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Chapter 1

Introduction

This document is a user manual for the General Circulation Model of the Martian atmo-
sphere developed by the Laboratoire de Météorologie Dynamique of the CNRS in Paris
in collaboration with the Atmospheric and Oceanic Planetary Physics sub-department in
Oxford. It corresponds to the version of the model available since November 2002, that
includes the new dynamic code lmdz3.3 and the input and output data in NetCDF format.
The physical part has been available since June 2001, including the NLTE radiative transfer
code valid at up to 120 km, tracer transport, the water cycle with water vapour and ice, the
”double mode” dust transport model, and with optional photochemistry and extension in
the thermosphere up to 250km.

A more general, scientific description of the model without tracers can be found in
Forget et al. [1999].

Chapter 2 of this document, to be read before any of the others, describes the main
features of the model. The model is divided into two relatively independent parts: (1) The
hydrodynamic code, that is shared by all atmospheres (Earth, Mars, etc.) that integrates the
fluid mechanics equations in time and on the globe, and (2) a set of Martian physical pa-
rameterizations, including, for example, the radiative transfer calculation in the atmosphere
and the turbulence mix in the upper layer.

It is followed by a list of references for anyone requiring a detailed description of the
physics and the numerical formulation of the parameterizations of the Martian physical part
(Chapter 3).

For your first contact with the model, chapter 4 guides the user through a practice
simulation (choosing the initial states and parameters and visualizing the output files).

The document then describes the programming code for the model, including a user
computer manual for compiling and running the model (Chapter 5).

Chapter 6 describes the input/output data of the model. The input files are the files
needed to initialize the model (state of the atmosphere at the initial time t0 as well as a
dataset of boundary conditions) and the output files are ”time series”,i.e. records of the
atmospheric flow evolution as simulated by the model, the “diagfi files”, the “stats files”,
the daily averages etc. Some means to edit or visualize these files (editor “ncdump” and
the graphics software “grads”) are also described.

Chapter 8 explains how to run a simulation including the water cycle. Chapter 9 illus-
trates how to run the model with the photochemical module.

Finally, chapter 11 will help you to use a 1-dimensional version of the model, which
may be a simplier tool for some analysis work.
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Chapter 2

Main features of the model

2.1 Basic principles
The General Circulation Model (GCM) calculates the temporal evolution of the different
variables (listed below) that control or describe the Martian meteorology and climate at
different points of a 3D “grid” (see below) that covers the entire atmosphere.

From an initial state, the model calculates the evolution of these variables, timestep by
timestep:

• At instant t, we know variable Xt (temperature for example) at one point in the
atmosphere.

• We calculate the evolution (the tendencies) (∂X∂t )1 , (∂X∂t )2 , etc. arising from
each physical phenomenon, calculated by a parameterization of each of these phe-
nomenon (for example, heating due to absorption of solar radiation).

• At the next time step t + δt, we can calculate Xt+δt from Xt and (∂X∂t ). This is the
“integration” of the variables in time. (For example, Xt+δt = Xt + δt(∂X∂t )1 +

δt(∂X∂t )2 + ...)

The main task of the model is to calculate these tendencies (∂X∂t ) arising from the
different parameterized phenomenon.

2.2 Dynamical-Physical separation
In practice, the 3D model operates in two parts:
- one dynamical part containing the numerical solution of the general equations for at-
mospheric circulation. This part (including the programming) is common to the Earth and
Martian model, and in general for all atmospheres of the terrestrial type.
- a second physical part that is specific to the planet in question and which calculates the
forced circulation and the climate details at each point.

The calculations for the dynamical part are made on a 3D grid with horizontal ex-
changes between the grid boxes, whereas the physical part can be seen as a juxtaposition
of atmosphere “columns” that do not interact with each other (see diagram 2.1).

The dynamical and physical parts deal with variables of different natures, and operate
on grids that are differently constructed. The temporal integration of the variables is based
on different numerical schemes (simple, such as the one above for the physical part, and
more complicated, the “Matsuno-Leapfrog” scheme for the dynamical part). The timesteps
are also different. The physical timestep is iphysiq times longer than the dynamical

4



Dynamical tendencies

Physical fields

Dynamics Physics
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T(z)
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. . .
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q1(z)
...

- radiative transfer

- condensation

- subgrid dynamics

- ...

Tendencies due to :2.3 Processes and variables of a typical MartianGCM2.3.1 VariablesHere are the main physical (i.e. local) variables of the model :� local temperature.� kinetic turbulent energy (i.e. wind variance)� concentration of various aerosols6 (dust, clouds, etc...) or minor gaseousconstituents (water vapor especially).� surface pressure.� ground and subsurface temperature.� various ground properties (ice coverage, moisture, etc...)� windsNote that :� Some of the previous variables are also dynamical variables (i.e. they areused in the dynamical part of the code to compute dynamical tendenciesfor all physical variables, including themselves). These are temperature,winds, tracer mixing ratio, and surface pressure.� Surprisingly, the local pressure is not a local variable. That is becauseit is the actual vertical coordinate : the cells are vertically de�ned bypressure levels, or more exactly by their � coordinate : � = p=pS wherepS is the ground pressure : you have to see the vertical grid as an elasticone, dilating or contracting with winds and temperatures changes. Thischoice makes very easy to include the e�ects of topography on the circu-lation (by changing the value of ps). The altitude coordinates used in thediagrams are actually pseudo-altitudes, given by z = h ln(p=pS) where his the typical height of the Martian atmosphere (often considered equal to10 km, but given more formally by h = RTg ). That would match with thetrue height if the atmosphere was isothermal and h matching it...6also called tracers 9

Figure 2.1: Physical/dynamical interface

timestep, as the solution of the dynamic equations requires a shorter timestep than the
forced calculation for the physical part.

In practice, the main program that handles the whole model (gcm.F) is located in the
dynamical part. When the temporal evolution is being calculated, at each timestep the
program calls the following:

1. Call to the subroutine that handles the total tendency calculation (∂X∂t ) arising from
the dynamical part (caldyn.F)

2. Integration of these dynamical tendencies to calculate the evolution of the variables
at the following timesteps (subroutine integrd.F)

3. Every iphysiq dynamical timestep, a call to the interface subroutine (calfis.F)
with the physical model (physiq.F), that calculates the evolution of some of the
purely physical variables (e.g: surface temperature tsurf) and returns the tenden-
cies (∂X∂t ) arising from the physical part.

4. Integration of the physical variables (subroutine addfi.F)

5. Similarly, calculation and integration of tendencies due to the horizontal dissipation
and the “sponge layer” is done every idissip dynamical time step.

Remark: The physical part can be run separately for a 1-D calculation for a single column
using program testphys1d.F.

2.3 Grid boxes:
Examples of typical grid values are 64x48x25, 64x48x32 or 32x24x25 in longitudexlati-
tudexaltitude. For Mars (radius∼3400 km), a 64x48 horizontal grid corresponds to grid
boxes of the order of 330x220 kilometers near the equator.

2.3.1 Horizontal grids
Dynamics and physics use different grids. Figure 2.2 shows the correspondance and in-
dexing of the physical and dynamical grids as well as the different locations of variables
on these grids. To identify the coordinates of a variable (at one grid point up, down, right
or left) we use coordinates rlonu, rlatu, rlonv, rlatv (longitudes and latitudes, in
radians).

On the dynamical grid, values at i=1 are the same as at i=IM+1 as the latter node is
a redundant point (due to the periodicity in longitude, these two nodes are actualy located
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Figure 2.2: Dynamical and physical grids for a 6 × 7 horizontal resolution. In the dynam-
ics (but not in the physics) winds u and v are on specific staggered grids. Other dynamical
variables are on the dynamical “scalar” grid. The physics uses the same “scalar” grid for all
the variables, except that nodes are indexed in a single vector containing NGRID=2+(JM-
1)×IM points when counting from the north pole.
N.B.: In the Fortran program, the following variables are used: iim=IM ,
iip1=IM+1, jjm=JM , jjp1=JM+1.
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at the same place). Similarly, the extreme j=1 and j=JM+1 nodes on the dynamical grid
(respectively corresponding to North and South poles) are duplicated IM+1 times.
In contrast, the physical grid does not contain redundant points (only one value for each
pole and no extra point along longitudes), as shown in figure 2.2. In practice, computa-
tions relative to the physics are made for a series of ngrid atmospheric columns, where
NGRID=IMx(JM-1)+2.

2.3.2 Vertical grids

[k
m

]

[k
m

]

Figure 2.3: Sketch illustrating the difference between hybrid and non-hybrid coordinates

The GCM was initially programmed using sigma coordinates σ = p/ps (atmospheric
pressure over surface pressure ratio) which had the advantage of using a constant domain
(σ = 1 at the surface and σ = 0 at the top of the atmosphere) whatever the underlying
topography. However, it is obvious that these coordinates significantly disturb the strato-
spheric dynamical representation as the topography is propagated to the top of the model
by the coordinate system. This problem can elegantly be solved by using a hybrid sigma-
P (sima-pressure) hybrid coordinate which is equivalent to using σ coordinates near the
surface and gradualy shifting to purely pressure p coordinates with increasing altitude.
Figure 2.3 illustrates the importance of using these hybrid coordinates compared to simple
σ coordinates. The distribution of the vertical layers is irregular, to enable greater precision
at ground level. In general we use 25 levels to describe the atmosphere to a height of 80 km,
32 levels for simulations up to 120 km, or 50 levels to rise up to thermosphere. The first
layer describes the first few meters above the ground, whereas the upper layers span several
kilometers. Figure 2.4 describes the vertical grid representation and associated variables.
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DYNAMICS PHYSICS
-------- -------
[coordinates ap(),bp()] [pressures]

ap(llm+1)=0,bp(llm+1)=0 **************************** plev(nlayer+1)=0
aps(llm),bps(llm) .. llm .......... nlayer ... play(nlayer)
ap(llm),bp(llm) **************************** plev(nlayer)
aps(llm-1),bps(llm-1) .. llm-1 ........ nlayer-1 . play(nlayer-1)
ap(llm-1),bp(llm-1) **************************** plev(nlayer-1)

: :
: :
: :

aps(2),bps(2) ... 2 ............. 2 .... play(2)
ap(2),bp(2) **************************** plev(2)
aps(1),bps(1) ... 1 ............. 1 .... play(1)
ap(1)=1,bp(1)=0 **********surface*********** plev(1)=Ps

Figure 2.4: Vertical grid description of the llm (or nlayer) atmospheric layers in
the programming code (llm is the variable used in the dynamical part, and nlayer is
used in the physical part). Variables ap, bp and aps, bps indicate the hybrid levels
at the interlayer levels and at middle of the layers respectively. Pressure at the interlayer
is Plev(l) = ap(l) + bp(l) × Ps and pressure in the middle of the layer is defined by
Play(l) = aps(l) + bps(l) × Ps, (where Ps is surface pressure). Sigma coordinates are
merely a specific case of hybrid coordinates such that aps = 0 and bps = P/Ps. Note
that for the hybrid coordinates, bps = 0 above ∼ 50 km, leading to purely pressure levels.
The user can choose whether to run the model using hybrid coordinates or not by setting
variable hybrid in run.def to True or False.

8



2.4 Variables used in the model

2.4.1 Dynamical variables
The dynamical state variables are the atmospheric temperature, surface pressure, winds
and tracer concentrations. In practice, the formulation selected to solve the equations in the
dynamics is optimised using the following less “natural” variables:

- potential temperature θ (teta in the code), linked to temperature T by θ =
T (P/Pref)

−κ with κ = R/Cp (note that κ is called kappa in the dynamical code,
and rcp in the physical code). We take Pref = 610 Pa on Mars.

- surface pressure (ps in the code).

- mass the atmosphere mass in each grid box (masse in the code).

- the covariant meridional and zonal winds ucov and vcov. These variables are linked
to the ”natural” winds by ucov = cu * u and vcov = cv * v, where cu and
cv are constants that only depend on the latitude.

- mixing ratio of tracers in the atmosphere, typically expressed in kg/kg (array q in the
code).

ucov and vcov, “vectorial” variables, are stored on “scalari” grids u and v respec-
tively, in the dynamics (see section 2.2). teta, q, ps, masse, “scalar variables”, are
stored on the “scalar” grid of the dynamics.

2.4.2 Physical variables
In the physics, the state variables of the dynamics are transmitted via an interface that
interpolates the winds on the scalar grid (that corresponds to the physical grid) and trans-
forms the dynamical variables into more “natural” variables. Thus we have winds u and v
(m.s−1), temperature T (K), pressure at the middle of the layers play (Pa) and at interlayers
plev (Pa), tracers q, etc. (kg/kg) on the same grid.

