!WRF:MODEL_LAYER:DYNAMICS ! MODULE module_em USE module_model_constants USE module_advect_em USE module_big_step_utilities_em USE module_state_description CONTAINS !------------------------------------------------------------------------ SUBROUTINE rk_step_prep ( config_flags, rk_step, & u, v, w, t, ph, mu, & moist, & ru, rv, rw, ww, php, alt, & muu, muv, & mub, mut, phb, pb, p, al, alb, & cqu, cqv, cqw, & msfu, msfv, msft, & fnm, fnp, dnw, rdx, rdy, & n_moist, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IMPLICIT NONE ! Input data. TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte INTEGER , INTENT(IN ) :: n_moist, rk_step REAL , INTENT(IN ) :: rdx, rdy REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , & INTENT(IN ) :: u, & v, & w, & t, & ph, & phb, & pb, & al, & alb REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , & INTENT( OUT) :: ru, & rv, & rw, & ww, & php, & cqu, & cqv, & cqw, & alt REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , & INTENT(IN ) :: p REAL , DIMENSION( ims:ime, kms:kme, jms:jme, n_moist ), INTENT( IN) :: & moist REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msft, & msfu, & msfv, & mu, & mub REAL , DIMENSION( ims:ime , jms:jme ) , INTENT( OUT) :: muu, & muv, & mut REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, fnp, dnw integer :: k ! ! ! rk_step_prep prepares a number of diagnostic quantities ! in preperation for a Runge-Kutta timestep. subroutines called ! by rk_step_prep calculate ! ! (1) total column dry air mass (mut, call to calculate_full) ! ! (2) total column dry air mass at u and v points ! (muu, muv, call to calculate_mu_uv) ! ! (3) mass-coupled velocities for advection ! (ru, rv, and rw, call to couple_momentum) ! ! (4) omega (call to calc_ww_cp) ! ! (5) moisture coefficients (cqu, cqv, cqw, call to calc_cq) ! ! (6) inverse density (alt, call to calc_alt) ! ! (7) geopotential at pressure points (php, call to calc_php) ! ! CALL calculate_full( mut, mub, mu, & ids, ide, jds, jde, 1, 2, & ims, ime, jms, jme, 1, 1, & its, ite, jts, jte, 1, 1 ) CALL calc_mu_uv ( config_flags, & mu, mub, muu, muv, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL couple_momentum( muu, ru, u, msfu, & muv, rv, v, msfv, & mut, rw, w, msft, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ! new call, couples V with mu, also has correct map factors. WCS, 3 june 2001 CALL calc_ww_cp ( u, v, mu, mub, ww, & rdx, rdy, msft, msfu, msfv, dnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL calc_cq ( moist, cqu, cqv, cqw, n_moist, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL calc_alt ( alt, al, alb, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL calc_php ( php, ph, phb, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END SUBROUTINE rk_step_prep !------------------------------------------------------------------------------- SUBROUTINE rk_tendency ( config_flags, rk_step, & ru_tend, rv_tend, rw_tend, ph_tend, t_tend, & ru_tendf, rv_tendf, rw_tendf, ph_tendf, t_tendf, & mu_tend, u_save, v_save, w_save, ph_save, & t_save, mu_save, RTHFTEN, & ru, rv, rw, ww, & u, v, w, t, ph, & u_old, v_old, w_old, t_old, ph_old, & h_diabatic, phb,t_init, & mu, mut, muu, muv, mub, & al, alt, p, pb, php, cqu, cqv, cqw, & u_base, v_base, t_base, qv_base, z_base, & msfu, msfv, msft, f, e, sina, cosa, & fnm, fnp, rdn, rdnw, & dt, rdx, rdy, khdif, kvdif, xkmhd, & diff_6th_opt, diff_6th_factor, & dampcoef,zdamp,damp_opt, & cf1, cf2, cf3, cfn, cfn1, n_moist, & non_hydrostatic, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IMPLICIT NONE ! Input data. TYPE(grid_config_rec_type) , INTENT(IN ) :: config_flags INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte LOGICAL , INTENT(IN ) :: non_hydrostatic INTEGER , INTENT(IN ) :: n_moist, rk_step REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , & INTENT(IN ) :: ru, & rv, & rw, & ww, & u, & v, & w, & t, & ph, & u_old, & v_old, & w_old, & t_old, & ph_old, & phb, & al, & alt, & p, & pb, & php, & cqu, & cqv, & t_init, & xkmhd, & h_diabatic REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , & INTENT(OUT ) :: ru_tend, & rv_tend, & rw_tend, & t_tend, & ph_tend, & RTHFTEN, & u_save, & v_save, & w_save, & ph_save, & t_save REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , & INTENT(INOUT) :: ru_tendf, & rv_tendf, & rw_tendf, & t_tendf, & ph_tendf, & cqw REAL , DIMENSION( ims:ime , jms:jme ) , INTENT( OUT) :: mu_tend, & mu_save REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & msfv, & msft, & f, & e, & sina, & cosa, & mu, & mut, & mub, & muu, & muv REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, & fnp, & rdn, & rdnw, & u_base, & v_base, & t_base, & qv_base, & z_base REAL , INTENT(IN ) :: rdx, & rdy, & dt, & khdif, & kvdif INTEGER, INTENT( IN ) :: diff_6th_opt REAL, INTENT( IN ) :: diff_6th_factor INTEGER, INTENT( IN ) :: damp_opt REAL, INTENT( IN ) :: zdamp, dampcoef REAL :: kdift, khdq, kvdq, cfn, cfn1, cf1, cf2, cf3 INTEGER :: i,j,k INTEGER :: time_step ! ! ! rk_tendency computes the large-timestep tendency terms in the ! momentum, thermodynamic (theta), and geopotential equations. ! These terms include: ! ! (1) advection (for u, v, w, theta - calls to advect_u, advect_v, ! advect_w, and advact_scalar). ! ! (2) geopotential equation terms (advection and "gw" - call to rhs_ph). ! ! (3) buoyancy term in vertical momentum equation (call to pg_buoy_w). ! ! (4) Coriolis and curvature terms in u,v,w momentum equations ! (calls to subroutines coriolis, curvature) ! ! (5) 3D diffusion on coordinate surfaces. ! ! CALL zero_tend ( ru_tend, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( rv_tend, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( rw_tend, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( t_tend, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( ph_tend, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( u_save, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( v_save, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( w_save, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( ph_save, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( t_save, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( mu_tend, & ids, ide, jds, jde, 1, 1, & ims, ime, jms, jme, 1, 1, & its, ite, jts, jte, 1, 1 ) CALL zero_tend ( mu_save, & ids, ide, jds, jde, 1, 1, & ims, ime, jms, jme, 1, 1, & its, ite, jts, jte, 1, 1 ) ! advection tendencies CALL nl_get_time_step ( 1, time_step ) CALL advect_u ( u, u , ru_tend, ru, rv, ww, & mut, time_step, config_flags, & msfu, msfv, msft, & fnm, fnp, rdx, rdy, rdnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL advect_v ( v, v , rv_tend, ru, rv, ww, & mut, time_step, config_flags, & msfu, msfv, msft, & fnm, fnp, rdx, rdy, rdnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF (non_hydrostatic) & CALL advect_w ( w, w, rw_tend, ru, rv, ww, & mut, time_step, config_flags, & msfu, msfv, msft, & fnm, fnp, rdx, rdy, rdn, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ! theta flux divergence CALL advect_scalar ( t, t, t_tend, ru, rv, ww, & mut, time_step, config_flags, & msfu, msfv, msft, fnm, fnp, & rdx, rdy, rdnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF ( config_flags%cu_physics == GDSCHEME ) THEN ! theta advection only: CALL set_tend( RTHFTEN, t_tend, msft, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END IF CALL rhs_ph( ph_tend, u, v, ww, ph, ph, phb, w, & mut, muu, muv, & fnm, fnp, & rdnw, cfn, cfn1, rdx, rdy, msft, & non_hydrostatic, & config_flags, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL horizontal_pressure_gradient( ru_tend,rv_tend, & ph,alt,p,pb,al,php,cqu,cqv, & muu,muv,mu,fnm,fnp,rdnw, & cf1,cf2,cf3,rdx,rdy,msft, & config_flags, non_hydrostatic, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF (non_hydrostatic) & CALL pg_buoy_w( rw_tend, p, cqw, mu, mub, & rdnw, rdn, g, msft, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL w_damp ( rw_tend, ww, w, mut, rdnw, dt, & config_flags%w_damping, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF(config_flags%pert_coriolis) THEN CALL perturbation_coriolis ( ru, rv, rw, & ru_tend, rv_tend, rw_tend, & config_flags, & u_base, v_base, z_base, & muu, muv, phb, ph, & f, e, sina, cosa, fnm, fnp, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSE CALL coriolis ( ru, rv, rw, & ru_tend, rv_tend, rw_tend, & config_flags, & f, e, sina, cosa, fnm, fnp, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END IF CALL curvature ( ru, rv, rw, u, v, w, & ru_tend, rv_tend, rw_tend, & config_flags, & msfu, msfv, fnm, fnp, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !************************************************************** ! ! Next, the terms that we integrate only with forward-in-time ! (evaluate with time t variables). ! !************************************************************** forward_step: IF( rk_step == 1 ) THEN diff_opt1 : IF (config_flags%diff_opt .eq. 1) THEN CALL horizontal_diffusion ('u', u, ru_tendf, mut, config_flags, & msfu, msfv, msft, & khdif, xkmhd, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL horizontal_diffusion ('v', v, rv_tendf, mut, config_flags, & msfu, msfv, msft, & khdif, xkmhd, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL horizontal_diffusion ('w', w, rw_tendf, mut, config_flags, & msfu, msfv, msft, & khdif, xkmhd, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) khdq = 3.*khdif CALL horizontal_diffusion_3dmp ( 'm', t, t_tendf, mut, & config_flags, t_init, & msfu, msfv, msft, & khdq , xkmhd, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !!!****MARS: vertical diffusion is done in the physics (TODO: consider the nonhydrostatic case ?) pbl_test : IF ( (config_flags%bl_pbl_physics .eq. 0) & .AND. (.not. config_flags%modif_wrf) ) THEN CALL vertical_diffusion_u ( u, ru_tendf, config_flags, & u_base, & alt, muu, rdn, rdnw, kvdif, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL vertical_diffusion_v ( v, rv_tendf, config_flags, & v_base, & alt, muv, rdn, rdnw, kvdif, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF (non_hydrostatic) & CALL vertical_diffusion ( 'w', w, rw_tendf, config_flags, & alt, mut, rdn, rdnw, kvdif, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) kvdq = 3.*kvdif CALL vertical_diffusion_3dmp ( t, t_tendf, config_flags, t_init, & alt, mut, rdn, rdnw, kvdq , & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF pbl_test ! Theta tendency computations. END IF diff_opt1 IF ( diff_6th_opt .NE. 0 ) THEN CALL sixth_order_diffusion( 'u', u, ru_tendf, mut, dt, & config_flags, & diff_6th_opt, diff_6th_factor, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL sixth_order_diffusion( 'v', v, rv_tendf, mut, dt, & config_flags, & diff_6th_opt, diff_6th_factor, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF (non_hydrostatic) & CALL sixth_order_diffusion( 'w', w, rw_tendf, mut, dt, & config_flags, & diff_6th_opt, diff_6th_factor, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL sixth_order_diffusion( 'm', t, t_tendf, mut, dt, & config_flags, & diff_6th_opt, diff_6th_factor, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF IF( damp_opt .eq. 2 ) & CALL rk_rayleigh_damp( ru_tendf, rv_tendf, & rw_tendf, t_tendf, & u, v, w, t, t_init, & mut, muu, muv, ph, phb, & u_base, v_base, t_base, z_base, & dampcoef, zdamp, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END IF forward_step END SUBROUTINE rk_tendency !