!IDEAL:MODEL_LAYER:INITIALIZATION ! ! This MODULE holds the routines which are used to perform various initializations ! for the individual domains. ! This MODULE CONTAINS the following routines: ! initialize_field_test - 1. Set different fields to different constant ! values. This is only a test. If the correct ! domain is not found (based upon the "id") ! then a fatal error is issued. !----------------------------------------------------------------------- MODULE module_initialize USE module_domain USE module_io_domain USE module_state_description USE module_model_constants USE module_bc USE module_timing USE module_configure USE module_init_utilities #ifdef DM_PARALLEL USE module_dm #endif CONTAINS !------------------------------------------------------------------- ! this is a wrapper for the solver-specific init_domain routines. ! Also dereferences the grid variables and passes them down as arguments. ! This is crucial, since the lower level routines may do message passing ! and this will get fouled up on machines that insist on passing down ! copies of assumed-shape arrays (by passing down as arguments, the ! data are treated as assumed-size -- ie. f77 -- arrays and the copying ! business is avoided). Fie on the F90 designers. Fie and a pox. SUBROUTINE init_domain ( grid ) IMPLICIT NONE ! Input data. TYPE (domain), POINTER :: grid ! Local data. INTEGER :: dyn_opt INTEGER :: idum1, idum2 CALL nl_get_dyn_opt( 1, dyn_opt ) CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) IF ( dyn_opt .eq. 1 & .or. dyn_opt .eq. 2 & .or. dyn_opt .eq. 3 & ) THEN CALL init_domain_rk( grid & ! #include ! ) ELSE WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' ) ENDIF END SUBROUTINE init_domain !------------------------------------------------------------------- SUBROUTINE init_domain_rk ( grid & ! # include ! ) IMPLICIT NONE ! Input data. TYPE (domain), POINTER :: grid # include TYPE (grid_config_rec_type) :: config_flags ! Local data INTEGER :: & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte, & i, j, k ! Local data INTEGER, PARAMETER :: nl_max = 1000 REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in INTEGER :: nl_in INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2 ! REAL, EXTERNAL :: interp_0 REAL :: hm REAL :: pi ! stuff from original initialization that has been dropped from the Registry REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt REAL :: qvf1, qvf2, pd_surf INTEGER :: it real :: thtmp, ptmp, temp(3) LOGICAL :: moisture_init LOGICAL :: stretch_grid, dry_sounding #ifdef DM_PARALLEL # include #endif SELECT CASE ( model_data_order ) CASE ( DATA_ORDER_ZXY ) kds = grid%sd31 ; kde = grid%ed31 ; ids = grid%sd32 ; ide = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; kms = grid%sm31 ; kme = grid%em31 ; ims = grid%sm32 ; ime = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch CASE ( DATA_ORDER_XYZ ) ids = grid%sd31 ; ide = grid%ed31 ; jds = grid%sd32 ; jde = grid%ed32 ; kds = grid%sd33 ; kde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; jms = grid%sm32 ; jme = grid%em32 ; kms = grid%sm33 ; kme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch CASE ( DATA_ORDER_XZY ) ids = grid%sd31 ; ide = grid%ed31 ; kds = grid%sd32 ; kde = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; kms = grid%sm32 ; kme = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch END SELECT stretch_grid = .true. delt = 3. ! z_scale = .50 z_scale = .40 pi = 2.*asin(1.0) write(6,*) ' pi is ',pi nxc = (ide-ids)/2 nyc = (jde-jds)/2 CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) ! here we check to see if the boundary conditions are set properly CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) moisture_init = .true. grid%itimestep=0 #ifdef DM_PARALLEL CALL wrf_dm_bcast_bytes( icm , IWORDSIZE ) CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE ) #endif CALL nl_set_mminlu(1, ' ') CALL nl_set_iswater(1,0) CALL nl_set_cen_lat(1,40.) CALL nl_set_cen_lon(1,-105.) CALL nl_set_truelat1(1,0.) CALL nl_set_truelat2(1,0.) CALL nl_set_moad_cen_lat (1,0.) CALL nl_set_stand_lon (1,0.) CALL nl_set_map_proj(1,0) ! here we initialize data we currently is not initialized ! in the input data DO j = jts, jte DO i = its, ite grid%msft(i,j) = 1. grid%msfu(i,j) = 1. grid%msfv(i,j) = 1. grid%sina(i,j) = 0. grid%cosa(i,j) = 1. grid%e(i,j) = 0. grid%f(i,j) = 0. END DO END DO DO j = jts, jte DO k = kts, kte DO i = its, ite grid%em_ww(i,k,j) = 0. END DO END DO END DO grid%step_number = 0 ! set up the grid IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz) DO k=1, kde grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ & (1.