Furthermore, the physics also handle the evolution of the purely physical state variables:

- co2ice CO2 ice on the surface (kg.m−2)

- tsurf surface temperature (K),

- tsoil temperature at different layers under the surface (K),

- emis surface emissivity,

- q2 wind variance, or more precisely the square root of the turbulent kinetic energy.

- qsurf tracer on the surface (kg.m−2).

2.4.3 Tracers
The model may include different types of tracers:

- dust particles, which may have several modes

- chemical species which depict the chemical composition of the atmosphere

- water vapor and water ice particles

- ...
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In the code, all tracers are stored in one three-dimensional array q, the third index
of which corresponds to each individual tracer. In input and output files (“start.nc”,
“startfi.nc”, see Section 4) tracers are stored seperately using their individual names. Load-
ing specific tracers requires that the approriate tracer names are set in the traceur.def
file (see Section 6.2.3), and specific computations for given tracers (e.g.: computing the
water cycle, chemistry in the upper atmosphere, ...) is controled by setting coresponding
options in the callphys.def file (see Section 6.2.2).
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Chapter 3

The physical parameterizations of
the Martian model: some
references

3.1 General
The Martian General Circulation Model uses a large number of physical parameterizations
based on various scientific theories and some generated using specific numerical methods.

A list of these parameterizations is given below, along with the most appro-
priate references for each one. Most of these documents can be consulted at:
http://www-mars.lmd.jussieu.fr/mars/publi.html.

General references: A document attempts to give a complete scientific description of
the current version of the GCM (a version without tracers):

• Forget et al. [1999] (article published in JGR)

3.2 Radiative transfer
The radiative transfer parameterizations are used to calculate the heating and cooling ratios
in the atmosphere and the radiative flux at the surface.

3.2.1 CO2 gas absorption/emission:
Thermal IR radiation

( lwmain)

• New numerical method, solution for the radiative transfer equation: Dufresne et al.
[2005].

• Model validation and inclusion of the “Doppler” effect (but using an old numerical
formulation): Hourdin [1992] (article).

• At high altitudes, parameterization of the thermal radiative transfer (nltecool)
when the local thermodynamic balance is no longer valid (e.g. within 0.1 Pa) :
Lopez-Valverde et al. [2001] : Report for the ESA available on the web as: “CO2
non-LTE cooling rate at 15-um and its parameterization for the Mars atmosphere”.
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Absorption of near-infrared radiation

( nirco2abs)

• Forget et al. [1999]

3.2.2 Absorption/emission and diffusion by dust:
Dust spatial distribution

( aeropacity)

• The method for semi-interactive dust vertical distribution is detailed in Madeleine et
al. [2011]

• Vertical distribution and description of “MGS” and “Viking” scenarios in the ESA re-
port Mars Climate Database V3.0 Detailed Design Document by Lewis et al. (2001),
available on the web.

• For the “MY24”-“MY26” scenarios, the dust distributions were derived from
observations made by TES data is used. See technical note WP12.2.1
of ESA contract Ref ESA 11369/95/NL/JG(SC) ”New dust scenarios for
the Mars Climate Model : Martian Years 24-29”, available online at
http://www-mars.lmd.jussieu.fr/WP2011/wp12.1.1.pdf

Thermal IR radiation

( lwmain)

• Numerical method: Toon et al. [1989]

• Optical properties of dust: Madeleine et al. [2011]

Solar radiation

( swmain)

• Numerical method: Toon et al. [1989]

• Optical properties of dust: see the discussion in Madeleine et al. [2011], which
quotes properties from Wolff et al. [2009].

3.3 Subgrid atmospheric dynamical processes

3.3.1 Turbulent diffusion in the upper layer
( vdifc)

• Implicit numerical scheme in the vertical: see the thesis of Laurent Li (LMD, Uni-
versité Paris 7, 1990), Appendix C2.

• Calculation of the turbulent diffusion coefficients: Forget et al. [1999].

• fluxes in the near-surface layer: Colaitis et al. [2012], techni-
cal note WP13.1.3d of ESA contract Ref ESA 11369/95/NL/JG(SC)
”New Mars Climate Model: d) New convection and boundary layer
schemes and their impact on Mars meteorology”, available online at
http://www-mars.lmd.jussieu.fr/WP2011/wp13.1.3d.pdf
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3.3.2 Convection
( convadj)

• For some details on the convective adjustement, see Hourdin et al. [1993]

• The thermals’ mass flux scheme is described in Colaitis et al. [2012],
technical note WP13.1.3d of ESA contract Ref ESA 11369/95/NL/JG(SC)
”New Mars Climate Model: d) New convection and boundary layer
schemes and their impact on Mars meteorology”, available online at
http://www-mars.lmd.jussieu.fr/WP2011/wp13.1.3d.pdf

3.3.3 Effects of subgrid orography and gravity waves
( calldrag_noro , drag_noro )

See Forget et al. [1999] and Lott and Miller [1997]

3.4 Surface thermal conduction
(soil)

The numerical scheme is described in section 2 of technical note WP11.1
of ESA contract Ref ESA 11369/95/NL/JG(SC) ”Improvement of the high
latitude processes in the Mars Global Climate Model”, available online at
http://www-mars.lmd.jussieu.fr/WP2008/Polar_processes.pdf

3.5 CO2 Condensation
• In Forget et al. [1998] (article published in Icarus):

– Numerical method for calculating the condensation and sublimation levels at
the surface and in the atmosphere ( newcondens) explained in the appendix.

– Description of the numerical scheme for calculating the evolution of CO2 snow
emissivity (co2snow) explained in section 4.1

• Noncondensable gaz treatment: see Forget et al. [2008], available online at
http://www.lpi.usra.edu/meetings/modeling2008/pdf/9106.pdf

• Inclusion of sub-surface water ice table thermal effect, varying albedo of polar
caps and tuning of the CO2 cycle are descibed in technical note WP13.1.3e of
ESA contract Ref ESA 11369/95/NL/JG(SC) ”New Mars Global Climate Model:
e) Improved CO2 cycle and seasonal pressure variations”, available online at
http://www-mars.lmd.jussieu.fr/WP2011/wp13.1.3e.pdf

3.6 Tracer transport and sources
• “Van-Leer” transport scheme used in the dynamical part ( tracvl and vlsplt

in the dynamical part): Hourdin and Armengaud [1999]

• Transport by turbulent diffusion (in vdifc), convection (in convadj), sedi-
mentation ( sedim), dust lifting by winds ( dustlift) : see note “Preliminary
design of dust lifting and transport in the Model” (ESA contract, Work Package 4,
1998, available on the web).

• Dust transport by the “Mass mixing ratio / Number mixing ratio” method for grain
size evolution: see article by Madeleine et al. [2011]
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• Watercycle, see Montmessin et al. [2004] and technical note
WP13.1.3c of ESA contract Ref ESA 11369/95/NL/JG(SC) ”New
Mars Climate Model: c) Inclusion of cloud microphysics, dust scav-
enging and improvement of the water cycle”, available online at
http://www-mars.lmd.jussieu.fr/WP2011/wp13.1.3c.pdf

• Radiative effect of clouds: see technical note WP13.1.3b of ESA contract
Ref ESA 11369/95/NL/JG(SC) ”New Mars Climate Model: b) Radiative ef-
fects of water ice clouds and impact on temperatures”, available online at
http://www-mars.lmd.jussieu.fr/WP2011/wp13.1.3b.pdf

• Chemistry, see Lefèvre et al. [2004] and Lefèvre et al. [2008]

3.7 Thermosphere
• A general description of the model is given in González-Galindo et al. [2009]

• Details on photochemistry and EUV radiative transfer can be found in Angelats i
Coll et al. [2005] and González-Galindo et al. [2005]
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Chapter 4

Running the model: a practice
simulation

This chapter is meant for first time users of the LMD model. As the best introduction to
the model is surely to run a simulation, here we explain how to go about it. All you will
need are files and scripts necessary to build the GCM (all are in the LMDZ.COMMON and
LMDZ.MARS directories which you will download as explained in the next sections) as
well as some initial states to initiate simulations and, if not working on the LMD machines,
some extra datafiles for external forcings (topography, dust scenarios, radiative properties
of dust and water ice, etc.).
Once you have followed the example given below, you can then go on to change the control
parameters and the initial states as you wish. A more detailed description of the model’s
organization as well as associated inputs and outputs are given in sections 5 and 6.

4.1 Obtaining the model
The LMD model project is developped using subversion (svn), the free software versioning
and a revision control system. To obtain (download) the latest version of the model, simply
go to the directory where you want to install the model and use the relevant svn command:
svn checkout http://svn.lmd.jussieu.fr/Planeto/trunk --depth
empty
Then move to the newly generated trunk directory and download (i.e. svn
update) the LMDZ.MARS and LMDZ.COMMON directories (the contents of these
directories are described in chapter 5) with:

svn update LMDZ.MARS LMDZ.COMMON UTIL

If you are not on the LMD machines, you will also need to download a set of files
available online at:
http://www.lmd.jussieu.fr/˜lmdz/planets/mars/datadir
(preserve the file names and subdirectory structure). This directory contains input files
(topography, dust scenarios, radiative properties of scatteres, etc.) which the GCM needs
to run. Where you put your local datadir directory (or whatever name you choose for
this directory) is not critical, as that location can be specified at runtime (see sections 4.6
and 6.2.2).

To run the model, you will also need some initial condition files that can be downloaded
from:
http://www.lmd.jussieu.fr/˜lmdz/planets/mars/starts (see section
4.5).
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4.2 Prerequisites
Before downloading and installing the model, a few prerequisites must be satisfied:

1. The NetCDF library must be installed on your system, using the same compiler
suite (e.g. gfortran and gcc, or ifort and icc) that you will use to compile the model.
The latest version of the NetCDF package is available on the web at the following
address:
https://www.unidata.ucar.edu/software/netcdf

along with instructions for building (or downloading precompiled binaries of) the
library.
Note that we provide in the UTIL directory a Bash script
install netcdf4.0.1.bash which may be used to download and in-
stall version 4.0.1 of the NetCDF library; run install netcdf4.0.1.bash
-h to list available options.

2. Some software to load and display NetCDF files such as

• Ferret http://ferret.wrc.noaa.gov/Ferret

• Panoply https://www.giss.nasa.gov/tools/panoply

• GrAdS http://grads.iges.org/grads

• ncview http://meteora.ucsd.edu/˜pierce/ncview_home_
page.html

among others, should be installed on your system.

3. The fcm utility must be installed on your system. If it is not already so, it may be
obtained by the following svn command line:
svn checkout http://forge.ipsl.jussieu.fr/fcm/svn/PATCHED/FCM_V1.2

And add its bin subdirectory to your PATH environment variable to make the fcm
command available from anywhere.

4. To run at higher resolution (and/or with many tracers) requires some memory, in
particular a reasonable stacksize (which is often quite limited by default). It is thus
highly recommended that you set this value to unlimited via the command

ulimit -s unlimited

before running the GCM, or more pragmatically by adding this instruction to you
.bashrc or .profile so that it is always set.

4.3 Installing the model
Scripts for installation/compilation for the model are in the LMDZ.COMMON directory
These scripts can also run the model on parallel computers.

You should first compile the IOIPSL library which is used1 by the GCM. To do
this go to the LMDZ.COMMON/ioipsl directory. There are a number of exam-
ple scripts (depending on machines and compiler suites to use) to run to download
and install the ioipsl library. As an illustrative example we detail here using the
install ioipsl gfortran.bash script:

1It is in fact for now possible to run the GCM without the IOIPSL library but this requires adding the -io
noioipsl to the makelmdz fcm command line, and might no longer be possible in the future.
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• Edit script install ioipsl gfortran.bash to set the
path to your NetCDF library in the setfolder variable, e.g.
setfolder="/usr/local/netcdf"

• Run the script: ./install_ioipsl_gfortran.bash

• If all went well the script should end with the message
OK: ioipsl library is in followed by the full path to the library
libioipsl.a and companion module files in in subdirectory modipsl/lib

4.4 Compiling the model
The Bash script makelmdz fcm is used to compile the model. It needs not be
modified or adapted to your settings, as all specificities are set in corresponding files
located in the arch subdirectory. For a given machine, e.g. MyMachine, one
should create two files, arch-MyMachine.fcm and arch-MyMachine.path, us-
ing the provided example files to set appropriate compiler options and paths (for in-
stance arch-linux-ifort-para.fcm and arch-linux-ifort-para.path
are adapted to run on local LMD machines).
The makelmdz fcm script has the mandatory option -arch MyArch to specify the arch
files to use (the "MyArch" string should be replaced with the name used for your own arch
files), and multiple options:

• Example 1: Compiling the Martian model at grid resolution 64x48x49

makelmdz_fcm -arch linux-ifort -d 64x48x49 -p mars gcm

• Example 2: Compiling as above but in ”debug” mode

makelmdz_fcm -arch linux-ifort -d 64x48x49 -p mars -debug gcm

• Example 3: Compiling the model to run in parallel (MPI) mode:

makelmdz_fcm -arch linux-ifort -parallel mpi -d 64x48x49 -p mars gcm

This option is different from the -j option that determines the number of cores when
compilation is run in parallel mode.

