!WRF:MODEL_LAYER:DYNAMICS
!
MODULE module_em
USE module_model_constants
USE module_advect_em
USE module_big_step_utilities_em
USE module_state_description
CONTAINS
!------------------------------------------------------------------------
SUBROUTINE rk_step_prep ( config_flags, rk_step, &
u, v, w, t, ph, mu, &
moist, &
ru, rv, rw, ww, php, alt, &
muu, muv, &
mub, mut, phb, pb, p, al, alb, &
cqu, cqv, cqw, &
msfu, msfv, msft, &
fnm, fnp, dnw, rdx, rdy, &
n_moist, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IMPLICIT NONE
! Input data.
TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
INTEGER , INTENT(IN ) :: n_moist, rk_step
REAL , INTENT(IN ) :: rdx, rdy
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , &
INTENT(IN ) :: u, &
v, &
w, &
t, &
ph, &
phb, &
pb, &
al, &
alb
REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , &
INTENT( OUT) :: ru, &
rv, &
rw, &
ww, &
php, &
cqu, &
cqv, &
cqw, &
alt
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , &
INTENT(IN ) :: p
REAL , DIMENSION( ims:ime, kms:kme, jms:jme, n_moist ), INTENT( IN) :: &
moist
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msft, &
msfu, &
msfv, &
mu, &
mub
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT( OUT) :: muu, &
muv, &
mut
REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, fnp, dnw
integer :: k
!
!
! rk_step_prep prepares a number of diagnostic quantities
! in preperation for a Runge-Kutta timestep. subroutines called
! by rk_step_prep calculate
!
! (1) total column dry air mass (mut, call to calculate_full)
!
! (2) total column dry air mass at u and v points
! (muu, muv, call to calculate_mu_uv)
!
! (3) mass-coupled velocities for advection
! (ru, rv, and rw, call to couple_momentum)
!
! (4) omega (call to calc_ww_cp)
!
! (5) moisture coefficients (cqu, cqv, cqw, call to calc_cq)
!
! (6) inverse density (alt, call to calc_alt)
!
! (7) geopotential at pressure points (php, call to calc_php)
!
!
CALL calculate_full( mut, mub, mu, &
ids, ide, jds, jde, 1, 2, &
ims, ime, jms, jme, 1, 1, &
its, ite, jts, jte, 1, 1 )
CALL calc_mu_uv ( config_flags, &
mu, mub, muu, muv, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL couple_momentum( muu, ru, u, msfu, &
muv, rv, v, msfv, &
mut, rw, w, msft, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
! new call, couples V with mu, also has correct map factors. WCS, 3 june 2001
CALL calc_ww_cp ( u, v, mu, mub, ww, &
rdx, rdy, msft, msfu, msfv, dnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL calc_cq ( moist, cqu, cqv, cqw, n_moist, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL calc_alt ( alt, al, alb, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL calc_php ( php, ph, phb, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END SUBROUTINE rk_step_prep
!-------------------------------------------------------------------------------
SUBROUTINE rk_tendency ( config_flags, rk_step, &
ru_tend, rv_tend, rw_tend, ph_tend, t_tend, &
ru_tendf, rv_tendf, rw_tendf, ph_tendf, t_tendf, &
mu_tend, u_save, v_save, w_save, ph_save, &
t_save, mu_save, RTHFTEN, &
ru, rv, rw, ww, &
u, v, w, t, ph, &
u_old, v_old, w_old, t_old, ph_old, &
h_diabatic, phb,t_init, &
mu, mut, muu, muv, mub, &
al, alt, p, pb, php, cqu, cqv, cqw, &
u_base, v_base, t_base, qv_base, z_base, &
msfu, msfv, msft, f, e, sina, cosa, &
fnm, fnp, rdn, rdnw, &
dt, rdx, rdy, khdif, kvdif, xkmhd, &
diff_6th_opt, diff_6th_factor, &
dampcoef,zdamp,damp_opt, &
cf1, cf2, cf3, cfn, cfn1, n_moist, &
non_hydrostatic, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IMPLICIT NONE
! Input data.