-exp(-1./z_scale)) ENDDO ELSE DO k=1, kde grid%em_znw(k) = 1. - float(k-1)/float(kde-1) ENDDO ENDIF DO k=1, kde-1 grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k) grid%em_rdnw(k) = 1./grid%em_dnw(k) grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k)) ENDDO DO k=2, kde-1 grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1)) grid%em_rdn(k) = 1./grid%em_dn(k) grid%em_fnp(k) = .5* grid%em_dnw(k )/grid%em_dn(k) grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k) ENDDO cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2) cof2 = grid%em_dn(2) /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3) grid%cf1 = grid%em_fnp(2) + cof1 grid%cf2 = grid%em_fnm(2) - cof1 - cof2 grid%cf3 = cof2 grid%cfn = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1) grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1) grid%rdx = 1./config_flags%dx grid%rdy = 1./config_flags%dy ! get the sounding from the ascii sounding file, first get dry sounding and ! calculate base state write(6,*) ' getting dry sounding for base state ' dry_sounding = .true. CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in ) write(6,*) ' returned from reading sounding, nl_in is ',nl_in ! find ptop for the desired ztop (ztop is input from the namelist), ! and find surface pressure grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in ) DO j=jts,jte DO i=its,ite ! flat surface grid%em_phb(i,1,j) = 0. grid%em_php(i,1,j) = 0. grid%em_ph0(i,1,j) = 0. grid%ht(i,j) = 0. ENDDO ENDDO DO J = jts, jte DO I = its, ite p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in ) grid%em_mub(i,j) = p_surf-grid%p_top ! this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate), ! interp theta (from interp) and compute 1/rho from eqn. of state DO K = 1, kte-1 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top grid%em_pb(i,k,j) = p_level grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0 grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm ENDDO ! calc hydrostatic balance (alternatively we could interp the geopotential from the ! sounding, but this assures that the base state is in exact hydrostatic balance with ! respect to the model eqns. DO k = 2,kte grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j) ENDDO ENDDO ENDDO write(6,*) ' ptop is ',grid%p_top write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top ! calculate full state for each column - this includes moisture. write(6,*) ' getting moist sounding for full state ' dry_sounding = .false. CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in ) DO J = jts, min(jde-1,jte) DO I = its, min(ide-1,ite) ! At this point grid%p_top is already set. find the DRY mass in the column ! by interpolating the DRY pressure. pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in ) ! compute the perturbation mass and the full mass grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j) grid%em_mu_2(i,j) = grid%em_mu_1(i,j) grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j) ! given the dry pressure and coordinate system, interp the potential ! temperature and qv do k=1,kde-1 p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in ) grid%em_t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0 grid%em_t_2(i,k,j) = grid%em_t_1(i,k,j) enddo ! integrate the hydrostatic equation (from the RHS of the bigstep ! vertical momentum equation) down from the top to get grid%em_p. ! first from the top of the model to the top pressure k = kte-1 ! top level qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 ! grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k) grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2 qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* & (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) ! down the column do k=kte-2,1,-1 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1) qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* & (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) enddo ! this is the hydrostatic equation used in the model after the ! small timesteps. In the model, grid%em_al (inverse density) ! is computed from the geopotential. grid%em_ph_1(i,1,j) = 0. DO k = 2,kte grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( & (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ & grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) ) grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j) ENDDO if((i==2) .and. (j==2)) then write(6,*) ' grid%em_ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),& grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), & grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1) endif ENDDO ENDDO !