• For an overview of all available options:

makelmdz_fcm -h

Upon succesfull compilation, the GCM executable is generated in the
LMDZ.COMMON/bin directory with the following naming convention:

gcm_XXX_phymars_YY.e

where XXX is the model resolution (which was specified with the -d argument) and YY
is either seq or para depending on if the model was compiled in serial or parallel mode
(-parallel argument).
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4.5 Input files (initial states and def files)
In directory LMDZ.MARS/deftank you will find some examples of run parameter
files (.def files) which the model needs at runtime. The four files the model requires
(they must be in the same directory as the executable gcm.e) are: run.def (described in
section 6.2) callphys.def (see section 6.2.2), callphys.def, z2sig.def and traceur.def.

The example .def files given in the deftank directory are for various configurations
(e.g. model resolution), copy (and eventually rename these files to match the generic
names) to the directory where you will run the model.

Copy initial condition files start.nc and startfi.nc (described in section 6.2) to the same
directory.
You can extract such files from start archive ‘banks of initial states’ (i.e. files which con-
tain collections of initial states from stndard scenarios and which can thus be used to check
if the model is installed correctly) stored on the LMD website at http://www.lmd.
jussieu.fr/˜lmdz/planets/mars/starts. See section 4.10 for a description
of how to proceed to extract start files from start archives.

4.6 Running the model
Once you have the program gcm.e, input files start.nc startfi.nc, and parameter files
run.def callphys.def traceur.def z2sig.def in the same directory, simply execute the pro-
gram to run2 a simulation:

gcm.e

You might also want to keep all messages and diagnotics written to standard output
(i.e. the screen). You should then redirect the standard output (and error) to some file, e.g.
gcm.out:

gcm.e > gcm.out 2>&1

If you want to use parallel mode (as MPI for instance), you should specify it as follow:

mpirun gcm.e > gcm.out 2>&1

NB: The definition of parallel parameters, such as number of cores, is dependant on the
machine used. You should find examples of scripts within other simulations or machine
user guides.

4.7 Visualizing the output files
As the model runs it generates output files diagfi.nc and stats.nc files. The former contains
instantaneous values of various fields and the later statistics (over the whole run) of some
variables.

2Note that if you ar not running on the LMD machines, you’ll have to modify or add, in file callphys.def,
the line: datadir = /path/to/datafile
Where /path/to/datafile is the full path to the directory which contains the set of files downloaded from:
http://www.lmd.jussieu.fr/˜lmdz/planets/mars/datadir
To ease downloading, a tar file of this directory can be obtained at:
http://www.lmd.jussieu.fr/˜lmdz/planets/mars/datadir.tar.gz
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Figure 4.1: Input/output data
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4.7.1 Using Ferret to visualize outputs
Documentation and tutorials are available on the Ferret official website:

https://ferret.pmel.noaa.gov/Ferret/

If you are a new user, we strongly recommend first spending some time browsing the
official tutorials and documentation to learn more about Ferret capabilities and usage.

Here is asimple illustrative example of how one may visualize temperature for the 5th
layer and 9th time step from a diagfi.nc file:

- Ferret session:

ferret return
yes? use diagfi.nc

yes? show data (displays information about available variables and their di-
mensions)

yes? fill temp[k=5,l=9] (plot temperature map of 5th layer and 9th time
step)

4.7.2 Using GrAds to visualize outputs
If you have never used the graphic software GrAds, we strongly recommend spending half
an hour to familiarize yourself with it by following the demonstration provided for that
purpose. The demo is fast and easy to follow and you will learn the basic commands. To
do this read file

/distrib/local/grads/sample

For example, to visualize files diagfi.nc and stats.nc
NetCDF files diagfi.nc and stats.nc can be accessed directly using GrAdS

thanks to utility program gradsnc, (the user does not need to intervene).

To visualize the temperature in the 5th layer using file diagfi.nc for example:

- GrAdS session:

grads return
return (opens a landscape window)
ga-> sdfopen diagfi.nc

ga-> query file (displays info about the open file, including the name of the
stored variables. Shortcut: q file)

ga-> set z 5 (fixes the altitude to the 5th layer)
ga-> set t 1 (fixes the time to the first stored value)
ga-> query dims (indicates the fixed values for the 4 dimensions. Shortcut: q

dims)
ga-> display temp (displays the temperature card for the 5th layer and for

the first time value stored. Shortcut: d T)
ga-> clear (clears the display. Shortcut: c)
ga-> set gxout shaded (not a contour plot, but a shaded one)
ga-> display temp

ga-> set gxout contour (returns to contour mode to display the levels)
ga-> display temp (superimposes the contours if the clear command is not

used)

20



4.8 Resuming a simulation
At the end of a simulation, the model generates restart files (files restart.nc and
restartfi.nc) which contain the final state of the model. As shown in figure 4.1,
these files (which are of the same format as the start files) can later be used as initial states
for a new simulation.

The restart files just need to be renamed:

mv restart.nc start.nc
mv restartfi.nc startfi.nc

and running a simulation with these will in fact resume the simulation from where the
previous run ended.

4.9 Chain simulations
In practice, we recommend running a chain of simulations lasting several days or longer
(or hundreds of days at low resolution).

To do this, a script named run0 is available in LMDZ.MARS/deftank , which should
be used as follows:

• Set the length of each simulation in run.def (i.e. set the value of nday)

• Set the maximum number of simulations at the beginning of the run0 script (i.e. set
the value of nummax)

• Copy start files start.nc startfi.nc over and rename them start0.nc
startfi0.nc.

• Run script run0

run0 runs a series of simulations that generate the indexed output files (e.g. start1,
startfi1, diagfi1, etc.) including files lrun1, lrun2, etc. containing the redi-
rection of the display and the information about the run.

To carry on simulations after a first series (for example, starting from start5 and
startfi5), just write the index of the initial files (e.g. 5) in the file num run. If
num run exists, the model will start from the index written in num run. If not it will
start from, start0 and startfi0.

NOTE: A script is available for performing annual runs with 12 seasons at 30o solar
longitude as it is in the database (script run mcd, also found in directory deftank). This
script functions with script run0. Just set the number of simulations to 1 in run0. Then copy
run.def into run.def.ref and set nday to 9999 in this file. To start from startN.c,
edit the file run mcd and comment (with a #) the N months already created and describe N
in num run. Then run run mcd.

Some scripts similar to run mcd, but including dedicated handling of job schedulers
for the Occigen and Ciclad supercomputers can be found in the ciclad and occigen
subdirectories of deftank. Check out the README files there.

4.10 Creating and modifying initial states

4.10.1 Using program “newstart”
Several model parameters (for example, the dust optical depth) are stored in the initial
states (NetCDF files start.nc and startfi.nc). To change these parameters, or to
generally change the model resolution, use program newstart.
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This program is also used to create an initial state. In practice, we usually reuse an old
initial state, and modify it using newstart.

Like the GCM, program newstart must be compiled (using the makelmdz fcm script)
at the required grid resolution. For example:

makelmdz_fcm -arch local -d 64x48x25 -p mars newstart

The resulting executable will be created in the LMDZ.COMMON/bin directory, as
newstart_XXX_phymars_seq.e, where XXX is the dimension (values given to the
-d argument) for which newstart was compiled.

Then run the newstart program in a directory containing the start and def file to be used:

newstart.e

The program then gives you two options:

From which kind of files do you want to create newstart and startfi files
0 - from a file start_archive
1 - from files start and startfi

• - Option “1” allows you to read and modify the information needed to create a new
initial state from the files start.nc, startfi.nc

• - Option “0” allows you to read and modify the information needed to cre-
ate a new initial state from file start_archive.nc (whatever the
start_archive.nc grid resolution is).

If you use tracers, make sure that they are taken into account in your start files (either start
or start archive).

Then answer to the various questions in the scroll menu. These questions allow you
to modify the initial state for the following parameters.

First set of questions:
Modifications of variables in tab_cntrl:
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
(3) day_ini : Initial day (=0 at Ls=0)
(19) z0 : default surface roughness (m)
(21) emin_turb : minimal energy (PBL)
(20) lmixmin : mixing length (PBL)
(26) emissiv : ground emissivity
(24 et 25) emisice : CO2 ice max emissivity
(22 et 23) albedice : CO2 ice cap albedos
(31 et 32) iceradius : mean scat radius of CO2 snow
(33 et 34) dtemisice : time scale for snow metamorphism
(27) tauvis : mean dust vis. reference opacity
(35) volcapa : soil volumetric heat capacity
(18) obliquit : planet obliquity (deg)
(17) peri_day : perihelion date (sol since Ls=0)
( ) peri_ls : perihelion date (Ls since Ls=0)
(15) periheli : min. sun-mars dist (Mkm)
(16) aphelie : max. sun-mars dist (Mkm)

Second set of questions :
List of possible changes :
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
flat : no topography ("aquaplanet")
bilball : uniform albedo and thermal inertia
z0 : set a uniform surface roughness length
coldspole : cold subsurface and high albedo at S.Pole
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qname : change tracer name
q=0 : ALL tracer =zero
q=x : give a specific uniform value to one tracer
q=profile : specify a profile for a tracer
freedust : rescale dust to a true value
ini_q : tracers initialization for chemistry and water vapour
ini_q-h2o : tracers initialization for chemistry only
composition : change atm main composition: CO2,N2,Ar, O2,CO
ini_h2osurf : reinitialize surface water ice
noglacier : Remove tropical H2O ice if |lat|<45
watercapn : H20 ice on permanent N polar cap
watercaps : H20 ice on permanent S polar cap
wetstart : start with a wet atmosphere
isotherm : Isothermal Temperatures, wind set to zero
co2ice=0 : remove CO2 polar cap
ptot : change total pressure
therm_ini_s : set soil thermal inertia to reference surface values
subsoilice_n : put deep underground ice layer in northern hemisphere
subsoilice_s : put deep underground ice layer in southern hemisphere
mons_ice : put underground ice layer according to MONS derived data

Program newstart.e creates files restart.nc and restartfi.nc that you gen-
erally need to rename (for instance rename them in start0.nc and startfi0.nc if you want to
use run0 or run mcd, starting with season 0; rename them start.nc and startfi.nc
if you just want to perform one run with gcm.e).

4.10.2 Creating the initial start archive.nc file
Archive file start archive.nc is created from files start.nc and startfi.nc
by program start2archive. Program start2archive compiles to the same grid resolution as
the start.nc and startfi.nc grid resolution. For example:

makelmd_fcm -arch local -d 64x48x25 -p mars start2archive

Then run start2archive.e

You now have a start_archive.nc file for one season that you can use with
newstart. If you want to gather other states obtained at other times of year, rerun
start2archive.e with the start.nc and startfi.nc corresponding to these.
These additional initial states will automatically be added to the start archive.nc
file present in the directory.

4.10.3 Changing the horizontal or vertical grid resolution
To run at a different grid resolution than available initial conditions files, one needs to use
tools newstart and start2archive

For example, to create initial states at grid resolution 32×24×25 from NetCDF files
start and startfi at grid resolution 64×48×32 :

• Create file start_archive.nc with start2archive.e compiled at grid resolu-
tion 64×48×25 using old file z2sig.def used previously

• Create files newstart.nc and newstartfi.nc with newstart.e compiled at
grid resolution 32×24×25, using new file z2sig.def

If you want to create starts files with tracers for 49 layers using a
start archive.nc obtained for 32 layers, do not forget to use the ini_q op-
tion in newstart in order to correctly initialize tracers value for layer 33 to layer 49. You
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just have to answer yes to the question on thermosphere initialization if you want to
initialize the thermosphere part only (l=33 to l=49), and no if you want to initialize tracers
for all layers (l=0 to l=49).
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Chapter 5

Program organization and
compilation script

Currently the model is split between two directories: LMDZ.COMMON and
LMDZ.MARS. The reason for this separation is that all that concerns the dynamics (and
which is common to all planets) is in LMDZ.COMMON whereas all that concerns the
Martian physics is in LMDZ.MARS. For historical reasons, LMDZ.MARS still includes
a dynamical core, but it is strongly recommended to use the LMDZ.COMMON (manda-
tory if you want to run in parallel).
Here is a brief description of the contents of directory LMDZ.COMMON:

libf/ model FORTRAN Source code (.F or .F90)
and include files (.h) organised in sub-directories
(dynamics (dyn3d), filters (filtrez), interface with
physical packages (dynphy_lonlat), ...)

arch/ set of architecture files used by the makelmdz_fcm script

makelmdz_fcm script to use to compile the GCM and related
utilities

bin/ directory where executables generated by the makelmdz_fcm
script will be generated

ioipsl/ directory with scripts usefull to download and build the
IOIPSL library (not needed by the Martian GCM).