TYPE(grid_config_rec_type) , INTENT(IN ) :: config_flags
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
LOGICAL , INTENT(IN ) :: non_hydrostatic
INTEGER , INTENT(IN ) :: n_moist, rk_step
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , &
INTENT(IN ) :: ru, &
rv, &
rw, &
ww, &
u, &
v, &
w, &
t, &
ph, &
u_old, &
v_old, &
w_old, &
t_old, &
ph_old, &
phb, &
al, &
alt, &
p, &
pb, &
php, &
cqu, &
cqv, &
t_init, &
xkmhd, &
h_diabatic
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , &
INTENT(OUT ) :: ru_tend, &
rv_tend, &
rw_tend, &
t_tend, &
ph_tend, &
RTHFTEN, &
u_save, &
v_save, &
w_save, &
ph_save, &
t_save
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , &
INTENT(INOUT) :: ru_tendf, &
rv_tendf, &
rw_tendf, &
t_tendf, &
ph_tendf, &
cqw
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT( OUT) :: mu_tend, &
mu_save
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, &
msfv, &
msft, &
f, &
e, &
sina, &
cosa, &
mu, &
mut, &
mub, &
muu, &
muv
REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, &
fnp, &
rdn, &
rdnw, &
u_base, &
v_base, &
t_base, &
qv_base, &
z_base
REAL , INTENT(IN ) :: rdx, &
rdy, &
dt, &
khdif, &
kvdif
INTEGER, INTENT( IN ) :: diff_6th_opt
REAL, INTENT( IN ) :: diff_6th_factor
INTEGER, INTENT( IN ) :: damp_opt
REAL, INTENT( IN ) :: zdamp, dampcoef
REAL :: kdift, khdq, kvdq, cfn, cfn1, cf1, cf2, cf3
INTEGER :: i,j,k
INTEGER :: time_step
!
!
! rk_tendency computes the large-timestep tendency terms in the
! momentum, thermodynamic (theta), and geopotential equations.
! These terms include:
!
! (1) advection (for u, v, w, theta - calls to advect_u, advect_v,
! advect_w, and advact_scalar).
!
! (2) geopotential equation terms (advection and "gw" - call to rhs_ph).
!
! (3) buoyancy term in vertical momentum equation (call to pg_buoy_w).
!
! (4) Coriolis and curvature terms in u,v,w momentum equations
! (calls to subroutines coriolis, curvature)
!
! (5) 3D diffusion on coordinate surfaces.
!
!
CALL zero_tend ( ru_tend, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( rv_tend, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( rw_tend, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( t_tend, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( ph_tend, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( u_save, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( v_save, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( w_save, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( ph_save, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( t_save, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( mu_tend, &
ids, ide, jds, jde, 1, 1, &
ims, ime, jms, jme, 1, 1, &
its, ite, jts, jte, 1, 1 )
CALL zero_tend ( mu_save, &
ids, ide, jds, jde, 1, 1, &
ims, ime, jms, jme, 1, 1, &
its, ite, jts, jte, 1, 1 )
! advection tendencies
CALL nl_get_time_step ( 1, time_step )
CALL advect_u ( u, u , ru_tend, ru, rv, ww, &
mut, time_step, config_flags, &
msfu, msfv, msft, &
fnm, fnp, rdx, rdy, rdnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL advect_v ( v, v , rv_tend, ru, rv, ww, &
mut, time_step, config_flags, &
msfu, msfv, msft, &
fnm, fnp, rdx, rdy, rdnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF (non_hydrostatic) &
CALL advect_w ( w, w, rw_tend, ru, rv, ww, &
mut, time_step, config_flags, &
msfu, msfv, msft, &
fnm, fnp, rdx, rdy, rdn, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
! theta flux divergence
CALL advect_scalar ( t, t, t_tend, ru, rv, ww, &
mut, time_step, config_flags, &
msfu, msfv, msft, fnm, fnp, &
rdx, rdy, rdnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF ( config_flags%cu_physics == GDSCHEME ) THEN
! theta advection only:
CALL set_tend( RTHFTEN, t_tend, msft, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END IF
CALL rhs_ph( ph_tend, u, v, ww, ph, ph, phb, w, &
mut, muu, muv, &
fnm, fnp, &
rdnw, cfn, cfn1, rdx, rdy, msft, &
non_hydrostatic, &
config_flags, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL horizontal_pressure_gradient( ru_tend,rv_tend, &
ph,alt,p,pb,al,php,cqu,cqv, &
muu,muv,mu,fnm,fnp,rdnw, &
cf1,cf2,cf3,rdx,rdy,msft, &
config_flags, non_hydrostatic, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF (non_hydrostatic) &
CALL pg_buoy_w( rw_tend, p, cqw, mu, mub, &
rdnw, rdn, g, msft, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL w_damp ( rw_tend, ww, w, mut, rdnw, dt, &
config_flags%w_damping, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF(config_flags%pert_coriolis) THEN
CALL perturbation_coriolis ( ru, rv, rw, &
ru_tend, rv_tend, rw_tend, &
config_flags, &
u_base, v_base, z_base, &
muu, muv, phb, ph, &
f, e, sina, cosa, fnm, fnp, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSE
CALL coriolis ( ru, rv, rw, &
ru_tend, rv_tend, rw_tend, &
config_flags, &
f, e, sina, cosa, fnm, fnp, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END IF
CALL curvature ( ru, rv, rw, u, v, w, &
ru_tend, rv_tend, rw_tend, &
config_flags, &
msfu, msfv, fnm, fnp, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
!**************************************************************
!