#if 0 ! thermal perturbation to kick off convection write(6,*) ' nxc, nyc for perturbation ',nxc,nyc write(6,*) ' delt for perturbation ',delt DO J = jts, min(jde-1,jte) yrad = config_flags%dy*float(j-nyc)/4000. ! yrad = 0. DO I = its, min(ide-1,ite) ! xrad = config_flags%dx*float(i-nxc)/4000. xrad = 0. DO K = 1, kte-1 ! put in preturbation theta (bubble) and recalc density. note, ! the mass in the column is not changing, so when theta changes, ! we recompute density and geopotential zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j) & +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g zrad = (zrad-1500.)/1500. RAD=SQRT(xrad*xrad+yrad*yrad+zrad*zrad) IF(RAD <= 1.) THEN grid%em_t_1(i,k,j)=grid%em_t_1(i,k,j)+delt*COS(.5*PI*RAD)**2 grid%em_t_2(i,k,j)=grid%em_t_1(i,k,j) qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* & (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm) grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j) ENDIF ENDDO ! rebalance hydrostatically DO k = 2,kte grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( & (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ & grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) ) grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j) ENDDO ENDDO ENDDO !#endif write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1) write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv ' do k=1,kde-1 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), & grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), & grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV) enddo write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, alp, grid%em_t_1, qv ' do k=1,kde-1 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), & grid%em_p(1,k,1), grid%em_al(1,k,1), & grid%em_t_1(1,k,1), moist(1,k,1,P_QV) enddo ! interp v DO J = jts, jte DO I = its, min(ide-1,ite) IF (j == jds) THEN z_at_v = grid%em_phb(i,1,j)/g ELSE IF (j == jde) THEN z_at_v = grid%em_phb(i,1,j-1)/g ELSE z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g END IF p_surf = interp_0( p_in, zk, z_at_v, nl_in ) DO K = 1, kte p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in ) grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j) ENDDO ENDDO ENDDO ! interp u DO J = jts, min(jde-1,jte) DO I = its, ite IF (i == ids) THEN z_at_u = grid%em_phb(i,1,j)/g ELSE IF (i == ide) THEN z_at_u = grid%em_phb(i-1,1,j)/g ELSE z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g END IF p_surf = interp_0( p_in, zk, z_at_u, nl_in ) DO K = 1, kte p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in ) grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j) ENDDO ENDDO ENDDO ! set w DO J = jts, min(jde-1,jte) DO K = kts, kte DO I = its, min(ide-1,ite) grid%em_w_1(i,k,j) = 0. grid%em_w_2(i,k,j) = 0. ENDDO ENDDO ENDDO ! set a few more things DO J = jts, min(jde-1,jte) DO K = kts, kte-1 DO I = its, min(ide-1,ite) grid%h_diabatic(i,k,j) = 0. ENDDO ENDDO ENDDO DO k=1,kte-1 grid%em_t_base(k) = grid%em_t_1(1,k,1) grid%qv_base(k) = moist(1,k,1,P_QV) grid%u_base(k) = grid%em_u_1(1,k,1) grid%v_base(k) = grid%em_v_1(1,k,1) grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g ENDDO DO J = jts, min(jde-1,jte) DO I = its, min(ide-1,ite) thtmp = grid%em_t_2(i,1,j)+t0 ptmp = grid%em_p(i,1,j)+grid%em_pb(i,1,j) temp(1) = thtmp * (ptmp/p1000mb)**rcp thtmp = grid%em_t_2(i,2,j)+t0 ptmp = grid%em_p(i,2,j)+grid%em_pb(i,2,j) temp(2) = thtmp * (ptmp/p1000mb)**rcp thtmp = grid%em_t_2(i,3,j)+t0 ptmp = grid%em_p(i,3,j)+grid%em_pb(i,3,j) temp(3) = thtmp * (ptmp/p1000mb)**rcp grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3) grid%tmn(I,J)=grid%tsk(I,J)-0.5 ENDDO ENDDO RETURN END SUBROUTINE init_domain_rk SUBROUTINE init_module_initialize END SUBROUTINE init_module_initialize !