And a brief description of the LMDZ.MARS directory contents:

libf/ Model FORTRAN Source code (.F or .F90)
and include files (.h) organised in sub-directories
(physics (phymars), dynamics (dyn3d), filters (filtrez)...)

deftank/ A collection of examples of parameter files required
to run the GCM (run.def, callphys.def, ...)

util/ A set of programs useful for post-processing GCM outputs.

makegcm (Obsolete) script that should be used to compile the GCM as well
as related utilities (newstart, start2archive, testphys1d)

obtain
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5.1 Organization of the model source files
The model source files are stored in various sub directories in directories
LMDZ.COMMON/libf and LMDZ.MARS/libf. These sub-directories correspond to the
different parts of the model:
In LMDZ.COMMON one will find directories relevant for the dynamical core:

grid: mainly made up of ”dimensions.h” file, which contains the parameters that define
the model grid, i.e. the number of points in longitude (iim), latitude (jjm) and altitude
(llm).

dyn3d: contains the dynamical core’s serial code.

dyn3dpar: contains the dynamical core’s parallel code.

dy3d common: contains routine common to serial and parallel dynamical cores.

dynphy lonlat: contains the physics/dynamics interfaces, including in subdirectory
dynphy lonlat/phymars the interface to the Martian physics.

filtrez: contains the longitudinal filter sources applied in the polar latitudes where the
Courant-Friedrich-Levy stability criterion would otherwise be violated.

misc: contains miscelaneous routines, neither specific to dynamics or physics.

phy common: contains routines common to all physics packages (Mars, Venus, ...)

aeronomars, phymars: these are links to the directories of the Mars physics package in
LMDZ.MARS/libf

aeronostd, chimtitan, muphytitan, phystd, phytitan, phyvenus: links, which may be
broken, to other physics packages (Titan, Venus, Generic GCM).

In LMDZ.MARS/libf are subdirectories relevent to the Mars physics package:

dyn3d, grid, filtrez: Obsolete versions of the serial dynamical core (the dynamics pack-
age included in LMDZ.COMMON should be used instead).

phymars: contains the Martian physics routines.

aeronomars: contains the Martian chemistry and thermosphere routines.

5.2 Programming
The model is written in Fortran.

• The program sources are written in “file.F” or “file.F90” files. The extension .F
is the standard extension for fixed-form Fortran and the extension .F90 is for free-
form Fortran. These files must be preprocessed (by aC preprocessor such as (cpp))
before compilation (this behaviour is, for most compilers, implicitly obtained but
using a capital F in the extention of the file names).

• Constants are placed in COMMON declarations, located in the common “include”
files ”file.h” or in relevant modules.

• In general, variables should be passed from subroutine to subroutine as arguments
(and never as COMMON blocks).

• In some parts of the code, for “historical” reasons, the following rule is sometimes
used: in the subroutine, the variables (ex: name) passed as an argument by the
calling program are given the prefix p (ex: pname) while the local variables are
given the prefix z (ex: zname). As a result, several variables change their prefix
(and thus their name) when passing from a calling subroutine to a called subroutine.
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Figure 5.1: Organigram of subroutine function physiq.F

5.3 Model organization
Figure 5.1 describes the main subroutines called by physiq.F.

5.4 Compiling the model
Technically, the model is compiled using the Unix utility make. The makelmdz fcm
utility script recreates the makefile file when necessary, for example, when a source file
has been added or removed since the last compilation.
None of this is visible to the user. To (re-)compile the model just run the command

makelmdz_fcm

with adequate options (e.g. makelmdz fcm -arch local -d 62x48x32 -p
mars gcm), as described in section 4.4.
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Help manual for the makelmdz fcm script Use the ”-h” option to learn about possible
options:

makelmdz_fcm -h
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Chapter 6

Input/Output

6.1 NetCDF format
GCM input/output data are written in NetCDF format (Network Common Data Form).
NetCDF is an interface used to store and access geophysical data, and a library that pro-
vides an implementation of this interface. The NetCDF library also defines a machine-
independent format for representing scientific data. Together, the interface, library and
format support the creation, access and sharing of scientific data. NetCDF was developed
at the Unidata Program Center in Boulder, Colorado. The freely available source can be
obtained from the Unidata website:

http://www.unidata.ucar.edu/software/netcdf

A data set in NetCDF format is a single file, as it is self-descriptive.

6.1.1 NetCDF text representation: ncdump
This utility is included in the NetCDF library. It generates the CDL representation (text
format of the file content) to the standard output from the NetCDF file specified as input.

Main options for the ncdump command

ncdump diagfi.nc

dump contents of NetCDF file diagfi.nc to standard output (i.e. the screen).

ncdump -c diagfi.nc

Displays the coordinate variable values (variables which are also dimensions), as well as
the declarations, variables and attribute values. The values of the non-coordinate variable
data are not displayed at the output.

ncdump -h diagfi.nc

Shows only the informative header of the file, which is the declaration of the dimensions,
variables and attributes, but not the values of these variables. The output is identical to that
in option -c except for the fact that the coordinated variable values are not included.

ncdump -v var1,...,varn diagfi.nc

The output includes the specific variable values, as well as all the dimensions, variables
and attributes. More that one variable can be specified in the list following this option.
The list must be a simple argument for the command, and must not contain any spaces. If
no variable is specified, the command displays all the values of the variables in the file by
default.
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Figure 6.1: Example of temperature data at a given time using GrADS visualization

6.1.2 Graphic visualization of NetCDF files using GrAds
GrAdS (The Grid Analysis and Display System) is a graphic software developed by Brian
Doty at the ”Center for Ocean-Land-Atmosphere (COLA)”.

One of its functions is to enable data stored in NetCDF format to be visualized directly.
In figure 6.1 for example, we can see the GrADS visualization of the temperature data at
a given moment. However, unlike NetCDF, GrADS only recognizes files where all the
variables are stored on the same horizontal grid. These variables can be in 1, 2, 3 or 4
dimensions (X,Y,Z and t).

GrADS can also be obtained from:

http://grads.iges.org/grads/

6.1.3 Graphic visualization of NetCDF files using Ferret
Ferret may also be used to visualize the contents of NetCDF files. Download intruction and
documentation are available from the official website:

https://ferret.pmel.noaa.gov/Ferret/

6.2 Input and parameter files
The (3D version of the) GCM requires the input of two initialization files (in NetCDF
format):
-start.nc contains the initial states of the dynamical variables.
-startfi.nc contains the initial states of the physical variables.
Note that collections of initial states can be retreived at:
http://www.lmd.jussieu.fr/˜lmdz/planets/mars/starts
Extracting start.nc and startfi.nc from these archived requires using program
newstart, as described in section 4.10.

To run, the GCM also requires the four following parameter files (ascii text files):
-run.def the parameters of the dynamical part of the program, and the temporal integration
of the model.
-callphys.def the parameters for calling the physical part.
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-traceur.def the names of the tracer to use.
-z2sig.def the vertical distribution of the atmospheric layers.
Examples of these parameter files can be found in the LMDZ.MARS/deftank directory.

6.2.1 run.def
A typical run.def file is given as an example below. The choice of variables to be set
is simple (e.g. nday number of modeled days to run), while the others do not need to be
changed for normal use.
The format of the run.def file is quite straightforward (and flexible): values given to
parameters must be given as:

parameter = value

Any blank line or line beginning with symbol # is a comment, and instruction lines may
be written in any order. Moreover, not specifying a parameter/value set (e.g. deleting it or
commenting it out) means you want the GCM to use a default built-in value. Additionally,
one may use a specific keyword INCLUDEDEF to specify another (text) file in which to
also read values of parameters; e.g.:

INCLUDEDEF=callphys.def

Here are some details about some of the parameters which may be set in run.def:

• day step, the number of dynamical steps per day to use for the time integration. This
needs to be large enough for the model to remain stable (this is related to the CFL sta-
bility criterion which essentially depends on the horizontal resolution of the model).
On Mars, in theory, the GCM can run with day step=480 using the 64×48 grid,
but model stability improves when this number is higher: day step=960 is recom-
mended when using the 64×48 grid. According to the CFL criterion, day step
should vary in proportion with the resolution: for example day step=480 using
the 32×24 horizontal resolution. Note that day step must also be divisible by
iperiod.

• tetagdiv, tetagrot, tetatemp control the dissipation intensity. It is better to limit the
dissipation intensity (tetagdiv, tetagrot, tetatemp should not be too low). However
the model diverges if tetagdiv, tetagrot, tetatemp are too high, especially if there is a
lot of dust in the atmosphere.
Example used with nitergdiv=1 and nitergrot=niterh=2 :
- using the 32×24 grid tetagdiv=6000 s ; tetagrot=tetatemp=30000 s
- using the 64×48 grid: tetagdiv=2500 s ; tetagrot=tetatemp=5000 s

• idissip is the time step used for the dissipation: dissipation is computed and added
every idissip dynamical time step. If idissip is too short, the model waste
time in these calculations. But if idissip is too long, the dissipation will not be
parametrized correctly and the model will be more likely to diverge. A check
must be made, so that: idissip < tetagdiv×daystep/88775 (same rule for
tetagrot and tetatemp). This is tested automatically during the run.

• iphysiq is the time step used for the physics: physical tendencies are computed every
iphysiq dynamical time step. In practice, we usually set the physical time step to
be of the order of half an hour. We thus generally set iphysiq= day step/48

Example of run.def file:

#
#-----------------------------------------------------------------------
#GCM run control parameters:
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#---------------------------

# planet type
planet_type=mars

# Number of days to run model for
nday=9999

# Number of dynamical steps per day (must be a multiple of iperiod)
day_step = 960

# Apply a Matsuno step every iperiod dynamical step
iperiod=5

# Control output information in the dynamics every iconser dynamical steps
iconser=120

# Apply dissipation every idissip dynamical steps
idissip=1

# dissipation operator to use (star or non-star)
lstardis=.true.

# use hybrid vertical coordinate (else will use sigma levels)
hybrid=.true.

# iterate lateral dissipation operator gradiv nitergdiv times
nitergdiv=1

# iterate lateral dissipation operator nxgradrot nitergrot times
nitergrot=2

# iterate lateral dissipation operator divgrad niterh times
niterh=2

# time scale (s) for shortest wavelengths for u,v (gradiv)
tetagdiv= 2500.

# time scale (s) for shortest wavelengths for u,v (nxgradrot)
tetagrot=5000.

# time scale (s) for shortest wavelengths for h (divgrad)
tetatemp=5000.

# multiplicative constants for dissipation with altitude:
# coefficient for middle atmosphere (˜20-70km)
dissip_fac_mid = 3
# coefficient for upper atmosphere (˜100km+)
dissip_fac_up = 30

# coefficient for gamdissip
coefdis=0.

# time marching scheme (Matsuno if purmats is true, else Matsuno-Leapfrog)
purmats=.false.

# run with (true) or without (false) physics
physic=.true.

# call physics every iphysiq dynamical steps
iphysiq=10

# Use a regular grid
grireg=.true.

# Output in diagfi file every ecritphy dynamical steps
ecritphy=240
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# longitude (degrees) of zoom center
clon=63.

# latitude (degrees) of zoom center
clat=0.

# enhancement factor of zoom, along longitudes
grossismx=1.

# enhancement factor of zoom, along latitudes
grossismy=1.

# Use an hyperbolic function f(y) if .true., else use a sine
fxyhypb=.false.

# extention along longitudes of zoom region (fraction of global domain)
dzoomx= 0.

# extention along latitudes of zoom region (fraction of global domain)
dzoomy=0.

# zoom stiffness along longitudes
taux=2.

# zoom stiffness along latitudes
tauy=2.

# Fonction f(y) as y = Sin(latitude) if = .true. , else y = latitude
ysinus= .false.

# Use a sponge layer
callsponge = .true.

# Sponge layer extends over topmost nsponge layers
nsponge = 3

# Sponge: mode0(u=v=0), mode1(u=umoy,v=0), mode2(u=umoy,v=vmoy)
mode_sponge= 3

# Sponge layer time scale (s): tetasponge
tetasponge = 30000

# some definitions for the physics, in file ’callphys.def’
INCLUDEDEF=callphys.def

6.2.2 callphys.def
The callphys.def file (along the same format as the run.def file) contains parame-
ter/value sets for the physics.