------------------------------------------------------------------------------- SUBROUTINE rk_addtend_dry ( ru_tend, rv_tend, rw_tend, ph_tend, t_tend, & ru_tendf, rv_tendf, rw_tendf, ph_tendf, t_tendf, & u_save, v_save, w_save, ph_save, t_save, & mu_tend, mu_tendf, rk_step, & h_diabatic, mut, msft, msfu, msfv, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & ips,ipe, jps,jpe, kps,kpe, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! Input data. INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & ips, ipe, jps, jpe, kps, kpe, & its, ite, jts, jte, kts, kte INTEGER , INTENT(IN ) :: rk_step REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(INOUT) :: ru_tend, & rv_tend, & rw_tend, & ph_tend, & t_tend, & ru_tendf, & rv_tendf, & rw_tendf, & ph_tendf, & t_tendf REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(INOUT) :: mu_tend, & mu_tendf REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(IN ) :: u_save, & v_save, & w_save, & ph_save, & t_save, & h_diabatic REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut, & msft, & msfu, & msfv ! Local INTEGER :: i, j, k ! ! ! rk_addtend_dry constructs the full large-timestep tendency terms for ! momentum (u,v,w), theta and geopotential equations. This is accomplished ! by combining the physics tendencies (in *tendf; these are computed ! the first RK substep, held fixed thereafter) with the RK tendencies ! (in *tend, these include advection, pressure gradient, etc; ! these change each rk substep). Output is in *tend. ! ! ! Finally, add the forward-step tendency to the rk_tendency ! u/v/w/save contain bc tendency that needs to be multiplied by msf ! before adding it to physics tendency (*tendf) ! For momentum we need the final tendency to include an inverse msf ! physics/bc tendency needs to be divided, advection tendency already has it ! For scalars we need the final tendency to include an inverse msf ! advection tendency is OK, physics/bc tendency needs to be divided by msf DO j = jts,MIN(jte,jde-1) DO k = kts,kte-1 DO i = its,ite ! multiply by m to uncouple u IF(rk_step == 1)ru_tendf(i,k,j) = ru_tendf(i,k,j) + u_save(i,k,j)*msfu(i,j) ! divide by m to couple u ru_tend(i,k,j) = ru_tend(i,k,j) + ru_tendf(i,k,j)/msfu(i,j) ENDDO ENDDO ENDDO DO j = jts,jte DO k = kts,kte-1 DO i = its,MIN(ite,ide-1) ! multiply by m to uncouple v IF(rk_step == 1)rv_tendf(i,k,j) = rv_tendf(i,k,j) + v_save(i,k,j)*msfv(i,j) ! divide by m to couple v rv_tend(i,k,j) = rv_tend(i,k,j) + rv_tendf(i,k,j)/msfv(i,j) ENDDO ENDDO ENDDO DO j = jts,MIN(jte,jde-1) DO k = kts,kte DO i = its,MIN(ite,ide-1) ! multiply by m to uncouple w IF(rk_step == 1)rw_tendf(i,k,j) = rw_tendf(i,k,j) + w_save(i,k,j)*msft(i,j) ! divide by m to couple w rw_tend(i,k,j) = rw_tend(i,k,j) + rw_tendf(i,k,j)/msft(i,j) IF(rk_step == 1)ph_tendf(i,k,j) = ph_tendf(i,k,j) + ph_save(i,k,j) ! divide by m to couple scalar ph_tend(i,k,j) = ph_tend(i,k,j) + ph_tendf(i,k,j)/msft(i,j) ENDDO ENDDO ENDDO DO j = jts,MIN(jte,jde-1) DO k = kts,kte-1 DO i = its,MIN(ite,ide-1) IF(rk_step == 1)t_tendf(i,k,j) = t_tendf(i,k,j) + t_save(i,k,j) ! divide by m to couple theta t_tend(i,k,j) = t_tend(i,k,j) + t_tendf(i,k,j)/msft(i,j) & + mut(i,j)*h_diabatic(i,k,j)/msft(i,j) ! divide by m to couple heating ENDDO ENDDO ENDDO DO j = jts,MIN(jte,jde-1) DO i = its,MIN(ite,ide-1) ! mu tendencies not coupled with 1/msf mu_tend(i,j) = mu_tend(i,j) + mu_tendf(i,j) ENDDO ENDDO END SUBROUTINE rk_addtend_dry !------------------------------------------------------------------------------- SUBROUTINE rk_scalar_tend ( scs, sce, config_flags, & rk_step, dt, & ru, rv, ww, mut, mub, mu_old, & alt, & scalar_old, scalar, & scalar_tends, advect_tend, & RQVFTEN, & base, moist_step, fnm, fnp, & msfu, msfv, msft, & rdx, rdy, rdn, rdnw, & khdif, kvdif, xkmhd, & diff_6th_opt, diff_6th_factor,& pd_advection, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IMPLICIT NONE ! Input data. TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags INTEGER , INTENT(IN ) :: rk_step, scs, sce INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte LOGICAL , INTENT(IN ) :: moist_step REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce ), & INTENT(IN ) :: scalar, scalar_old REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce ), & INTENT(INOUT) :: scalar_tends REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(INOUT) :: advect_tend REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RQVFTEN REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: ru, & rv, & ww, & xkmhd, & alt REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, & fnp, & rdn, & rdnw, & base REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, & msfv, & msft, & mub, & mut, & mu_old REAL , INTENT(IN ) :: rdx, & rdy, & khdif, & kvdif INTEGER, INTENT( IN ) :: diff_6th_opt REAL, INTENT( IN ) :: diff_6th_factor REAL , INTENT(IN ) :: dt LOGICAL, INTENT(IN ) :: pd_advection ! Local data INTEGER :: im, i,j,k INTEGER :: time_step REAL :: khdq, kvdq, tendency ! ! ! rk_scalar_tend calls routines that computes scalar tendency from advection ! and 3D mixing (TKE or fixed eddy viscosities). ! ! khdq = khdif/prandtl kvdq = kvdif/prandtl scalar_loop : DO im = scs, sce CALL zero_tend ( advect_tend(ims,kms,jms), & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL nl_get_time_step ( 1, time_step ) IF( (rk_step == 3) .and. pd_advection ) THEN ! CALL advect_scalar_pd ( scalar(ims,kms,jms,im), & ! scalar_old(ims,kms,jms,im), & ! advect_tend(ims,kms,jms), & ! ru, rv, ww, mut, mub, mu_old, & ! config_flags, & ! msfu, msfv, msft, fnm, fnp, & ! rdx, rdy, rdnw,dt, & ! ids, ide, jds, jde, kds, kde, & ! ims, ime, jms, jme, kms, kme, & ! its, ite, jts, jte, kts, kte ) CALL advect_scalar_mono ( scalar(ims,kms,jms,im), & scalar_old(ims,kms,jms,im), & advect_tend(ims,kms,jms), & ru, rv, ww, mut, mub, mu_old, & config_flags, & msfu, msfv, msft, fnm, fnp, & rdx, rdy, rdnw,dt, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSE CALL advect_scalar ( scalar(ims,kms,jms,im), & scalar(ims,kms,jms,im), & advect_tend(ims,kms,jms), & ru, rv, ww, mut, time_step, & config_flags, & msfu, msfv, msft, fnm, fnp, & rdx, rdy, rdnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END IF IF( config_flags%cu_physics == GDSCHEME .and. moist_step .and. ( im == P_QV) ) THEN CALL set_tend( RQVFTEN, advect_tend, msft, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF rk_step_1: IF( rk_step == 1 ) THEN diff_opt1 : IF (config_flags%diff_opt .eq. 1) THEN CALL horizontal_diffusion ( 'm', scalar(ims,kms,jms,im), & scalar_tends(ims,kms,jms,im), mut, & config_flags, & msfu, msfv, msft, & khdq , xkmhd, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !!!****MARS: done in the physics pbl_test : IF ( (config_flags%bl_pbl_physics .eq. 0) & .AND. (.not. config_flags%modif_wrf) ) THEN IF( (moist_step) .and. ( im == P_QV)) THEN CALL vertical_diffusion_mp ( scalar(ims,kms,jms,im), & scalar_tends(ims,kms,jms,im), & config_flags, base, & alt, mut, rdn, rdnw, kvdq , & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSE CALL vertical_diffusion ( 'm', scalar(ims,kms,jms,im), & scalar_tends(ims,kms,jms,im), & config_flags, & alt, mut, rdn, rdnw, kvdq, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END IF ENDIF pbl_test ENDIF diff_opt1 IF ( diff_6th_opt .NE. 0 ) & CALL sixth_order_diffusion( 'm', scalar(ims,kms,jms,im), & scalar_tends(ims,kms,jms,im), & mut, dt, config_flags, & diff_6th_opt, diff_6th_factor, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF rk_step_1 END DO scalar_loop END SUBROUTINE rk_scalar_tend !------------------------------------------------------------------------------- SUBROUTINE rk_update_scalar( scs, sce, & scalar_1, scalar_2, sc_tend, & advect_tend, msft, & mu_old, mu_new, mu_base, & rk_step, dt, spec_zone, & config_flags, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IMPLICIT NONE ! Input data. TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags INTEGER , INTENT(IN ) :: scs, sce, rk_step, spec_zone INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte REAL, INTENT(IN ) :: dt REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), & INTENT(INOUT) :: scalar_1, & scalar_2 REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), & INTENT(IN) :: sc_tend REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), & INTENT(IN) :: advect_tend REAL, DIMENSION(ims:ime, jms:jme ), INTENT(IN ) :: mu_old, & mu_new, & mu_base, & msft INTEGER :: i,j,k,im REAL :: sc_middle, msfsq REAL, DIMENSION(its:ite) :: muold, r_munew