! Next, the terms that we integrate only with forward-in-time
! (evaluate with time t variables).
!
!**************************************************************
forward_step: IF( rk_step == 1 ) THEN
diff_opt1 : IF (config_flags%diff_opt .eq. 1) THEN
CALL horizontal_diffusion ('u', u, ru_tendf, mut, config_flags, &
msfu, msfv, msft, &
khdif, xkmhd, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL horizontal_diffusion ('v', v, rv_tendf, mut, config_flags, &
msfu, msfv, msft, &
khdif, xkmhd, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL horizontal_diffusion ('w', w, rw_tendf, mut, config_flags, &
msfu, msfv, msft, &
khdif, xkmhd, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
khdq = 3.*khdif
CALL horizontal_diffusion_3dmp ( 'm', t, t_tendf, mut, &
config_flags, t_init, &
msfu, msfv, msft, &
khdq , xkmhd, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
!!!****MARS: vertical diffusion is done in the physics (TODO: consider the nonhydrostatic case ?)
pbl_test : IF ( (config_flags%bl_pbl_physics .eq. 0) &
.AND. (.not. config_flags%modif_wrf) ) THEN
CALL vertical_diffusion_u ( u, ru_tendf, config_flags, &
u_base, &
alt, muu, rdn, rdnw, kvdif, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL vertical_diffusion_v ( v, rv_tendf, config_flags, &
v_base, &
alt, muv, rdn, rdnw, kvdif, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF (non_hydrostatic) &
CALL vertical_diffusion ( 'w', w, rw_tendf, config_flags, &
alt, mut, rdn, rdnw, kvdif, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
kvdq = 3.*kvdif
CALL vertical_diffusion_3dmp ( t, t_tendf, config_flags, t_init, &
alt, mut, rdn, rdnw, kvdq , &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF pbl_test
! Theta tendency computations.
END IF diff_opt1
IF ( diff_6th_opt .NE. 0 ) THEN
CALL sixth_order_diffusion( 'u', u, ru_tendf, mut, dt, &
config_flags, &
diff_6th_opt, diff_6th_factor, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL sixth_order_diffusion( 'v', v, rv_tendf, mut, dt, &
config_flags, &
diff_6th_opt, diff_6th_factor, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF (non_hydrostatic) &
CALL sixth_order_diffusion( 'w', w, rw_tendf, mut, dt, &
config_flags, &
diff_6th_opt, diff_6th_factor, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL sixth_order_diffusion( 'm', t, t_tendf, mut, dt, &
config_flags, &
diff_6th_opt, diff_6th_factor, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF
IF( damp_opt .eq. 2 ) &
CALL rk_rayleigh_damp( ru_tendf, rv_tendf, &
rw_tendf, t_tendf, &
u, v, w, t, t_init, &
mut, muu, muv, ph, phb, &
u_base, v_base, t_base, z_base, &
dampcoef, zdamp, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END IF forward_step
END SUBROUTINE rk_tendency
!-------------------------------------------------------------------------------
SUBROUTINE rk_addtend_dry ( ru_tend, rv_tend, rw_tend, ph_tend, t_tend, &
ru_tendf, rv_tendf, rw_tendf, ph_tendf, t_tendf, &
u_save, v_save, w_save, ph_save, t_save, &
mu_tend, mu_tendf, rk_step, &
h_diabatic, mut, msft, msfu, msfv, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
ips,ipe, jps,jpe, kps,kpe, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
! Input data.
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
ips, ipe, jps, jpe, kps, kpe, &
its, ite, jts, jte, kts, kte
INTEGER , INTENT(IN ) :: rk_step
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(INOUT) :: ru_tend, &
rv_tend, &
rw_tend, &
ph_tend, &
t_tend, &
ru_tendf, &
rv_tendf, &
rw_tendf, &
ph_tendf, &
t_tendf
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(INOUT) :: mu_tend, &
mu_tendf
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(IN ) :: u_save, &
v_save, &
w_save, &
ph_save, &
t_save, &
h_diabatic
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut, &
msft, &
msfu, &
msfv
! Local
INTEGER :: i, j, k
!
!
! rk_addtend_dry constructs the full large-timestep tendency terms for
! momentum (u,v,w), theta and geopotential equations. This is accomplished
! by combining the physics tendencies (in *tendf; these are computed
! the first RK substep, held fixed thereafter) with the RK tendencies
! (in *tend, these include advection, pressure gradient, etc;
! these change each rk substep). Output is in *tend.