Example of callphys.def file:

##General options
##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
#Run with or without tracer transport ?
tracer=.true.

#Directory where external input files are:
datadir=/users/lmdz/WWW/planets/mars/datadir

#Diurnal cycle ? if diurnal=False, diurnal averaged solar heating
diurnal=.true.

#Seasonal cycle ? if season=False, Ls stays constant, to value set in "start"
season = .true.
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#write some more output on the screen ?
lwrite = .false.

#Save statistics in file "stats.nc" ?
callstats =.true.

#Save EOF profiles in file "profiles" for Climate Database?
calleofdump = .false.

## Dust scenario. Used if the dust is prescribed (i.e. if tracer=F or active=F)
## ˜˜˜˜˜˜˜˜˜˜˜˜˜
# =1 Dust opt.deph read in startfi; =2 Viking scenario; =3 MGS scenario,
# =4 Mars Year 24 from TES assimilation (old version of MY24; dust_tes.nc file)
# =6 "cold" (low dust) scenario ; =7 "warm" (high dust) scenario
# =8 "climatology" (our best guess of a typical Mars year) scenario
# =24 Mars Year 24 ; =25 Mars Year 25 (year with a global dust storm) ; ...
# =30 Mars Year 30
iaervar = 24
# Dust opacity at 610 Pa (when constant, i.e. for the iaervar=1 case)
tauvis=0.1
# Dust vertical distribution:
# (=0: old distrib. (Pollack90), =1: top set by "topdustref",
# =2: Viking scenario; =3 MGS scenario)
iddist = 3
# Dust top altitude (km). (Matters only if iddist=1)
topdustref = 55.

## Physical Parameterizations :
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# call radiative transfer ?
callrad = .true.
# call NLTE radiative schemes ? matters only if callrad=T
callnlte = .true.
# NLTE 15um scheme to use.
# 0-> Old scheme, static oxygen
# 1-> Old scheme, dynamic oxygen
# 2-> New scheme
nltemodel = 2
# call CO2 NIR absorption ? matters only if callrad=T
callnirco2 = .true.
# NIR NLTE correction ? matters only if callnirco2=T
nircorr=1
# call turbulent vertical diffusion ?
calldifv = .true.
# call convective adjustment ?
calladj = .true.
# Thermals
calltherm = .true.
callrichsl = .true.
# call CO2 condensation ?
callcond =.true.
# call thermal conduction in the soil ?
callsoil = .true.
# call Lott’s gravity wave/subgrid topography scheme ?
calllott = .true.
# Impose polar cap surface albedos as observed by TES?
TESicealbedo = .true.
## Coefficient for Northern cap albedoes
TESice_Ncoef=1.6
## Coefficient for Southern cap albedoes
TESice_Scoef=1.6

## Radiative transfer options :
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# the rad.transfer is computed every "iradia" physical timestep
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iradia = 1
# Output of the exchange coefficient mattrix ? for diagnostic only
callg2d = .false.
# Rayleigh scattering : (should be .false. for now)
rayleigh = .false.

## Tracer (dust water, ice and/or chemical species) options (used if tracer=T):
## ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# DUST: Transported dust ? (if >0, use ’dustbin’ dust bins)
dustbin = 2
# DUST: Radiatively active dust ? (matters if dustbin>0)
active = .true.
# DUST: use mass and number mixing ratios to predict dust size ?
doubleq = .true.
# DUST: lifted by GCM surface winds ?
lifting = .true.
# DUST: lifted by dust devils ?
callddevil = .false.
# DUST: Scavenging by H2O/CO2 snowfall ?
scavenging = .true.
# DUST/WATERICE: Gravitationnal sedimentation ?
sedimentation = .true.
# WATERICE: Radiatively active transported atmospheric water ice ?
activice = .true.
# WATER: Compute water cycle
water = .true.
# WATER: Microphysical scheme for water-ice clouds?
microphys = .true.
# WATER: parameter contact
mteta = 0.95
# WATER: Effective variance for sedimentation for the log-normal
# distribution of ice particles ?
nuice_sed=0.1
# WATER: current permanent caps at both poles. True IS RECOMMENDED
# (with .true., North cap is a source of water and South pole
# is a cold trap)
caps = .true.
# WATER: Water ice albedo ?
albedo_h2o_ice = 0.35
# WATER: Water ice thermal inertia
inert_h2o_ice = 800
# WATER: Frost thickness threshold for albedo
frost_albedo_threshold = 0.005
# PHOTOCHEMISTRY: include chemical species
photochem = .true.

# SCATTERERS: set number of scatterers. must be compliant with preceding options.
naerkind = 2

## Thermospheric options (relevant if tracer=T) :
##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
# call thermosphere ?
callthermos = .true.
# WATER: included without cycle (only if water=.false.)
thermoswater = .false.
# call thermal conduction ? (only if callthermos=.true.)
callconduct = .true.
# call molecular viscosity ? (only if callthermos=.true.)
callmolvis = .true.
# call molecular diffusion ? (only if callthermos=.true.)
callmoldiff = .true.
# call thermospheric photochemistry ? (only if callthermos=.true.)
thermochem = .true.
# call EUV heating ? (only if callthermos=.true.)
calleuv=.true.
#Method to include solar variability?
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#0-> Fixed EUV input 1-> Variability with E10.7 as observed
solvarmod=0
# fixed E10.7 value (for solvarmod=0)
# (min=80 , ave=140, max=320)
fixed_euv_value=140
#Solar variability as observed for MY? (must be between MY23 and MY32)
# (only matters if solvarmod=1)
solvaryear=24
# value for the UV heating efficiency
##(experimental values between 0.19 and 0.23, lower values may
## be used to compensate for low 15 um cooling)
euveff = 0.21

6.2.3 traceur.def
Tracers in input (start.nc and startfi.nc) and output files (restart.nc and
restartfi.nc) are stored using individual tracer names (e.g. co2 for CO2 gas,
h2o vap for water vapour, h2o ice for water ice, ...).
The first line of the traceur.def file (an ASCII file) must contain the number of
tracers to load and use (this number should be the same as given to the -t option of the
makegcm script when the GCM was compiled), followed by the tracer names (one per
line). Note that if the corresponding tracers are not found in input files start.nc and
startfi.nc, then the tracer is initialized to zero.

Example of a traceur.def file: with CO2, dust distribution moments, (water ice) cloud con-
densation nuclei moments, water vapour and water ice tracers

7
co2
dust_number
dust_mass
ccn_number
ccn_mass
h2o_ice
h2o_vap

6.2.4 z2sig.def
The Z2sig.def file contains the pseudo-altitudes (in km) at which the user wants to set
the vertical levels.
Note that levels should be unevenly spread, with a higher resolution near the surface in
order to capture the rapid variations of variables there. It is recommended to use the
altitude levels as set in the z2sig.def file provided in the deftank directory.

Example of z2sig.def file (this version for 49 layers between 0 and 300 km):

10.00000 H: atmospheric scale height (km) (used as a reference only)
0.0020736
0.015735
0.0600151
0.163344
0.36358
0.708007
1.25334
2.06571
3.2
4.7
6.6
8.9
11.6
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14.7
18.2
22.1
26.4
31.1
36.2
41.7
47.6
53.9
60.55
67.5
74.5
81.5
88.5
95.5
102.5
109.5
116.5
123.5
130.5
137.5
144.5
151.5
158.5
165.5
172.5
179.5
186.5
193.5
200.5
207.5
214.5
221.5
228.5
235.5
242.5
249.5

6.2.5 Initialization files: start and startfi
Files start.nc and startfi.nc, like all the NetCDF files of the GCM, are con-
structed on the same model (see NetCDF file composition, figure 6.2). They contain:
- a header with a “control” variable followed by a series of variables defining the (physical
and dynamical) grids
- a series of non temporal variables that give information about surface conditions on the
planet.
- a “time” variable giving the values of the different instants at which the temporal
variables are stored (a single time value (t=0) for start, as it describes the dynamical initial
states, and no time values for startfi, as it describes only a physical state).

To dump (in text format) the contents of a start.nc file using the ncdump
command:

ncdump -h start.nc

netcdf start {
dimensions:

index = 100 ;
rlonu = 33 ;
latitude = 25 ;
longitude = 33 ;
rlatv = 24 ;
altitude = 18 ;
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Figure 6.2: Organization of NetCDF files

interlayer = 19 ;
Time = UNLIMITED ; // (1 currently)

variables:
float controle(index) ;

controle:title = "Parametres de controle" ;
float rlonu(rlonu) ;

rlonu:title = "Longitudes des points U" ;
float rlatu(latitude) ;

rlatu:title = "Latitudes des points U" ;
float rlonv(longitude) ;

rlonv:title = "Longitudes des points V" ;
float rlatv(rlatv) ;

rlatv:title = "Latitudes des points V" ;
float ap(interlayer) ;

ap:title = "Coef A: hybrid pressure levels" ;
float bp(interlayer) ;

bp:title = "Coef B: hybrid sigma levels" ;
float aps(altitude) ;

aps:title = "Coef AS: hybrid pressure at midlayers" ;
float bps(altitude) ;
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bps:title = "Coef BS: hybrid sigma at midlayers" ;
float presnivs(altitude) ;
float latitude(latitude) ;

latitude:units = "degrees_north" ;
latitude:long_name = "North latitude" ;

float longitude(longitude) ;
longitude:long_name = "East longitude" ;
longitude:units = "degrees_east" ;

float altitude(altitude) ;
altitude:long_name = "pseudo-alt" ;
altitude:units = "km" ;
altitude:positive = "up" ;

float cu(latitude, rlonu) ;
cu:title = "Coefficient de passage pour U" ;

float cv(rlatv, longitude) ;
cv:title = "Coefficient de passage pour V" ;

float aire(latitude, longitude) ;
aire:title = "Aires de chaque maille" ;

float phisinit(latitude, longitude) ;
phisinit:title = "Geopotentiel au sol" ;

float Time(Time) ;
Time:title = "Temps de simulation" ;
Time:units = "days since 1-01-01 00:00:00" ;

float ucov(Time, altitude, latitude, rlonu) ;
ucov:title = "Vitesse U" ;

float vcov(Time, altitude, rlatv, longitude) ;
vcov:title = "Vitesse V" ;

float teta(Time, altitude, latitude, longitude) ;
teta:title = "Temperature" ;

float h2o_ice(Time, altitude, latitude, longitude) ;
h2o_ice:title = "Traceur h2o_ice" ;

float h2o_vap(Time, altitude, latitude, longitude) ;
h2o_vap:title = "Traceur h2o_vap" ;

float masse(Time, altitude, latitude, longitude) ;
masse:title = "C est quoi ?" ;

float ps(Time, latitude, longitude) ;
ps:title = "Pression au sol" ;

// global attributes:
:title = "Dynamic start file" ;

}

List of contents of a startfi.nc file:

ncdump -h startfi.nc

netcdf startfi {
dimensions:

index = 100 ;
physical_points = 738 ;
subsurface_layers = 18 ;
nlayer_plus_1 = 19 ;
number_of_advected_fields = 3 ;

variables:
float controle(index) ;

controle:title = "Control parameters" ;
float soildepth(subsurface_layers) ;

soildepth:title = "Soil mid-layer depth" ;
float longitude(physical_points) ;

longitude:title = "Longitudes of physics grid" ;
float latitude(physical_points) ;

latitude:title = "Latitudes of physics grid" ;
float area(physical_points) ;

area:title = "Mesh area" ;
float phisfi(physical_points) ;

phisfi:title = "Geopotential at the surface" ;
float albedodat(physical_points) ;
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albedodat:title = "Albedo of bare ground" ;
float ZMEA(physical_points) ;

ZMEA:title = "Relief: mean relief" ;
float ZSTD(physical_points) ;

ZSTD:title = "Relief: standard deviation" ;
float ZSIG(physical_points) ;

ZSIG:title = "Relief: sigma parameter" ;
float ZGAM(physical_points) ;

ZGAM:title = "Relief: gamma parameter" ;
float ZTHE(physical_points) ;

ZTHE:title = "Relief: theta parameter" ;
float co2ice(physical_points) ;

co2_ice:title = "CO2 ice cover" ;
float inertiedat(subsurface_layers, physical_points) ;

inertiedat:title = "Soil thermal inertia" ;
float tsurf(physical_points) ;

tsurf:title = "Surface temperature" ;
float tsoil(subsurface_layers, physical_points) ;

tsoil:title = "Soil temperature" ;
float emis(physical_points) ;

emis:title = "Surface emissivity" ;
float q2(nlayer_plus_1, physical_points) ;

q2:title = "pbl wind variance" ;
float h2o_ice(physical_points) ;

h2o_ice:title = "tracer on surface" ;

// global attributes:
:title = "Physics start file" ;

}

Physical and dynamical headers There are two types of headers: one for the physical
headers, and one for the dynamical headers. The headers always begin with a “control’
variable (described below), that is allocated differently in the physical and dynamical
parts. The other variables in the header concern the (physical and dynamical) grids. They
are the following:

the horizontal coordinates
- rlonu, rlatu, rlonv, rlatv for the dynamical part,
- lati, long for the physical part,

the coefficients for passing from the physical grid to the dynamical grid
- cu,cv only in the dynamical header

and finally, the grid box areas
- aire for the dynamical part,
- area for the physical part.

