! ! $Id $ ! SUBROUTINE compute_tendencies(tendencies_h2o_ice,min_h2o_ice_Y1,& min_h2o_ice_Y2,iim_input,jjm_input,ngrid,tendencies_h2o_ice_phys) IMPLICIT NONE !======================================================================= ! ! Compute the tendencies of the evolution of water ice over the years ! !======================================================================= ! arguments: ! ---------- ! INPUT INTEGER, intent(in) :: iim_input,jjm_input,ngrid ! # of grid points along longitude/latitude/ total REAL, intent(in) , dimension(iim_input+1,jjm_input+1):: min_h2o_ice_Y1 ! LON x LAT field : minimum of water ice at each point for the first year REAL, intent(in) , dimension(iim_input+1,jjm_input+1):: min_h2o_ice_Y2 ! LON x LAT field : minimum of water ice at each point for the second year ! OUTPUT REAL, intent(out) , dimension(iim_input+1,jjm_input+1) :: tendencies_h2o_ice ! LON x LAT field : difference between the minima = evolution of perenial ice REAL, intent(out) , dimension(ngrid) :: tendencies_h2o_ice_phys ! physical point field : difference between the minima = evolution of perenial ice ! local: ! ------ INTEGER :: i,j,ig0 ! loop variable !======================================================================= ! We compute the difference tendencies_h2o_ice(:,:)=min_h2o_ice_Y2(:,:)-min_h2o_ice_Y1(:,:) ! If the difference is too small; there is no evolution DO j=1,jjm_input+1 DO i = 1, iim_input if(abs(tendencies_h2o_ice(i,j)).LT.1.0E-10) then tendencies_h2o_ice(i,j)=0. endif ENDDO ENDDO ! We reorganise the difference on the physical grid tendencies_h2o_ice_phys(1)=tendencies_h2o_ice(1,1) ig0 = 2 DO j=2,jjm_input DO i = 1, iim_input tendencies_h2o_ice_phys(ig0) =tendencies_h2o_ice(i,j) ig0= ig0 + 1 ENDDO ENDDO tendencies_h2o_ice_phys(ig0) = tendencies_h2o_ice(1,jjm_input+1) END SUBROUTINE compute_tendencies