!
!
! Finally, add the forward-step tendency to the rk_tendency
! u/v/w/save contain bc tendency that needs to be multiplied by msf
! before adding it to physics tendency (*tendf)
! For momentum we need the final tendency to include an inverse msf
! physics/bc tendency needs to be divided, advection tendency already has it
! For scalars we need the final tendency to include an inverse msf
! advection tendency is OK, physics/bc tendency needs to be divided by msf
DO j = jts,MIN(jte,jde-1)
DO k = kts,kte-1
DO i = its,ite
! multiply by m to uncouple u
IF(rk_step == 1)ru_tendf(i,k,j) = ru_tendf(i,k,j) + u_save(i,k,j)*msfu(i,j)
! divide by m to couple u
ru_tend(i,k,j) = ru_tend(i,k,j) + ru_tendf(i,k,j)/msfu(i,j)
ENDDO
ENDDO
ENDDO
DO j = jts,jte
DO k = kts,kte-1
DO i = its,MIN(ite,ide-1)
! multiply by m to uncouple v
IF(rk_step == 1)rv_tendf(i,k,j) = rv_tendf(i,k,j) + v_save(i,k,j)*msfv(i,j)
! divide by m to couple v
rv_tend(i,k,j) = rv_tend(i,k,j) + rv_tendf(i,k,j)/msfv(i,j)
ENDDO
ENDDO
ENDDO
DO j = jts,MIN(jte,jde-1)
DO k = kts,kte
DO i = its,MIN(ite,ide-1)
! multiply by m to uncouple w
IF(rk_step == 1)rw_tendf(i,k,j) = rw_tendf(i,k,j) + w_save(i,k,j)*msft(i,j)
! divide by m to couple w
rw_tend(i,k,j) = rw_tend(i,k,j) + rw_tendf(i,k,j)/msft(i,j)
IF(rk_step == 1)ph_tendf(i,k,j) = ph_tendf(i,k,j) + ph_save(i,k,j)
! divide by m to couple scalar
ph_tend(i,k,j) = ph_tend(i,k,j) + ph_tendf(i,k,j)/msft(i,j)
ENDDO
ENDDO
ENDDO
DO j = jts,MIN(jte,jde-1)
DO k = kts,kte-1
DO i = its,MIN(ite,ide-1)
IF(rk_step == 1)t_tendf(i,k,j) = t_tendf(i,k,j) + t_save(i,k,j)
! divide by m to couple theta
t_tend(i,k,j) = t_tend(i,k,j) + t_tendf(i,k,j)/msft(i,j) &
+ mut(i,j)*h_diabatic(i,k,j)/msft(i,j)
! divide by m to couple heating
ENDDO
ENDDO
ENDDO
DO j = jts,MIN(jte,jde-1)
DO i = its,MIN(ite,ide-1)
! mu tendencies not coupled with 1/msf
mu_tend(i,j) = mu_tend(i,j) + mu_tendf(i,j)
ENDDO
ENDDO
END SUBROUTINE rk_addtend_dry
!-------------------------------------------------------------------------------
SUBROUTINE rk_scalar_tend ( scs, sce, config_flags, &
rk_step, dt, &
ru, rv, ww, mut, mub, mu_old, &
alt, &
scalar_old, scalar, &
scalar_tends, advect_tend, &
RQVFTEN, &
base, moist_step, fnm, fnp, &
msfu, msfv, msft, &
rdx, rdy, rdn, rdnw, &
khdif, kvdif, xkmhd, &
diff_6th_opt, diff_6th_factor,&
pd_advection, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IMPLICIT NONE
! Input data.
TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags
INTEGER , INTENT(IN ) :: rk_step, scs, sce
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
LOGICAL , INTENT(IN ) :: moist_step
REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce ), &
INTENT(IN ) :: scalar, scalar_old
REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce ), &
INTENT(INOUT) :: scalar_tends
REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(INOUT) :: advect_tend
REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RQVFTEN
REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: ru, &
rv, &
ww, &
xkmhd, &
alt
REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, &
fnp, &
rdn, &
rdnw, &
base
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfu, &
msfv, &
msft, &
mub, &
mut, &
mu_old
REAL , INTENT(IN ) :: rdx, &
rdy, &
khdif, &
kvdif
INTEGER, INTENT( IN ) :: diff_6th_opt
REAL, INTENT( IN ) :: diff_6th_factor
REAL , INTENT(IN ) :: dt
LOGICAL, INTENT(IN ) :: pd_advection
! Local data
INTEGER :: im, i,j,k
INTEGER :: time_step
REAL :: khdq, kvdq, tendency
!