Surface conditions The surface conditions are mostly given in the physical NetCDF
files by variables:
- phisfi for the initial state of surface geopotential,
- albedodat for the bare ground albedo,
- inertiedat for the surface thermal inertia,
- zmea, zstd, zsig, zgam and zthe for the subgrid scale topography.

For the dynamics:
- physinit for the initial state of surface geopotential
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Remark: variables phisfi and physinit contain the same information (surface geopotential),
but phisfi gives the geopotential values on the physical grid, while physinit give the values
on the dynamical grid.

Physical and dynamical state variables To save disk space, the initialization files store
the variables used by the model, rather than the “natural” variables.

For the dynamics:

- ucov and vcov the covariant winds
These variables are linked to the “natural” winds by
ucov = cu * u and vcov = cv * v

- teta the potential temperature,
or more precisely, the potential enthalpy linked to temperature T by θ =

T
(

P
Pref

)−K

- the tracers,

- ps surface pressure.

- masse the atmosphere mass in each grid box.

“Vectorial” variables ucov and vcov are stored on “staggered” grids u and v respectively
(in the dynamics) (see section 2.2).
Scalar variables h, q (tracers), ps, masse are stored on the “scalar” grid of the dynamical
part.

For the physics:

- co2ice surface dry ice,

- tsurf surface temperature,

- tsoil temperatures at different layers under the surface,

- emis surface emissivity,

- q2 wind variance,
or more precisely, the square root of the turbulent kinetic energy.

- the surface “tracer” budget (kg.m−2),

All these variables are stored on the “physical” grid (see section 2.2).

The “control” array Both physical and dynamical headers of the GCM NetCDF files
start with a controle variable. This variable is an array of 100 reals (the vector called
tab cntrl in the program), which contains the program control parameters. Parameters
differ between the physical and dynamical sections, and examples of both are listed below.
The contents of table tab cntrl can also be checked with the command ncdump -ff
-v controle.

The ”control” array in the header of a dynamical NetCDF file: start
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tab_cntrl(1) = FLOAT(iim) ! number of nodes along longitude
tab_cntrl(2) = FLOAT(jjm) ! number of nodes along latitude
tab_cntrl(3) = FLOAT(llm) ! number of atmospheric layers
tab_cntrl(4) = FLOAT(idayref) ! initial day
tab_cntrl(5) = rad ! radius of the planet
tab_cntrl(6) = omeg ! rotation of the planet (rad/s)
tab_cntrl(7) = g ! gravity (m/s2) ˜3.72 for Mars
tab_cntrl(8) = cpp
tab_cntrl(9) = kappa ! = r/cp
tab_cntrl(10) = daysec ! lenght of a sol (s) ˜88775
tab_cntrl(11) = dtvr ! dynamical time step (s)
tab_cntrl(12) = etot0 ! total energy
tab_cntrl(13) = ptot0 ! total pressure
tab_cntrl(14) = ztot0 ! total enstrophy
tab_cntrl(15) = stot0 ! total enthalpy
tab_cntrl(16) = ang0 ! total angular momentum
tab_cntrl(17) = pa
tab_cntrl(18) = preff ! reference pressure (Pa)
tab_cntrl(19) = clon ! longitude of center of zoom
tab_cntrl(20) = clat ! latitude of center of zoom
tab_cntrl(21) = grossismx ! zooming factor, along longitude
tab_cntrl(22) = grossismy ! zooming factor, along latitude

tab_cntrl(24) = dzoomx ! extention (in longitude) of zoom
tab_cntrl(25) = dzoomy ! extention (in latitude) of zoom

tab_cntrl(27) = taux ! stiffness factor of zoom in longitude
tab_cntrl(28) = tauy ! stiffness factor of zoom in latitude

The ”controle” array in the header of a physical NetCDF file: startfi.nc

c Informations on the physics grid
tab_cntrl(1) = float(ngridmx) ! number of nodes on physics grid
tab_cntrl(2) = float(nlayermx) ! number of atmospheric layers
tab_cntrl(3) = day_ini + int(time) ! initial day
tab_cntrl(4) = time -int(time) ! initiale time of day

c Informations about Mars, used by dynamics and physics
tab_cntrl(5) = rad ! radius of Mars (m) ˜3397200
tab_cntrl(6) = omeg ! rotation rate (rad.s-1)
tab_cntrl(7) = g ! gravity (m.s-2) ˜3.72
tab_cntrl(8) = mugaz ! Molar mass of the atmosphere (g.mol-1) ˜43.49
tab_cntrl(9) = rcp ! = r/cp ˜0.256793 (=kappa dans dynamique)
tab_cntrl(10) = daysec ! length of a sol (s) ˜88775

tab_cntrl(11) = phystep ! time step in the physics
tab_cntrl(12) = 0.
tab_cntrl(13) = 0.

c Informations about Mars, only for physics
tab_cntrl(14) = year_day ! length of year (sols) ˜668.6
tab_cntrl(15) = periheli ! min. Sun-Mars distance (Mkm) ˜206.66
tab_cntrl(16) = aphelie ! max. SUn-Mars distance (Mkm) ˜249.22
tab_cntrl(17) = peri_day ! date of perihelion (sols since N. spring)
tab_cntrl(18) = obliquit ! Obliquity of the planet (deg) ˜23.98

c Boundary layer and turbulence
tab_cntrl(19) = z0 ! surface roughness (m) ˜0.01
tab_cntrl(20) = lmixmin ! mixing length ˜100
tab_cntrl(21) = emin_turb ! minimal energy ˜1.e-8

c Optical properties of polar caps and ground emissivity
tab_cntrl(22) = albedice(1) ! Albedo of northern cap ˜0.5
tab_cntrl(23) = albedice(2) ! Albedo of southern cap ˜0.5
tab_cntrl(24) = emisice(1) ! Emissivity of northern cap ˜0.95
tab_cntrl(25) = emisice(2) ! Emissivity of southern cap ˜0.95
tab_cntrl(26) = emissiv ! Emissivity of martian soil ˜.95
tab_cntrl(31) = iceradius(1) ! mean scat radius of CO2 snow (north)
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tab_cntrl(32) = iceradius(2) ! mean scat radius of CO2 snow (south)
tab_cntrl(33) = dtemisice(1) ! time scale for snow metamorphism (north)
tab_cntrl(34) = dtemisice(2) ! time scale for snow metamorphism (south)

c dust aerosol properties
tab_cntrl(27) = tauvis ! mean visible optical depth

tab_cntrl(28) = 0.
tab_cntrl(29) = 0.
tab_cntrl(30) = 0.

! Soil properties:
tab_cntrl(35) = volcapa ! soil volumetric heat capacity
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6.3 Output files

6.3.1 NetCDF restart files - restart.nc and restartfi.nc
These files are of the exact same format as start.nc and startfi.nc

6.3.2 NetCDF file - diagfi.nc
NetCDF file diagfi.nc stores the instantaneous physical variables throughout the sim-
ulation at regular intervals (set by the value of parameter ecritphy in parameter file
run.def; note that ecritphy should be a multiple of iphysiq as well as a divisor of
day step).
Any variable from any sub-routine of the physics can be stored by calling subroutine
writediagfi. Moreover, one may add a diagfi.def file containing only the names
of variables to output (one per line) in the directory where the GCM is run, in order to have
only thoses listed outputed in the diagfi.nc file.

Illustrative example of the contents of a diagfi.nc file (using ncdump):
ncdump -h diagfi.nc

netcdf diagfi {
dimensions:

Time = UNLIMITED ; // (12 currently)
index = 100 ;
rlonu = 65 ;
latitude = 49 ;
longitude = 65 ;
rlatv = 48 ;
interlayer = 26 ;
altitude = 25 ;
subsurface_layers = 18 ;

variables:
float Time(Time) ;

Time:long_name = "Time" ;
Time:units = "days since 0000-00-0 00:00:00" ;

float controle(index) ;
controle:title = "Control parameters" ;

float rlonu(rlonu) ;
rlonu:title = "Longitudes at u nodes" ;

float latitude(latitude) ;
latitude:units = "degrees_north" ;
latitude:long_name = "North latitude" ;

float longitude(longitude) ;
longitude:long_name = "East longitude" ;
longitude:units = "degrees_east" ;

float altitude(altitude) ;
altitude:long_name = "pseudo-alt" ;
altitude:units = "km" ;
altitude:positive = "up" ;

float rlatv(rlatv) ;
rlatv:title = "Latitudes at v nodes" ;

float aps(altitude) ;
aps:title = "hybrid pressure at midlayers" ;
aps:units = "Pa" ;

float bps(altitude) ;
bps:title = "hybrid sigma at midlayers" ;
bps:units = "" ;

float ap(interlayer) ;
ap:title = "hybrid pressure at interlayers" ;
ap:units = "Pa" ;

float bp(interlayer) ;
bp:title = "hybrid sigma at interlayers" ;
bp:units = "" ;

44



float soildepth(subsurface_layers) ;
soildepth:long_name = "Soil mid-layer depth" ;
soildepth:units = "m" ;
soildepth:positive = "down" ;

float cu(latitude, rlonu) ;
cu:title = "Conversion coefficients cov <--> natural" ;

float cv(rlatv, longitude) ;
cv:title = "Conversion coefficients cov <--> natural" ;

float aire(latitude, longitude) ;
aire:title = "Mesh area" ;

float phisinit(latitude, longitude) ;
phisinit:title = "Geopotential at the surface" ;

float emis(Time, latitude, longitude) ;
emis:title = "Surface emissivity" ;
emis:units = "w.m-1" ;

float tsurf(Time, latitude, longitude) ;
tsurf:title = "Surface temperature" ;
tsurf:units = "K" ;

float ps(Time, latitude, longitude) ;
ps:title = "surface pressure" ;
ps:units = "Pa" ;

float co2ice(Time, latitude, longitude) ;
co2ice:title = "co2 ice thickness" ;
co2ice:units = "kg.m-2" ;

float mtot(Time, latitude, longitude) ;
mtot:title = "total mass of water vapor" ;
mtot:units = "kg/m2" ;

float icetot(Time, latitude, longitude) ;
icetot:title = "total mass of water ice" ;
icetot:units = "kg/m2" ;

float tauTES(Time, latitude, longitude) ;
tauTES:title = "tau abs 825 cm-1" ;
tauTES:units = "" ;

float h2o_ice_s(Time, latitude, longitude) ;
h2o_ice_s:title = "surface h2o_ice" ;
h2o_ice_s:units = "kg.m-2" ;

}

The structure of the file is thus as follows:

- the dimensions

- variable “time” containing the time of the timestep stored in the file (in Martian days
since the beginning of the run)

- variable “control” containing many parameters, as described above.

- from “ rhonu” to ’phisinit”: a list of data describing the geometrical coordinates of the
data file, plus the surface topography

- finally, all the 2D or 3D data stored in the run.

6.3.3 Stats files
As an option (stats must be set to .true. in callphys.def), the model can
accumulate any variable from any subroutine of the physics by calling subroutine wstat

This save is performed at regular intervals 12 times a day. An average of the daily
evolutions over the whole run is calculated (for example, for a 10 day run, the averages
of the variable values at 0hTU, 2hTU, 4hTU,...24hTU are calculated), along with RMS
standard deviations of the variables. This ouput is given in file stats.nc.