--------------------------------------------------------------------- ! test driver for get_sounding ! ! implicit none ! integer n ! parameter(n = 1000) ! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n) ! logical dry ! integer nl,k ! ! dry = .false. ! dry = .true. ! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl ) ! write(6,*) ' input levels ',nl ! write(6,*) ' sounding ' ! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) ' ! do k=1,nl ! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k) ! enddo ! end ! !--------------------------------------------------------------------------- subroutine get_sounding( zk, p, p_dry, theta, rho, & u, v, qv, dry, nl_max, nl_in ) implicit none integer nl_max, nl_in real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), & u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max) logical dry integer n parameter(n=1000) logical debug parameter( debug = .true.) ! input sounding data real p_surf, th_surf, qv_surf real pi_surf, pi(n) real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n) ! diagnostics real rho_surf, p_input(n), rho_input(n) real pm_input(n) ! this are for full moist sounding ! local data real p1000mb,cv,cp,r,cvpm,g parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 ) integer k, it, nl real qvf, qvf1, dz ! first, read the sounding call read_sounding( p_surf, th_surf, qv_surf, & h_input, th_input, qv_input, u_input, v_input,n, nl, debug ) if(dry) then do k=1,nl qv_input(k) = 0. enddo endif if(debug) write(6,*) ' number of input levels = ',nl nl_in = nl if(nl_in .gt. nl_max ) then write(6,*) ' too many levels for input arrays ',nl_in,nl_max call wrf_error_fatal ( ' too many levels for input arrays ' ) end if ! compute diagnostics, ! first, convert qv(g/kg) to qv(g/g) do k=1,nl qv_input(k) = 0.001*qv_input(k) enddo p_surf = 100.*p_surf ! convert to pascals qvf = 1. + rvovrd*qv_input(1) rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm)) pi_surf = (p_surf/p1000mb)**(r/cp) if(debug) then write(6,*) ' surface density is ',rho_surf write(6,*) ' surface pi is ',pi_surf end if ! integrate moist sounding hydrostatically, starting from the ! specified surface pressure ! -> first, integrate from surface to lowest level qvf = 1. + rvovrd*qv_input(1) qvf1 = 1. + qv_input(1) rho_input(1) = rho_surf dz = h_input(1) do it=1,10 pm_input(1) = p_surf & - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1 rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm)) enddo ! integrate up the column do k=2,nl rho_input(k) = rho_input(k-1) dz = h_input(k)-h_input(k-1) qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k))) qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here do it=1,10 pm_input(k) = pm_input(k-1) & - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1 rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm)) enddo enddo ! we have the moist sounding ! next, compute the dry sounding using p at the highest level from the ! moist sounding and integrating down. p_input(nl) = pm_input(nl) do k=nl-1,1,-1 dz = h_input(k+1)-h_input(k) p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g enddo do k=1,nl zk(k) = h_input(k) p(k) = pm_input(k) p_dry(k) = p_input(k) theta(k) = th_input(k) rho(k) = rho_input(k) u(k) = u_input(k) v(k) = v_input(k) qv(k) = qv_input(k) enddo if(debug) then write(6,*) ' sounding ' write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) ' do k=1,nl write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k) enddo end if end subroutine get_sounding !------------------------------------------------------- subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug ) implicit none integer n,nl real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n) logical end_of_file logical debug integer k open(unit=10,file='input_sounding',form='formatted',status='old') rewind(10) read(10,*) ps, ts, qvs if(debug) then write(6,*) ' input sounding surface parameters ' write(6,*) ' surface pressure (mb) ',ps write(6,*) ' surface pot. temp (K) ',ts write(6,*) ' surface mixing ratio (g/kg) ',qvs end if end_of_file = .false. k = 0 do while (.not. end_of_file) read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1) k = k+1 if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k) go to 110 100 end_of_file = .true. 110 continue enddo nl = k close(unit=10,status = 'keep') end subroutine read_sounding END MODULE module_initialize