REAL, DIMENSION(its:ite, kts:kte, jts:jte ) :: tendency INTEGER :: i_start,i_end,j_start,j_end,k_start,k_end INTEGER :: i_start_spc,i_end_spc,j_start_spc,j_end_spc,k_start_spc,k_end_spc ! ! ! rk_scalar_update advances the scalar equation given the time t value ! of the scalar and the scalar tendency. ! ! ! ! set loop limits. i_start = its i_end = ite j_start = jts j_end = jte k_start = kts k_end = kte-1 IF(j_end == jde) j_end = j_end - 1 IF(i_end == ide) i_end = i_end - 1 i_start_spc = i_start i_end_spc = i_end j_start_spc = j_start j_end_spc = j_end k_start_spc = k_start k_end_spc = k_end IF( config_flags%nested .or. config_flags%specified ) THEN IF( .NOT. config_flags%periodic_x)i_start = max( its,ids+spec_zone ) IF( .NOT. config_flags%periodic_x)i_end = min( ite,ide-spec_zone-1 ) j_start = max( jts,jds+spec_zone ) j_end = min( jte,jde-spec_zone-1 ) k_start = kts k_end = min( kte, kde-1 ) ENDIF IF ( rk_step == 1 ) THEN ! replace t-dt values (in scalar_1) with t values scalar_2, ! then compute new values by adding tendency to values at t DO im = scs,sce DO j = jts, min(jte,jde-1) DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) tendency(i,k,j) = 0. ENDDO ENDDO ENDDO DO j = j_start,j_end DO k = k_start,k_end DO i = i_start,i_end ! scalar was coupled with m tendency(i,k,j) = advect_tend(i,k,j) * msft(i,j) ENDDO ENDDO ENDDO DO j = j_start_spc,j_end_spc DO k = k_start_spc,k_end_spc DO i = i_start_spc,i_end_spc tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im) ENDDO ENDDO ENDDO DO j = jts, min(jte,jde-1) DO i = its, min(ite,ide-1) muold(i) = mu_old(i,j) + mu_base(i,j) r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j)) ENDDO DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) scalar_1(i,k,j,im) = scalar_2(i,k,j,im) scalar_2(i,k,j,im) = (muold(i)*scalar_1(i,k,j,im) & + dt*tendency(i,k,j))*r_munew(i) ENDDO ENDDO ENDDO ENDDO ELSE ! just compute new values, scalar_1 already at time t. DO im = scs, sce DO j = jts, min(jte,jde-1) DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) tendency(i,k,j) = 0. ENDDO ENDDO ENDDO DO j = j_start,j_end DO k = k_start,k_end DO i = i_start,i_end ! scalar was coupled with m tendency(i,k,j) = advect_tend(i,k,j) * msft(i,j) ENDDO ENDDO ENDDO DO j = j_start_spc,j_end_spc DO k = k_start_spc,k_end_spc DO i = i_start_spc,i_end_spc tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im) ENDDO ENDDO ENDDO DO j = jts, min(jte,jde-1) DO i = its, min(ite,ide-1) muold(i) = mu_old(i,j) + mu_base(i,j) r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j)) ENDDO DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) scalar_2(i,k,j,im) = (muold(i)*scalar_1(i,k,j,im) & + dt*tendency(i,k,j))*r_munew(i) ENDDO ENDDO ENDDO ENDDO END IF END SUBROUTINE rk_update_scalar !------------------------------------------------------------------------------- SUBROUTINE rk_update_scalar_pd( scs, sce, & scalar, sc_tend, & mu_old, mu_new, mu_base, & rk_step, dt, spec_zone, & config_flags, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IMPLICIT NONE ! Input data. TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags INTEGER , INTENT(IN ) :: scs, sce, rk_step, spec_zone INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte REAL, INTENT(IN ) :: dt REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), & INTENT(INOUT) :: scalar, & sc_tend REAL, DIMENSION(ims:ime, jms:jme ), INTENT(IN ) :: mu_old, & mu_new, & mu_base INTEGER :: i,j,k,im REAL :: sc_middle, msfsq REAL, DIMENSION(its:ite) :: muold, r_munew REAL, DIMENSION(its:ite, kts:kte, jts:jte ) :: tendency INTEGER :: i_start,i_end,j_start,j_end,k_start,k_end INTEGER :: i_start_spc,i_end_spc,j_start_spc,j_end_spc,k_start_spc,k_end_spc ! ! ! rk_scalar_update advances the scalar equation given the time t value ! of the scalar and the scalar tendency. ! ! ! ! set loop limits. i_start = its i_end = ite j_start = jts j_end = jte k_start = kts k_end = kte-1 IF(j_end == jde) j_end = j_end - 1 IF(i_end == ide) i_end = i_end - 1 