!
! rk_scalar_tend calls routines that computes scalar tendency from advection
! and 3D mixing (TKE or fixed eddy viscosities).
!
!
khdq = khdif/prandtl
kvdq = kvdif/prandtl
scalar_loop : DO im = scs, sce
CALL zero_tend ( advect_tend(ims,kms,jms), &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL nl_get_time_step ( 1, time_step )
IF( (rk_step == 3) .and. pd_advection ) THEN
! CALL advect_scalar_pd ( scalar(ims,kms,jms,im), &
! scalar_old(ims,kms,jms,im), &
! advect_tend(ims,kms,jms), &
! ru, rv, ww, mut, mub, mu_old, &
! config_flags, &
! msfu, msfv, msft, fnm, fnp, &
! rdx, rdy, rdnw,dt, &
! ids, ide, jds, jde, kds, kde, &
! ims, ime, jms, jme, kms, kme, &
! its, ite, jts, jte, kts, kte )
CALL advect_scalar_mono ( scalar(ims,kms,jms,im), &
scalar_old(ims,kms,jms,im), &
advect_tend(ims,kms,jms), &
ru, rv, ww, mut, mub, mu_old, &
config_flags, &
msfu, msfv, msft, fnm, fnp, &
rdx, rdy, rdnw,dt, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSE
CALL advect_scalar ( scalar(ims,kms,jms,im), &
scalar(ims,kms,jms,im), &
advect_tend(ims,kms,jms), &
ru, rv, ww, mut, time_step, &
config_flags, &
msfu, msfv, msft, fnm, fnp, &
rdx, rdy, rdnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END IF
IF( config_flags%cu_physics == GDSCHEME .and. moist_step .and. ( im == P_QV) ) THEN
CALL set_tend( RQVFTEN, advect_tend, msft, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF
rk_step_1: IF( rk_step == 1 ) THEN
diff_opt1 : IF (config_flags%diff_opt .eq. 1) THEN
CALL horizontal_diffusion ( 'm', scalar(ims,kms,jms,im), &
scalar_tends(ims,kms,jms,im), mut, &
config_flags, &
msfu, msfv, msft, &
khdq , xkmhd, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
!!!****MARS: done in the physics
pbl_test : IF ( (config_flags%bl_pbl_physics .eq. 0) &
.AND. (.not. config_flags%modif_wrf) ) THEN
IF( (moist_step) .and. ( im == P_QV)) THEN
CALL vertical_diffusion_mp ( scalar(ims,kms,jms,im), &
scalar_tends(ims,kms,jms,im), &
config_flags, base, &
alt, mut, rdn, rdnw, kvdq , &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSE
CALL vertical_diffusion ( 'm', scalar(ims,kms,jms,im), &
scalar_tends(ims,kms,jms,im), &
config_flags, &
alt, mut, rdn, rdnw, kvdq, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END IF
ENDIF pbl_test
ENDIF diff_opt1
IF ( diff_6th_opt .NE. 0 ) &
CALL sixth_order_diffusion( 'm', scalar(ims,kms,jms,im), &
scalar_tends(ims,kms,jms,im), &
mut, dt, config_flags, &
diff_6th_opt, diff_6th_factor, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF rk_step_1
END DO scalar_loop
END SUBROUTINE rk_scalar_tend
!-------------------------------------------------------------------------------
SUBROUTINE rk_update_scalar( scs, sce, &
scalar_1, scalar_2, sc_tend, &
advect_tend, msft, &
mu_old, mu_new, mu_base, &
rk_step, dt, spec_zone, &
config_flags, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IMPLICIT NONE
! Input data.
TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags
INTEGER , INTENT(IN ) :: scs, sce, rk_step, spec_zone
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
REAL, INTENT(IN ) :: dt
REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), &
INTENT(INOUT) :: scalar_1, &
scalar_2
REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), &
INTENT(IN) :: sc_tend
REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), &
INTENT(IN) :: advect_tend
REAL, DIMENSION(ims:ime, jms:jme ), INTENT(IN ) :: mu_old, &
mu_new, &
mu_base, &
msft
INTEGER :: i,j,k,im
REAL :: sc_middle, msfsq
REAL, DIMENSION(its:ite) :: muold, r_munew
REAL, DIMENSION(its:ite, kts:kte, jts:jte ) :: tendency
INTEGER :: i_start,i_end,j_start,j_end,k_start,k_end
INTEGER :: i_start_spc,i_end_spc,j_start_spc,j_end_spc,k_start_spc,k_end_spc
!
!
