##General options ##~~~~~~~~~~~~~~~ #Directory where external input files are: datadir=./datadir #Run with or without tracer transport ? tracer=.true. #Diurnal cycle ? if diurnal=False, diurnal averaged solar heating diurnal=.true. #Seasonal cycle ? if season=False, Ls stays constant, to value set in "start" season = .true. #write some more output on the screen ? lwrite = .false. #Save statistics in file "stats.nc" ? callstats =.true. #Save EOF profiles in file "profiles" for Climate Database? calleofdump = .false. # check input fields when entering physics? check_physics_inputs=.false. # check fields at the end of physics? check_physics_outputs=.false. ## Dust scenario. Used to prescribe the dust ## ~~~~~~~~~~~~~ # =1 Dust opt.deph read in startfi; =2 Viking scenario; =3 MGS scenario, # =4 Mars Year 24 from TES assimilation (old version of MY24; dust_tes.nc file) # =6 "cold" (low dust) scenario ; =7 "warm" (high dust) scenario # =8 "climatology" (our best guess of a typical Mars year) scenario # =24 Mars Year 24 from TES assimilation (ie: MCD reference case) # =25 Mars Year 25 from TES assimilation (ie: a year with a global dust storm) # =26 Mars Year 26 from TES assimilation # ... # =35 Mars Year 35 from observers assimilation iaervar = 8 # Dust opacity at 610 Pa (when constant, i.e. for the iaervar=1 case) tauvis=0.2 # Dust vertical distribution: # (=0: old distrib. (Pollack90), =1: top set by "topdustref", # =2: Viking scenario; =3 MGS scenario) iddist = 3 # Dust top altitude (km). (Matters only if iddist=1) topdustref = 55. # Dust IR opacity ref. wavelength (for dso diagnostics only) # "tes" (9.3 microns) [default] or "mcs" (21.6 microns) dustiropacity = tes # Use an IR to VIS scenario conversion coefficient that is # dependent on the GCM dust effective radius, # instead of a fixed 2.6 coefficient ? #(only if dustiropacity = tes ; default = .false.) reff_driven_IRtoVIS_scenario = .true. ## Physical Parameterizations : ## ~~~~~~~~~~~~~~~~~~~~~~~~~~ # call radiative transfer ? callrad = .true. # call NLTE radiative schemes ? matters only if callrad=T callnlte = .true. # NLTE 15um scheme to use. # 0-> Old scheme, static oxygen # 1-> Old scheme, dynamic oxygen # 2-> New scheme nltemodel = 2 # call CO2 NIR absorption ? matters only if callrad=T callnirco2 = .true. # NIR NLTE correction ? matters only if callnirco2=T nircorr=0 # call turbulent vertical diffusion ? calldifv = .true. # call convective adjustment ? calladj = .true. # Thermals calltherm = .true. callrichsl = .true. # call CO2 condensation ? callcond =.true. # call thermal conduction in the soil ? callsoil = .true. ##Gravity Waves # call Lott's gravity wave/subgrid topography scheme ? calllott = .true. # call Lott's non-orographic gravity waves scheme? calllott_nonoro=.true. #Eliassen-Palm FLux(only if calllott_nonoro=.true.) nonoro_gwd_epflux_max=5.E-4 # saturation parameter non-orographic gravity waves(only if calllott_nonoro=.true.) nonoro_gwd_sat=1.5 # value of the dissaption coefficiet(only if calllott_nonoro=.true.) nonoro_gwd_rdiss=0.15 # value of the max wave number nonoro_gwd_kmax=1.E-4 # value of the min wave number nonoro_gwd_kmin=7.E-6 # value to control the launch altitude nonoro_gwd_xlaunch=0.6 # Impose polar cap surface albedos as observed by TES? TESicealbedo = .true. ## Coefficient for Northern cap albedoes TESice_Ncoef=1.6 ## Coefficient for Southern cap albedoes TESice_Scoef=1.6 ## Radiative transfer options : ## ~~~~~~~~~~~~~~~~~~~~~~~~~~ # the rad.transfer is computed every "iradia" physical timestep iradia = 1 # Output of the exchange coefficient mattrix ? for diagnostic only callg2d = .false. # Rayleigh scattering : (should be .false. for now) rayleigh = .false. ## Tracer (dust water, ice and/or chemical species) options (used if tracer=T): ## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # DUST: Transported dust ? (if >0, use 'dustbin' dust bins) dustbin = 2 # DUST: Radiatively active dust ? (matters if dustbin>0) active = .true. # DUST: use mass and number mixing ratios to predict dust size ? doubleq = .true. # DUST: use a small population of dust particules (submicron dust)? submicron = .false. # DUST: lifted by GCM surface winds ? lifting = .true. # DUST: lifted by dust devils ? callddevil = .false. # DUST: Scavenging by H2O snowfall ? scavenging = .true. # DUST: freedust ? freedust=.true. # DUST: dustscaling_mode? # =0 --> freedust, tauscaling=1 # =1 --> GCM5.3-like, tauscaling # =2 --> tauscaling=1,dust_rad_adjust dustscaling_mode=2 # DUST: dust injection scheme (if >0, use 'dustinjection') dustinjection=1 # DUST: dust injection scheme coefficient (default=1.) coeff_injection=0.25 # DUST: dust injection scheme initial local time (def : 10.) ti_injection=0. # DUST: dust injection scheme final local time (def : 12.) tf_injection=24. # DUST: Rocket Dust Storm scheme rdstorm=.true. # DUST: RDS detrainment coefficient (def : 0.05) coeff_detrainment=0.02 # DUST: Dust entrainment by subgrid-scale slope winds topflows=.true. # DUST/WATERICE: Scavenging by CO2 condensation? scavco2cond = .true. # DUST/WATERICE: Gravitationnal sedimentation ? sedimentation = .true. # WATERICE: Radiatively active transported atmospheric water ice ? activice = .true. # WATER: Compute water cycle water = .true. # WATER: Microphysical scheme for water-ice clouds? microphys = .true. # WATER: Effective variance for sedimentation for the log-normal # distribution of ice particles ? nuice_sed=0.1 # WATER: contact parameter (only if temp_dependant_m = .false.) ##mteta = 0.95 # Temperature-dependant water contact parameter temp_dependant_m = .true. # WATER: current permanent caps at both poles. True IS RECOMMENDED # (with .true., North cap is a source of water and South pole # is a cold trap) caps = .true. # WATER: Water ice albedos (old ice/fresh frost)? # Perennial ice albedo albedo_h2o_ice = 0.30 # Account for fresh frost ice albedo if cst_cap_albedo = .false. cst_cap_albedo = .false. # Fresh frost albedo (only used if cst_cap_albedo = .false.) albedo_h2o_frost = 0.35 # Frost thickness threshold for albedo frost_albedo_threshold = 0.005 # Frost metamorphism into old ice refill_watercap = .true. frost_metam_threshold = 0.05 # WATER: Water ice thermal inertia (old ice and fresh frost) inert_h2o_ice = 800 # Sublimation latent heat (def = T) latentheat_surfwater = .true. #WATER: subgrid clouds CLFvarying=.false. #WATER: subgrid clouds CLFfixval=1 # PHOTOCHEMISTRY: include chemical species photochem = .true. # SCATTERERS: set number of scatterers. must be compliant with preceding options. naerkind = 4 ## Thermospheric options (relevant if tracer=T) : ##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # call thermosphere ? callthermos = .true. # WATER: included without cycle (only if water=.false.) thermoswater = .false. # call thermal conduction ? (only if callthermos=.true.) callconduct = .true # call molecular viscosity ? (only if callthermos=.true.) callmolvis = .true. # call molecular diffusion ? (only if callthermos=.true.) callmoldiff = .true. # call thermospheric photochemistry ? (only if callthermos=.true.) thermochem = .true. # call EUV heating ? (only if callthermos=.true.) calleuv=.true. #Method to include solar variability? #0-> Fixed EUV input 1-> Variability with E10.7 as observed solvarmod=0 # fixed E10.7 value (for solvarmod=0) # (min=80 , ave=140, max=320) fixed_euv_value=140 #Solar variability as observed for MY? (must be between MY23 and MY32) # (only matters if solvarmod=1) solvaryear=24 # value for the UV heating efficiency ##(experimental values between 0.19 and 0.23, lower values may ## be used to compensate for low 15 um cooling) euveff = 0.21