i_start_spc = i_start i_end_spc = i_end j_start_spc = j_start j_end_spc = j_end k_start_spc = k_start k_end_spc = k_end IF( config_flags%nested .or. config_flags%specified ) THEN IF( .NOT. config_flags%periodic_x)i_start = max( its,ids+spec_zone ) IF( .NOT. config_flags%periodic_x)i_end = min( ite,ide-spec_zone-1 ) j_start = max( jts,jds+spec_zone ) j_end = min( jte,jde-spec_zone-1 ) k_start = kts k_end = min( kte, kde-1 ) ENDIF DO im = scs, sce DO j = jts, min(jte,jde-1) DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) tendency(i,k,j) = 0. ENDDO ENDDO ENDDO DO j = j_start_spc,j_end_spc DO k = k_start_spc,k_end_spc DO i = i_start_spc,i_end_spc tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im) sc_tend(i,k,j,im) = 0. ENDDO ENDDO ENDDO DO j = jts, min(jte,jde-1) DO i = its, min(ite,ide-1) muold(i) = mu_old(i,j) + mu_base(i,j) r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j)) ENDDO DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) scalar(i,k,j,im) = (muold(i)*scalar(i,k,j,im) & + dt*tendency(i,k,j))*r_munew(i) ENDDO ENDDO ENDDO ENDDO END SUBROUTINE rk_update_scalar_pd !------------------------------------------------------------ SUBROUTINE init_zero_tendency(ru_tendf, rv_tendf, rw_tendf, ph_tendf, & t_tendf, tke_tendf, mu_tendf, & moist_tendf,chem_tendf,scalar_tendf, & n_moist,n_chem,n_scalar,rk_step, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte INTEGER , INTENT(IN ) :: n_moist,n_chem,n_scalar,rk_step REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(INOUT) :: & ru_tendf, & rv_tendf, & rw_tendf, & ph_tendf, & t_tendf, & tke_tendf REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(INOUT) :: mu_tendf REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_moist),INTENT(INOUT)::& moist_tendf REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_chem ),INTENT(INOUT)::& chem_tendf REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_scalar ),INTENT(INOUT)::& scalar_tendf ! LOCAL VARS INTEGER :: im, ic, is ! ! ! init_zero_tendency ! sets tendency arrays to zero for all prognostic variables. ! ! CALL zero_tend ( ru_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( rv_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( rw_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( ph_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( t_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( tke_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( mu_tendf, & ids, ide, jds, jde, kds, kds, & ims, ime, jms, jme, kms, kms, & its, ite, jts, jte, kts, kts ) ! DO im=PARAM_FIRST_SCALAR,n_moist DO im=1,n_moist ! make sure first one is zero too CALL zero_tend ( moist_tendf(ims,kms,jms,im), & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDDO ! DO ic=PARAM_FIRST_SCALAR,n_chem DO ic=1,n_chem ! make sure first one is zero too CALL zero_tend ( chem_tendf(ims,kms,jms,ic), & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDDO ! DO ic=PARAM_FIRST_SCALAR,n_scalar DO ic=1,n_scalar ! make sure first one is zero too CALL zero_tend ( scalar_tendf(ims,kms,jms,ic), & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDDO END SUBROUTINE init_zero_tendency !=================================================================== SUBROUTINE dump_data( a, field, io_unit, & ims, ime, jms, jme, kms, kme, & ids, ide, jds, jde, kds, kde ) implicit none integer :: ims, ime, jms, jme, kms, kme, & ids, ide, jds, jde, kds, kde real, dimension(ims:ime, kms:kme, jds:jde) :: a character :: field integer :: io_unit integer :: is,ie,js,je,ks,ke ! ! ! calculate_phy_tend couples the physics tendencies to the column mass (mu), ! because prognostic equations are in flux form, but physics tendencies are ! computed for uncoupled variables. ! ! itf=MIN(ite,ide-1) jtf=MIN(jte,jde-1) ktf=MIN(kte,kde-1) itsu=MAX(its,ids+1) jtsv=MAX(jts,jds+1) ! radiation IF (config_flags%ra_lw_physics .gt. 0 .or. config_flags%ra_sw_physics .gt. 0) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RTHRATEN(I,K,J)=mu(I,J)*RTHRATEN(I,K,J) ENDDO ENDDO ENDDO ENDIF ! cumulus IF (config_flags%cu_physics .gt. 0) THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RTHCUTEN(I,K,J)=mu(I,J)*RTHCUTEN(I,K,J) RQVCUTEN(I,K,J)=mu(I,J)*RQVCUTEN(I,K,J) ENDDO ENDDO ENDDO IF (P_QC .