! rk_scalar_update advances the scalar equation given the time t value
! of the scalar and the scalar tendency.
!
!
!
! set loop limits.
i_start = its
i_end = ite
j_start = jts
j_end = jte
k_start = kts
k_end = kte-1
IF(j_end == jde) j_end = j_end - 1
IF(i_end == ide) i_end = i_end - 1
i_start_spc = i_start
i_end_spc = i_end
j_start_spc = j_start
j_end_spc = j_end
k_start_spc = k_start
k_end_spc = k_end
IF( config_flags%nested .or. config_flags%specified ) THEN
IF( .NOT. config_flags%periodic_x)i_start = max( its,ids+spec_zone )
IF( .NOT. config_flags%periodic_x)i_end = min( ite,ide-spec_zone-1 )
j_start = max( jts,jds+spec_zone )
j_end = min( jte,jde-spec_zone-1 )
k_start = kts
k_end = min( kte, kde-1 )
ENDIF
IF ( rk_step == 1 ) THEN
! replace t-dt values (in scalar_1) with t values scalar_2,
! then compute new values by adding tendency to values at t
DO im = scs,sce
DO j = jts, min(jte,jde-1)
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
tendency(i,k,j) = 0.
ENDDO
ENDDO
ENDDO
DO j = j_start,j_end
DO k = k_start,k_end
DO i = i_start,i_end
! scalar was coupled with m
tendency(i,k,j) = advect_tend(i,k,j) * msft(i,j)
ENDDO
ENDDO
ENDDO
DO j = j_start_spc,j_end_spc
DO k = k_start_spc,k_end_spc
DO i = i_start_spc,i_end_spc
tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im)
ENDDO
ENDDO
ENDDO
DO j = jts, min(jte,jde-1)
DO i = its, min(ite,ide-1)
muold(i) = mu_old(i,j) + mu_base(i,j)
r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j))
ENDDO
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
scalar_1(i,k,j,im) = scalar_2(i,k,j,im)
scalar_2(i,k,j,im) = (muold(i)*scalar_1(i,k,j,im) &
+ dt*tendency(i,k,j))*r_munew(i)
ENDDO
ENDDO
ENDDO
ENDDO
ELSE
! just compute new values, scalar_1 already at time t.
DO im = scs, sce
DO j = jts, min(jte,jde-1)
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
tendency(i,k,j) = 0.
ENDDO
ENDDO
ENDDO
DO j = j_start,j_end
DO k = k_start,k_end
DO i = i_start,i_end
! scalar was coupled with m
tendency(i,k,j) = advect_tend(i,k,j) * msft(i,j)
ENDDO
ENDDO
ENDDO
DO j = j_start_spc,j_end_spc
DO k = k_start_spc,k_end_spc
DO i = i_start_spc,i_end_spc
tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im)
ENDDO
ENDDO
ENDDO
DO j = jts, min(jte,jde-1)
DO i = its, min(ite,ide-1)
muold(i) = mu_old(i,j) + mu_base(i,j)
r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j))
ENDDO
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
scalar_2(i,k,j,im) = (muold(i)*scalar_1(i,k,j,im) &
+ dt*tendency(i,k,j))*r_munew(i)
ENDDO
ENDDO
ENDDO
ENDDO
END IF
END SUBROUTINE rk_update_scalar
!-------------------------------------------------------------------------------
SUBROUTINE rk_update_scalar_pd( scs, sce, &
scalar, sc_tend, &
mu_old, mu_new, mu_base, &
rk_step, dt, spec_zone, &
config_flags, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IMPLICIT NONE
! Input data.
TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags
INTEGER , INTENT(IN ) :: scs, sce, rk_step, spec_zone
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
REAL, INTENT(IN ) :: dt
REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), &
INTENT(INOUT) :: scalar, &
sc_tend
REAL, DIMENSION(ims:ime, jms:jme ), INTENT(IN ) :: mu_old, &
mu_new, &
mu_base
INTEGER :: i,j,k,im
REAL :: sc_middle, msfsq
REAL, DIMENSION(its:ite) :: muold, r_munew
REAL, DIMENSION(its:ite, kts:kte, jts:jte ) :: tendency
INTEGER :: i_start,i_end,j_start,j_end,k_start,k_end
INTEGER :: i_start_spc,i_end_spc,j_start_spc,j_end_spc,k_start_spc,k_end_spc
!
!
! rk_scalar_update advances the scalar equation given the time t value
! of the scalar and the scalar tendency.
!
!
!
