then dqchim(ig,l,i_o) = dqchim(ig,l,i_o) $ - dqchim(ig,l,iq) end if end do end if end do c c dust c if (nqchem_min .gt. 1) then do iq = 1,nqchem_min-1 do l = 1,nlayermx dqchim(ig,l,iq) = 0. end do dqschim(ig,iq) = 0. end do end if c c condensation of h2o2 c call perosat(ig,ptimestep,pplev,pplay, $ ztemp,zycol,dqcloud,dqscloud) c c for outputs c do iq = nqchem_min,nqmx colden(ig,iq) = 0. do l = 1,nlayermx c c column density converted in cm-2 c pplev en pa, mugaz en g.mol-1 et g en m.s-2 c not for ice c if (noms(iq) .ne. "h2o2") then colden(ig,iq) = colden(ig,iq) + zycol(l,iq) $ *6.022e22*(pplev(ig,l)-pplev(ig,l+1)) $ /(mmean(ig,l)*g) else ! for H2O2, remove condensation from zycol colden(ig,iq) = colden(ig,iq) + (zycol(l,iq) + $ dqcloud(ig,l,iq)*ptimestep*mmean(ig,l)/mmol(iq)) $ *6.022e22*(pplev(ig,l)-pplev(ig,l+1)) $ /(mmean(ig,l)*g) end if c c local densities, for outputs (put in zq) c not for ice c zq(ig,l,iq) = zycol(l,iq)*zdens(l) c for H2O2, remove condensation from zycol if (noms(iq) .eq. "h2o2") then zq(ig,l,iq) = zdens(l)*(zycol(l,iq) + $ dqcloud(ig,l,iq)*ptimestep*mmean(ig,l)/mmol(iq)) end if end do end do c c density and j(o3->o1d), for outputs c zdens3d(ig,1) = zdens(1) jo3_3d(ig,1) = jo3(1) do l = 2,nlayermx zdens3d(ig,l) = zdens(l) jo3_3d(ig,l) = jo3(l) end do c c======================================================================= c end of loop over grid c======================================================================= c end do c c======================================================================= c write outputs c======================================================================= c output = .true. if (output) then if (ngridmx .gt. 1) then c call writediagfi(ngridmx,'dens','atm dens.','cm-3',3,zdens3d(1,1)) c call writediagfi(ngridmx,'jo3','j o3->o1d','s-1',3,jo3_3d(1,1)) c call writediagfi(ngridmx,'sice','ice surf.','um2/cm3',3,surfice(1,1)) do iq = nqchem_min,nqmx if (noms(iq) .ne. "ice") then write(str5(1:5),'(a5)') noms(iq) c call writediagfi(ngridmx,'n_'//str5,'density', c $ 'cm-3',3,zq(1,1,iq)) cc call writediagfi(ngridmx,'dqch_'//str5,'density','cm-3',3,dqchim(1,1,iq)) cc if (noms(iq) .eq. "h2o2" .or. noms(iq) .eq. "h2o") then cc call writediagfi(ngridmx,'cl_'//str5,'density','cm-3',3,dqcloud(1,1,iq)) cc end if c call writediagfi(ngridmx,'c_'//str5,'col. dens.', c $ 'cm-2',2,colden(1,iq)) end if end do c if (callstats) then c c convert to mole.cm-2 for the column densities c do iq = nqchem_min,nqmx do ig = 1,ngridmx colden(ig,iq) = colden(ig,iq)/6.022e23 end do end do c c call wstats(ngridmx,"jo3","jo3->o1d","s-1",3,jo3_3d) c c do iq = nqchem_min,nqmx c if (noms(iq) .ne. "ice") then c write(str5(1:5),'(a5)') noms(iq) c call wstats(ngridmx,"n_"//str5,"density", c & "cm-3",3,zq(1,1,iq)) c call wstats(ngridmx,"c_"//str5,"col. dens.", c & "mol cm-2",2,colden(1,iq)) c end if c end do end if end if c endif c end