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQCCUTEN(I,K,J)=mu(I,J)*RQCCUTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF (P_QR .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQRCUTEN(I,K,J)=mu(I,J)*RQRCUTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF (P_QI .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQICUTEN(I,K,J)=mu(I,J)*RQICUTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF(P_QS .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQSCUTEN(I,K,J)=mu(I,J)*RQSCUTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF ENDIF ! pbl !!****MARS IF ( (config_flags%bl_pbl_physics .gt. 0) .OR. (config_flags%modif_wrf) ) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RUBLTEN(I,K,J) =mu(I,J)*RUBLTEN(I,K,J) RVBLTEN(I,K,J) =mu(I,J)*RVBLTEN(I,K,J) RTHBLTEN(I,K,J)=mu(I,J)*RTHBLTEN(I,K,J) ENDDO ENDDO ENDDO IF (P_QV .ge. PARAM_FIRST_SCALAR) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RQVBLTEN(I,K,J)=mu(I,J)*RQVBLTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF (P_QC .ge. PARAM_FIRST_SCALAR) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RQCBLTEN(I,K,J)=mu(I,J)*RQCBLTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF (P_QI .ge. PARAM_FIRST_SCALAR) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RQIBLTEN(I,K,J)=mu(I,J)*RQIBLTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF ENDIF ! fdda ! note fdda u and v tendencies are staggered, also only interior points have muu/muv, ! so only couple those IF (config_flags%grid_fdda .gt. 0) THEN DO J=jts,jtf DO K=kts,ktf DO I=itsu,itf ! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) & ! write(*,'(a,3i6,e15.5)') 'u_ten before=',i,k,j, RUNDGDTEN(i,k,j) RUNDGDTEN(I,K,J) =muu(I,J)*RUNDGDTEN(I,K,J) ! if( i == itf/2 .AND. j == jtf/2 .AND. k==ktf/2 ) & ! write(*,'(a,2f15.5)') 'mu, muu=',mu(i,j), muu(i,j) ! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) & ! write(*,'(a,3i6,e15.5)') 'u_ten after=',i,k,j, RUNDGDTEN(i,k,j) ! if( RUNDGDTEN(i,k,j) > 30.0 ) write(*,*) 'IKJ=',i,k,j ENDDO ENDDO ENDDO ! write(*,'(a,e15.5)') 'u_ten MAXIMUM after=', maxval(RUNDGDTEN) DO J=jtsv,jtf DO K=kts,ktf DO I=its,itf RVNDGDTEN(I,K,J) =muv(I,J)*RVNDGDTEN(I,K,J) ENDDO ENDDO ENDDO DO J=jts,jtf DO K=kts,ktf DO I=its,itf ! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) & ! write(*,'(a,3i6,e15.5)') 'th before=',i,k,j, RTHNDGDTEN(I,K,J) RTHNDGDTEN(I,K,J)=mu(I,J)*RTHNDGDTEN(I,K,J) ! RMUNDGDTEN(I,J) - no coupling ! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) & ! write(*,'(a,3i6,e15.5)') 'th after=',i,k,j, RTHNDGDTEN(I,K,J) ENDDO ENDDO ENDDO IF (P_QV .ge. PARAM_FIRST_SCALAR) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RQVNDGDTEN(I,K,J)=mu(I,J)*RQVNDGDTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF ENDIF END SUBROUTINE calculate_phy_tend !----------------------------------------------------------------------- SUBROUTINE positive_definite_filter ( a, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), INTENT(INOUT) :: a INTEGER :: i,k,j ! ! ! debug and testing code for bounding a variable ! ! DO j=jts,min(jte,jde-1) DO k=kts,kte-1 DO i=its,min(ite,ide-1) ! a(i,k,j) = max(a(i,k,j),0.) a(i,k,j) = min(1000.,max(a(i,k,j),0.)) ENDDO ENDDO ENDDO END SUBROUTINE positive_definite_filter !----------------------------------------------------------------------- SUBROUTINE bound_tke ( tke, tke_upper_bound, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), INTENT(INOUT) :: tke REAL, INTENT( IN) :: tke_upper_bound INTEGER :: i,k,j ! ! ! bounds tke between zero and tke_upper_bound. ! ! DO j=jts,min(jte,jde-1) DO k=kts,kte-1 DO i=its,min(ite,ide-1) tke(i,k,j) = min(tke_upper_bound,max(tke(i,k,j),0.)) ENDDO ENDDO ENDDO END SUBROUTINE bound_tke END MODULE module_em