! set loop limits.
i_start = its
i_end = ite
j_start = jts
j_end = jte
k_start = kts
k_end = kte-1
IF(j_end == jde) j_end = j_end - 1
IF(i_end == ide) i_end = i_end - 1
i_start_spc = i_start
i_end_spc = i_end
j_start_spc = j_start
j_end_spc = j_end
k_start_spc = k_start
k_end_spc = k_end
IF( config_flags%nested .or. config_flags%specified ) THEN
IF( .NOT. config_flags%periodic_x)i_start = max( its,ids+spec_zone )
IF( .NOT. config_flags%periodic_x)i_end = min( ite,ide-spec_zone-1 )
j_start = max( jts,jds+spec_zone )
j_end = min( jte,jde-spec_zone-1 )
k_start = kts
k_end = min( kte, kde-1 )
ENDIF
DO im = scs, sce
DO j = jts, min(jte,jde-1)
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
tendency(i,k,j) = 0.
ENDDO
ENDDO
ENDDO
DO j = j_start_spc,j_end_spc
DO k = k_start_spc,k_end_spc
DO i = i_start_spc,i_end_spc
tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im)
sc_tend(i,k,j,im) = 0.
ENDDO
ENDDO
ENDDO
DO j = jts, min(jte,jde-1)
DO i = its, min(ite,ide-1)
muold(i) = mu_old(i,j) + mu_base(i,j)
r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j))
ENDDO
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
scalar(i,k,j,im) = (muold(i)*scalar(i,k,j,im) &
+ dt*tendency(i,k,j))*r_munew(i)
ENDDO
ENDDO
ENDDO
ENDDO
END SUBROUTINE rk_update_scalar_pd
!------------------------------------------------------------
SUBROUTINE init_zero_tendency(ru_tendf, rv_tendf, rw_tendf, ph_tendf, &
t_tendf, tke_tendf, mu_tendf, &
moist_tendf,chem_tendf,scalar_tendf, &
n_moist,n_chem,n_scalar,rk_step, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
!-----------------------------------------------------------------------
IMPLICIT NONE
!-----------------------------------------------------------------------
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
INTEGER , INTENT(IN ) :: n_moist,n_chem,n_scalar,rk_step
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(INOUT) :: &
ru_tendf, &
rv_tendf, &
rw_tendf, &
ph_tendf, &
t_tendf, &
tke_tendf
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(INOUT) :: mu_tendf
REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_moist),INTENT(INOUT)::&
moist_tendf
REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_chem ),INTENT(INOUT)::&
chem_tendf
REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_scalar ),INTENT(INOUT)::&
scalar_tendf
! LOCAL VARS
INTEGER :: im, ic, is
!
!
! init_zero_tendency
! sets tendency arrays to zero for all prognostic variables.
!
!
CALL zero_tend ( ru_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( rv_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( rw_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( ph_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( t_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( tke_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend ( mu_tendf, &
ids, ide, jds, jde, kds, kds, &
ims, ime, jms, jme, kms, kms, &
its, ite, jts, jte, kts, kts )
! DO im=PARAM_FIRST_SCALAR,n_moist
DO im=1,n_moist ! make sure first one is zero too
CALL zero_tend ( moist_tendf(ims,kms,jms,im), &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDDO
! DO ic=PARAM_FIRST_SCALAR,n_chem
DO ic=1,n_chem ! make sure first one is zero too
CALL zero_tend ( chem_tendf(ims,kms,jms,ic), &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDDO
! DO ic=PARAM_FIRST_SCALAR,n_scalar
DO ic=1,n_scalar ! make sure first one is zero too
CALL zero_tend ( scalar_tendf(ims,kms,jms,ic), &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDDO
END SUBROUTINE init_zero_tendency
!===================================================================
SUBROUTINE dump_data( a, field, io_unit, &
ims, ime, jms, jme, kms, kme, &
ids, ide, jds, jde, kds, kde )
implicit none
integer :: ims, ime, jms, jme, kms, kme, &
ids, ide, jds, jde, kds, kde
real, dimension(ims:ime, kms:kme, jds:jde) :: a
character :: field
integer :: io_unit
integer :: is,ie,js,je,ks,ke
!
!
! calculate_phy_tend couples the physics tendencies to the column mass (mu),
! because prognostic equations are in flux form, but physics tendencies are
! computed for uncoupled variables.
!