Illustrative example of the contents of a stats.nc file (using ncdump):
ncdump -h stats.nc
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netcdf stats {
dimensions:

latitude = 49 ;
longitude = 65 ;
altitude = 25 ;
llmp1 = 26 ;
Time = UNLIMITED ; // (12 currently)

variables:
float Time(Time) ;

Time:title = "Time" ;
Time:units = "days since 0000-00-0 00:00:00" ;

float latitude(latitude) ;
latitude:title = "latitude" ;
latitude:units = "degrees_north" ;

float longitude(longitude) ;
longitude:title = "East longitude" ;
longitude:units = "degrees_east" ;

float altitude(altitude) ;
altitude:long_name = "altitude" ;
altitude:units = "km" ;
altitude:positive = "up" ;

float aps(altitude) ;
aps:title = "hybrid pressure at midlayers" ;
aps:units = "" ;

float bps(altitude) ;
bps:title = "hybrid sigma at midlayers" ;
bps:units = "" ;

float ps(Time, latitude, longitude) ;
ps:title = "Surface pressure" ;
ps:units = "Pa" ;

float ps_sd(Time, latitude, longitude) ;
ps_sd:title = "Surface pressure total standard deviation over th

e season" ;
ps_sd:units = "Pa" ;

float tsurf(Time, latitude, longitude) ;
tsurf:title = "Surface temperature" ;
tsurf:units = "K" ;

float tsurf_sd(Time, latitude, longitude) ;
tsurf_sd:title = "Surface temperature total standard deviation o

ver the season" ;
tsurf_sd:units = "K" ;

float co2ice(Time, latitude, longitude) ;
co2ice:title = "CO2 ice cover" ;
co2ice:units = "kg.m-2" ;

float co2ice_sd(Time, latitude, longitude) ;
co2ice_sd:title = "CO2 ice cover total standard deviation over t

he season" ;
co2ice_sd:units = "kg.m-2" ;

float fluxsurf_lw(Time, latitude, longitude) ;
fluxsurf_lw:title = "Thermal IR radiative flux to surface" ;
fluxsurf_lw:units = "W.m-2" ;

float fluxsurf_lw_sd(Time, latitude, longitude) ;
fluxsurf_lw_sd:title = "Thermal IR radiative flux to surface tot

al standard deviation over the season" ;
fluxsurf_lw_sd:units = "W.m-2" ;

float fluxsurf_sw(Time, latitude, longitude) ;
fluxsurf_sw:title = "Solar radiative flux to surface" ;
fluxsurf_sw:units = "W.m-2" ;

float fluxsurf_sw_sd(Time, latitude, longitude) ;
fluxsurf_sw_sd:title = "Solar radiative flux to surface total st

andard deviation over the season" ;
fluxsurf_sw_sd:units = "W.m-2" ;

float fluxtop_lw(Time, latitude, longitude) ;
fluxtop_lw:title = "Thermal IR radiative flux to space" ;
fluxtop_lw:units = "W.m-2" ;

float fluxtop_lw_sd(Time, latitude, longitude) ;
fluxtop_lw_sd:title = "Thermal IR radiative flux to space total
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standard deviation over the season" ;
fluxtop_lw_sd:units = "W.m-2" ;

float fluxtop_sw(Time, latitude, longitude) ;
fluxtop_sw:title = "Solar radiative flux to space" ;
fluxtop_sw:units = "W.m-2" ;

float fluxtop_sw_sd(Time, latitude, longitude) ;
fluxtop_sw_sd:title = "Solar radiative flux to space total stand

ard deviation over the season" ;
fluxtop_sw_sd:units = "W.m-2" ;

float dod(Time, latitude, longitude) ;
dod:title = "Dust optical depth" ;
dod:units = "" ;

float dod_sd(Time, latitude, longitude) ;
dod_sd:title = "Dust optical depth total standard deviation over

the season" ;
dod_sd:units = "" ;

float temp(Time, altitude, latitude, longitude) ;
temp:title = "Atmospheric temperature" ;
temp:units = "K" ;

float temp_sd(Time, altitude, latitude, longitude) ;
temp_sd:title = "Atmospheric temperature total standard deviatio

n over the season" ;
temp_sd:units = "K" ;

float u(Time, altitude, latitude, longitude) ;
u:title = "Zonal (East-West) wind" ;
u:units = "m.s-1" ;

float u_sd(Time, altitude, latitude, longitude) ;
u_sd:title = "Zonal (East-West) wind total standard deviation ov

er the season" ;
u_sd:units = "m.s-1" ;

float v(Time, altitude, latitude, longitude) ;
v:title = "Meridional (North-South) wind" ;
v:units = "m.s-1" ;

float v_sd(Time, altitude, latitude, longitude) ;
v_sd:title = "Meridional (North-South) wind total standard devia

tion over the season" ;
v_sd:units = "m.s-1" ;

float w(Time, altitude, latitude, longitude) ;
w:title = "Vertical (down-up) wind" ;
w:units = "m.s-1" ;

float w_sd(Time, altitude, latitude, longitude) ;
w_sd:title = "Vertical (down-up) wind total standard deviation o

ver the season" ;
w_sd:units = "m.s-1" ;

float rho(Time, altitude, latitude, longitude) ;
rho:title = "Atmospheric density" ;
rho:units = "none" ;

float rho_sd(Time, altitude, latitude, longitude) ;
rho_sd:title = "Atmospheric density total standard deviation ove

r the season" ;
rho_sd:units = "none" ;

float q2(Time, altitude, latitude, longitude) ;
q2:title = "Boundary layer eddy kinetic energy" ;
q2:units = "m2.s-2" ;

float q2_sd(Time, altitude, latitude, longitude) ;
q2_sd:title = "Boundary layer eddy kinetic energy total standard

deviation over the season" ;
q2_sd:units = "m2.s-2" ;

float vmr_h2ovapor(Time, altitude, latitude, longitude) ;
vmr_h2ovapor:title = "H2O vapor volume mixing ratio" ;
vmr_h2ovapor:units = "mol/mol" ;

float vmr_h2ovapor_sd(Time, altitude, latitude, longitude) ;
vmr_h2ovapor_sd:title = "H2O vapor volume mixing ratio total sta

ndard deviation over the season" ;
vmr_h2ovapor_sd:units = "mol/mol" ;

float vmr_h2oice(Time, altitude, latitude, longitude) ;
vmr_h2oice:title = "H2O ice volume mixing ratio" ;
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vmr_h2oice:units = "mol/mol" ;
float vmr_h2oice_sd(Time, altitude, latitude, longitude) ;

vmr_h2oice_sd:title = "H2O ice volume mixing ratio total standar
d deviation over the season" ;

vmr_h2oice_sd:units = "mol/mol" ;
float mtot(Time, latitude, longitude) ;

mtot:title = "total mass of water vapor" ;
mtot:units = "kg/m2" ;

float mtot_sd(Time, latitude, longitude) ;
mtot_sd:title = "total mass of water vapor total standard deviat

ion over the season" ;
mtot_sd:units = "kg/m2" ;

float icetot(Time, latitude, longitude) ;
icetot:title = "total mass of water ice" ;
icetot:units = "kg/m2" ;

float icetot_sd(Time, latitude, longitude) ;
icetot_sd:title = "total mass of water ice total standard deviat

ion over the season" ;
icetot_sd:units = "kg/m2" ;

}

The structure of the file is simillar to the diagfi.nc file, except that, as stated before,
the average of variables are given for 12 times of the day and that RMS standard deviation
are also provided.
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Chapter 7

Zoomed simulations

The LMD GCM can use a zoom to enhance the resolution locally. In practice, one can
increase the latitudinal resolution on the one hand, and the longitudinal resolution on the
other hand.

7.1 To define the zoomed area
The zoom is defined in run.def. Here are the variables that you want to set:

• East longitude (in degrees) of zoom center clon

• latitude (in degrees) of zoom center clat

• zooming factors, along longitude grossismx. Typically 1.5, 2 or even 3 (see be-
low)

• zooming factors, along latitude grossismy. Typically 1.5, 2 or even 3 (see below)

• fxyhypb: must be set to ”T” for a zoom, whereas it must be F otherwise

• extention in longitude of zoomed area dzoomx. This is the total longitudinal exten-
sion of the zoomed region (degree).
It is recommended that grossismx × dzoomx < 200o

• extention in latitude of the zoomed region dzoomy. This is the total latitudinal
extension of the zoomed region (degree).
It is recommended that grossismy × dzoomy < 100o

• stiffness of the zoom along longitudes taux. 2 is for a smooth transition in longi-
tude, more means sharper transition.

• stiffness of the zoom along latitudes taux. 2 is for a smooth transition in latitude,
more means sharper transition.

7.2 Making a zoomed initial state
One must start from an initial state archive start archive.nc obtained from a pre-
vious simulation (see section 4.10) Then compile and run newstart.e using the
run.def file designed for the zoom.

After running newstart.e. The zoomed grid may be visualized using grads, for
instance. Here is a grads script that can be used to map the grid above a topography map:
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set mpdraw off
set grid off
sdfopen restart.nc
set gxout grid
set digsiz 0
set lon -180 180
d ps
close 1

*** replace the path to surface.nc in the following line:
sdfopen /u/forget/WWW/datagcm/datafile/surface.nc
set lon -180 180
set gxout contour
set clab off
set cint 3
d zMOL

7.3 Running a zoomed simulation and stability issue
• dynamical timestep Because of their higher resolution, zoomed simulation requires

a higher timestep. Therefore in run.def, the number of dynamical timestep per day
day step must be increased by more than grossismx or grossismy (twice
that if necessary). However, you can keep the same physical timestep (48/sol) and
thus increase iphysiq accordingly (iphysiq = day step/48).

• The very first initial state made with newstart.e can be noisy and dynamically
unstable. It may be necessary to strongly increase the intensity of the dissipation and
increase day step in run.def for 1 to 3 sols, and then use less strict values.

• If the run remains very unstable and requires too much dissipation or a too small
timestep, a good tip to help stabilize the model is to decrease the vertical extension of
your run and the number of layer (one generally zoom to study near-surface process,
so 20 to 22 layers and a vertical extension up to 60 or 80 km is usually enough).
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Chapter 8

Water Cycle Simulation

In order to simulate the water cycle with the LMD GCM:

• In callphys.def, set tracer to true: tracer=.true..

• It is best to run with a semi-interactive dust (in order to better represent the evolution
available condensation nuclei) and thus set dustbin = 2, and use corresponding
additional tracers (dust mass and dust number which correspond to the first
two moments of the dust distribution).

• Use the same options as given in the sample callphys.def.watercycle file
provided in LMDZ.MARS/deftank.

• Settings You need to run with at least 4 tracers (if you don’t have dust (dustbin=0)
or other chemical species (photochem=F), but 7 is recommended, and an appropri-
ate traceur.def for running with combined CO22, dust and water cycle should
be:

7
co2
dust_mass
dust_number
h2o_vap
h2o_ice
ccn_mass
ccn_number

Note that the order in which tracers are set in the tracer.def file is not important.

• Run

Same as usual. Just make sure that your start files contains the initial states
for all the tracers you use (or else compile and run newstart.e to initialize them).
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Chapter 9

Photochemical Module

The LMD GCM includes a photochemical module, which allows to compute the atmo-
spheric composition.

• 14 chemical species are included: CO2 (background gas), CO, O, O(1D), O2, O3, H,
H2, OH, HO2, H2O2, N2, Ar (inert) and H2O.

• In callphys.def, set tracer to true tracer=.true.. Use the same op-
tions as shown below for the tracer part of callphys.def. You need to
set photochem=.true., and to include the water cycle (water=.true.,
sedimentation=.true.; see Chapter 8), because composition is extremely de-
pendent on the water vapor abundance.

• You will need the up-to-date file jmars.yyyymmdd (e.g. jmars.20140930),
which contains the photodissociation rates. It should be in the datafile directory
in which are stored datafiles used by the GCM (the path to these files is set in file
callphys.def).

• Settings

Compile as usual, what really matters are the options in callphys.def
and traceur.def. You need at least 19 tracers: 13 chemical species (co2, co, o,
o(1d), o2, o3, h, h2, oh, ho2, h2o2, n2, ar) along with water vapor (h2o vap), water
ice (h2o ice), related condensation nuclei moments (ccn mass and ccn number),
and dust moments (dust mass and dust number).
the traceur.def file should thus be something like:

19
co2
co
o
o1d
o2
o3
h
h2
oh
ho2
h2o2
n2
ar
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dust_mass
dust_number
h2o_vap
h2o_ice
ccn_mass
ccn_number

• Run

Same as usual. Just make sure that your start files contains the correct num-
ber of tracers. If you need to initialize the composition, you can run newstart and
use the options

- ini q: the 15 tracers are initialized, including water ice and vapor.