!
itf=MIN(ite,ide-1)
jtf=MIN(jte,jde-1)
ktf=MIN(kte,kde-1)
itsu=MAX(its,ids+1)
jtsv=MAX(jts,jds+1)
! radiation
IF (config_flags%ra_lw_physics .gt. 0 .or. config_flags%ra_sw_physics .gt. 0) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RTHRATEN(I,K,J)=mu(I,J)*RTHRATEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
! cumulus
IF (config_flags%cu_physics .gt. 0) THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RTHCUTEN(I,K,J)=mu(I,J)*RTHCUTEN(I,K,J)
RQVCUTEN(I,K,J)=mu(I,J)*RQVCUTEN(I,K,J)
ENDDO
ENDDO
ENDDO
IF (P_QC .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQCCUTEN(I,K,J)=mu(I,J)*RQCCUTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QR .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQRCUTEN(I,K,J)=mu(I,J)*RQRCUTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QI .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQICUTEN(I,K,J)=mu(I,J)*RQICUTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF(P_QS .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQSCUTEN(I,K,J)=mu(I,J)*RQSCUTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
! pbl
!!****MARS
IF ( (config_flags%bl_pbl_physics .gt. 0) .OR. (config_flags%modif_wrf) ) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RUBLTEN(I,K,J) =mu(I,J)*RUBLTEN(I,K,J)
RVBLTEN(I,K,J) =mu(I,J)*RVBLTEN(I,K,J)
RTHBLTEN(I,K,J)=mu(I,J)*RTHBLTEN(I,K,J)
ENDDO
ENDDO
ENDDO
IF (P_QV .ge. PARAM_FIRST_SCALAR) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RQVBLTEN(I,K,J)=mu(I,J)*RQVBLTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QC .ge. PARAM_FIRST_SCALAR) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RQCBLTEN(I,K,J)=mu(I,J)*RQCBLTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QI .ge. PARAM_FIRST_SCALAR) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RQIBLTEN(I,K,J)=mu(I,J)*RQIBLTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
! fdda
! note fdda u and v tendencies are staggered, also only interior points have muu/muv,
! so only couple those
IF (config_flags%grid_fdda .gt. 0) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=itsu,itf
! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) &
! write(*,'(a,3i6,e15.5)') 'u_ten before=',i,k,j, RUNDGDTEN(i,k,j)
RUNDGDTEN(I,K,J) =muu(I,J)*RUNDGDTEN(I,K,J)
! if( i == itf/2 .AND. j == jtf/2 .AND. k==ktf/2 ) &
! write(*,'(a,2f15.5)') 'mu, muu=',mu(i,j), muu(i,j)
! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) &
! write(*,'(a,3i6,e15.5)') 'u_ten after=',i,k,j, RUNDGDTEN(i,k,j)
! if( RUNDGDTEN(i,k,j) > 30.0 ) write(*,*) 'IKJ=',i,k,j
ENDDO
ENDDO
ENDDO
! write(*,'(a,e15.5)') 'u_ten MAXIMUM after=', maxval(RUNDGDTEN)
DO J=jtsv,jtf
DO K=kts,ktf
DO I=its,itf
RVNDGDTEN(I,K,J) =muv(I,J)*RVNDGDTEN(I,K,J)
ENDDO
ENDDO
ENDDO
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) &
! write(*,'(a,3i6,e15.5)') 'th before=',i,k,j, RTHNDGDTEN(I,K,J)
RTHNDGDTEN(I,K,J)=mu(I,J)*RTHNDGDTEN(I,K,J)
! RMUNDGDTEN(I,J) - no coupling
! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) &
! write(*,'(a,3i6,e15.5)') 'th after=',i,k,j, RTHNDGDTEN(I,K,J)
ENDDO
ENDDO
ENDDO
IF (P_QV .ge. PARAM_FIRST_SCALAR) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RQVNDGDTEN(I,K,J)=mu(I,J)*RQVNDGDTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
END SUBROUTINE calculate_phy_tend
!-----------------------------------------------------------------------
SUBROUTINE positive_definite_filter ( a, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), INTENT(INOUT) :: a
INTEGER :: i,k,j
!
!
! debug and testing code for bounding a variable
!
!
DO j=jts,min(jte,jde-1)
DO k=kts,kte-1
DO i=its,min(ite,ide-1)
! a(i,k,j) = max(a(i,k,j),0.)
a(i,k,j) = min(1000.,max(a(i,k,j),0.))
ENDDO
ENDDO
ENDDO
END SUBROUTINE positive_definite_filter
!-----------------------------------------------------------------------
SUBROUTINE bound_tke ( tke, tke_upper_bound, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), INTENT(INOUT) :: tke
REAL, INTENT( IN) :: tke_upper_bound
INTEGER :: i,k,j
!
!
! bounds tke between zero and tke_upper_bound.
!
!
DO j=jts,min(jte,jde-1)
DO k=kts,kte-1
DO i=its,min(ite,ide-1)
tke(i,k,j) = min(tke_upper_bound,max(tke(i,k,j),0.))
ENDDO
ENDDO
ENDDO
END SUBROUTINE bound_tke
END MODULE module_em