- ini q-h2o: the 13 chemical species are initialized, water ice is put to zero, and
water vapor is kept untouched.

- ini q-iceh2o: the 13 chemical species are initialized, water ice and vapor are kept
untouched.

The initialization is done with the files atmosfera LMD may.dat and
atmosfera LMD min.dat, which should also be found in the datafile directory.

• Outputs

The outputs can be done from the aeronomars/calchim.F routine for
the 14 chemical species. The variables put in the diagfi.nc and stats.nc files
are labeled (where name is the name of the chemical species, e.g. co2):

- n name: local density (in molecule cm−3, 3-dimensional field)

- c name: integrated column density (in molecule cm−2, 2-dimensional field)
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Chapter 10

Thermosphere

Some advice and comments about running the GCM with the thermosphere (roughly speak-
ing, above 125 km):

• When running with the thermosphere, one must ensure that the model extends high
enough. In practice runing with 49 levels (as defined in the default z2sig.def file
is necessary.

• Example of definition files appropriate for simulating the thermosphere are
provided in the LMDZ.MARS/deftank directory: callphys.def.MCD5,
run.def.64x48x49.MCD5 and traceur.def.MCD5

• Chemistry in the thermosphere requires that file
chemthermos reactionrates.def (available in the deftank directory) be
present in the directory where the GCM is run.

• The main forcing in the thermosphere is the Extreme UV (EUV) input received from
the Sun. Two settings are possible, depending on the value of flag solvarmod (in
callphys.def):

– If solvarmod=0, then the solar forcing is fixed throughout the simulation,
using the E10.7 value set by the fixed euv value flag.

– if solvarmod=1, the the solar forcing evolves daily, following observed val-
ues of E10.7. For this case, one must also set the Mars Year (MY 23 to 33 are
currently available) using the solvaryear flag.
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Chapter 11

1D version of the Mars model

The physical part of the model can be used to generate realistic 1-D simulations (one at-
mosphere column). In practice, the simulation is controlled from a main program called
testphys1d.F which, after initialization, then calls the master subroutine of the

physics physiq.F described in the preceeding chapters.

11.1 Compilation
To compile the Martian model in 1-D with 29 layers, simply type (in compliance with the
makelmdz fcm function manual described in section 5.4)

makelmdz_fcm -arch local -d 29 -p mars testphys1d

You will find executable testphys1d 29 phymars seq.e (the compiled model) in the
bin subdirectory from which you ran the makelmdz fcm command.

11.2 1-D runs and input files
The 1-D model does not use an initial state file (the simulation must be long enough to
obtain a balanced state). Thus, to generate a simulation simply type:

./testphys1d.e

The following example files are available in the deftank directory (copy them into
your working directory first):

- callphys.def : controls the options in the physics, just like for the 3D GCM.
- z2sig.def : controls the vertical discretization (no change needed, in general), func-

tions as with the 3D GCM.
- traceur.def : controls the tracer names (this file may not be present, as long as you

run without tracers (option tracer=.false. in callphys.def)
- run.def : controls the 1-D run parameters and initializations (this is actally file

run.def.1d the deftank directory, which must be renamed run.def to be read by
the program).

The last file is different from the 3D GCM’s run.def input file, as it contains options
specific to the 1-D model, as shown in the example below:

#
#-----------------------------------------------------------------------
# Run parameters for the 1D ’testphys1d.e’ model
#-----------------------------------------------------------------------
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#### Time integration parameters
#
# Initial date (in martian sols ; =0 at Ls=0)
day0=0
# Initial local time (in hours, between 0 and 24)
time=0
# Number of time steps per sol
day_step=48
# Number of sols to run
ndt = 100

#### Physical parameters
#
# Surface pressure (Pa)
psurf= 610
# Reference dust opacity at 610 Pa, in the visible (true tau˜tauref*psurf/610)
tauvis=0.2
# latitude (in degrees)
latitude= 0.
# Albedo of bare ground
albedo=0.2
# Soil thermal inertia (SI)
inertia=400
# zonal eastward component of the geostrophic wind (m/s)
u=10.
# meridional northward component of the geostrophic wind (m/s)
v=0.
# Initial CO2 ice on the surface (kg.m-2)
co2ice=0
# Water ice cap on ground ?
watercaptag=.false.
## Slopes parameters:
# (for slope insolation scheme, when callslope=.true. in callphys.def)
# slope_inclination angle (deg) 0: horizontal, 90: vertical
slope_inclination=20.0
# slope orientation (deg)
# 0 == Northward, 90 == Eastward, 180 == Southward, 270 == Westward
slope_orientation=90.0

# hybrid vertical coordinate ? (.true. for hybrid and .false. for sigma levels)
hybrid=.true.

###### Initial atmospheric temperature profile
#
# Type of initial temperature profile
# ichoice=1 Constant Temperature: T=tref
# ichoice=2 Savidjari profile (as Seiff but with dT/dz=cte)
# ichoice=3 Lindner (polar profile)
# ichoice=4 inversion
# ichoice=5 Seiff (standard profile, based on Viking entry)
# ichoice=6 constant T + gaussian perturbation (levels)
# ichoice=7 constant T + gaussian perturbation (km)
# ichoice=8 Read in an ascii file "profile"
ichoice=5
# Reference temperature tref (K)
tref=200
# Add a perturbation to profile if isin=1
isin=0
# peak of gaussian perturbation (for ichoice=6 or 7)
pic=26.522
# width of the gaussian perturbation (for ichoice=6 or 7)
largeur=10
# height of the gaussian perturbation (for ichoice=6 or 7)
hauteur=30.
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# some definitions for the physics, in file ’callphys.def’
INCLUDEDEF=callphys.def

Note that, just as for the 3-D GCM run.def file, input parameters may be given in
any order, or even not given at all (in which case default values are used by the program).

Initial conditions for tracers can be provided as ASCII text files; when testphys1d.e
runs, it looks for a profile * file, where * stands for a tracer name (as given in the
traceur.def file) to initialize the tracer profile. The data in the file should be given as one
value per line, first line for the surface value (in kg/m2), followed by values for each at-
mospheric layer (going from bottom to top of the atmosphere). If no profile * file is
found, then the tracer values are initialized to zero (except for the ’co2’ tracer, which will
be set to 0.95).

11.3 Output data
During the entire 1D simulation, you can obtain output data for any variable from any
physical subroutine by using subroutine writediagfi (as when runing 3D simula-
tions, but specifying the correct dimensions for the field)

Example of a call to subroutine writediagfi requesting temperature output:
( ngrid horizontal point, nlayer layers, variable zt called “temp” in K units):

CALL WRITEDIAGFI(ngrid,’temp’,’Temperature’,’K’,1,zt)
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Appendix A

GCM Martian Calendar

For Mars, dates and seasons are expressed in Solar Longitude (Ls, in degrees or in radians)
counting from the northern hemisphere spring equinox. In the GCM, time is counted in
Martian solar days, or “sols” (1 sols = 88775 s) from the northern spring equinox. The
following table gives the correspondence between sols and Ls, calculated for the GCM
using one Martian year = 669 sols exactly.
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sol Ls sol Ls sol Ls

0. 360.000 Spring equinox N 240. 111.455 480. 247.408
5. 2.550 245. 113.816 485. 250.666

10. 5.080 250. 116.190 490. 253.925
15. 7.590 255. 118.578 495. 257.182
20. 10.081 260. 120.981 500. 260.435
25. 12.554 265. 123.400 505. 263.683
30. 15.009 270. 125.835 510. 266.924

514.76 270. Winter solstice N
35. 17.447 275. 128.287 515. 270.156
40. 19.869 280. 130.756 520. 273.377
45. 22.275 285. 133.243 525. 276.587
50. 24.666 290. 135.750 530. 279.783
55. 27.043 295. 138.275 535. 282.965
60. 29.407 300. 140.821 540. 286.130
65. 31.758 305. 143.388 545. 289.277
70. 34.096 310. 145.975 550. 292.406
75. 36.423 315. 148.585 555. 295.515
80. 38.739 320. 151.217 560. 298.604
85. 41.046 325. 153.872 565. 301.671
90. 43.343 330. 156.550 570. 304.715
95. 45.631 335. 159.251 575. 307.737
100. 47.912 340. 161.977 580. 310.735
105. 50.186 345. 164.727 585. 313.709
110. 52.453 350. 167.502 590. 316.658
115. 54.714 355. 170.301 595. 319.583
120. 56.970 360. 173.126 600. 322.483
125. 59.222 365. 175.975 605. 325.358
130. 61.471 370. 178.850 610. 328.207

. 371.99 180. Autumn equinox N .
135. 63.716 375. 181.750 615. 331.032
140. 65.959 380. 184.675 620. 333.831
145. 68.201 385. 187.624 625. 336.606
150. 70.442 390. 190.598 630. 339.356
155. 72.683 395. 193.596 635. 342.082
160. 74.925 400. 196.618 640. 344.783
165. 77.168 405. 199.662 645. 347.461
170. 79.413 410. 202.729 650. 350.116
175. 81.661 415. 205.818 655. 352.748
180. 83.912 420. 208.927 660. 355.357
185. 86.167 425. 212.056 665. 357.945

669. 0. Spring equinox N
190. 88.427 430. 215.203 670. 0.512

193.47 90. Summer solstice N
195. 90.693 435. 218.368 675. 3.057
200. 92.965 440. 221.549 680. 5.583
205. 95.245 445. 224.746 685. 8.089
210. 97.532 450. 227.955 690. 10.577
215. 99.827 455. 231.177 695. 13.046
220. 102.131 460. 234.409 700. 15.498
225. 104.446 465. 237.650 705. 17.933
230. 106.770 470. 240.898 710. 20.351
235. 109.107 475. 244.151 715. 22.755
240. 111.455 480. 247.408 720. 25.143
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Appendix B

Utilities

A few post-processing tools, which handle GCM outputs (files diagfi.nc and stats.nc) are available in the
LMDZ.MARS/util subdirectory. This directory contains the sources codes along with a README.exec file
which explains what the various programs are for and how to compile them.

B.1 concatnc
This program concatenates consecutive output files (diagfi.nc or even stats.nc files) for a selection of
variable, in order to obtain one single big file. The time dimension of the output can be ”sols” or ”Ls” (note that
in that latter case, Ls values won’t be evenly distributed, and software like Grads may not be able to use and plot
the data).
To obtain an evenly sampled ”Ls” timescale, you can use the lslin.e program (described below).
The output file created by conctanc.e is concat.nc

B.2 lslin
This program is designed to interpolate data given in irregular Solar Longitude (Ls) into an evenly sampled
linear time coordinate (usable with Grads). Input Netcdf files may be diagfi.nc or concat.nc files and
the resulting output file is lslin.nc lslin also create a lslin.ctl file that can be read directly by grads
(>xdfopen lslin.ctl) to plot in Ls coordinate to avoid some problem with grads when Grads think that
”the time interval is too small”...

B.3 localtime
The localtime.e program is designed to re-interpolate data in order to yield values at the same given local
time (useful to mimic satellite observations, or analyse day to day variations at given local time).
Input files may be of diagfi.nc, stats.nc or concat.nc type and the output file name is build from
the input one, to which LT.nc is appened (e.g. if the input file is myfile.nc then output file will be
myfile LT.nc).

B.4 zrecast
With this program you can recast atmospheric (i.e.: 4D-dimentional longitude-latitude-altitude-time) data from
GCM outputs (e.g. as given in diagfi.nc, concat.nc and stats.nc files) onto either pressure or altitude
above areoid vertical coordinates.
Since integrating the hydrostatic equation is required to recast the data, the input file must contain surface pressure
and atmospheric temperature, as well as the ground geopotential.
If recasting data onto pressure coordinates, then the output file name is given by the input file name to which
P.nc will be appened. If recasting data onto altitude above areoid coordinates, then a A.nc will be appened.

B.5 hrecast
This program can interpolate GCM output on any horizontal grid (regular lat - lon) as long as it cover all the
planet. Useful to compare runs obtained at different horizontal resolutions.
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B.6 expandstartfi
This program takes a physics start file (startfi.nc) and recasts it on the corresponding lonxlat grid (so its
contents may easily be displayed using Grads, Ferret, etc.)

B.7 extract
This program extracts (ie: interpolates) pointwise values of an atmospheric variable from a ’zrecast’ed diagfi file
(works if altitude is geometrical height or a pressure vertical coordinates).
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