! ! $Id $ ! MODULE filtreg_mod REAL, DIMENSION(:,:,:), ALLOCATABLE :: matriceun,matriceus,matricevn REAL, DIMENSION(:,:,:), ALLOCATABLE :: matricevs,matrinvn,matrinvs CONTAINS SUBROUTINE inifilr #ifdef CPP_PARA USE mod_filtre_fft, ONLY : use_filtre_fft,Init_filtre_fft USE mod_filtre_fft_loc, ONLY : Init_filtre_fft_loc=>Init_filtre_fft ! #endif USE logic_mod, ONLY: fxyhypb,ysinus USE serre_mod, ONLY: alphax ! ... H. Upadhyaya, O.Sharma ... ! IMPLICIT NONE ! ! version 3 ..... ! Correction le 28/10/97 P. Le Van . ! ------------------------------------------------------------------- #include "dimensions.h" #include "paramet.h" ! ------------------------------------------------------------------- #include "comgeom.h" #include "coefils.h" REAL dlonu(iim),dlatu(jjm) REAL rlamda( iim ), eignvl( iim ) ! REAL lamdamax,pi,cof INTEGER i,j,modemax,imx,k,kf,ii REAL dymin,dxmin,colat0 REAL eignft(iim,iim), coff LOGICAL, SAVE :: first_call_inifilr = .TRUE. #ifdef CRAY INTEGER ISMIN EXTERNAL ISMIN INTEGER iymin INTEGER ixmineq #endif ! ! ------------------------------------------------------------ ! This routine computes the eigenfunctions of the laplacien ! on the stretched grid, and the filtering coefficients ! ! We designate: ! eignfn eigenfunctions of the discrete laplacien ! eigenvl eigenvalues ! jfiltn indexof the last scalar line filtered in NH ! jfilts index of the first line filtered in SH ! modfrst index of the mode from WHERE modes are filtered ! modemax maximum number of modes ( im ) ! coefil filtering coefficients ( lamda_max*COS(rlat)/lamda ) ! sdd SQRT( dx ) ! ! the modes are filtered from modfrst to modemax ! !----------------------------------------------------------- ! pi = 2. * ASIN( 1. ) DO i = 1,iim dlonu(i) = xprimu( i ) ENDDO ! CALL inifgn(eignvl) ! PRINT *,'inifilr: EIGNVL ' PRINT 250,eignvl 250 FORMAT( 1x,5e14.6) ! ! compute eigenvalues and eigenfunctions ! ! !................................................................. ! ! compute the filtering coefficients for scalar lines and ! meridional wind v-lines ! ! we filter all those latitude lines WHERE coefil < 1 ! NO FILTERING AT POLES ! ! colat0 is to be used when alpha (stretching coefficient) ! is set equal to zero for the regular grid CASE ! ! ....... Calcul de colat0 ......... ! ..... colat0 = minimum de ( 0.5, min dy/ min dx ) ... ! ! DO j = 1,jjm dlatu( j ) = rlatu( j ) - rlatu( j+1 ) ENDDO ! #ifdef CRAY iymin = ISMIN( jjm, dlatu, 1 ) ixmineq = ISMIN( iim, dlonu, 1 ) dymin = dlatu( iymin ) dxmin = dlonu( ixmineq ) #else dxmin = dlonu(1) DO i = 2, iim dxmin = MIN( dxmin,dlonu(i) ) ENDDO dymin = dlatu(1) DO j = 2, jjm dymin = MIN( dymin,dlatu(j) ) ENDDO #endif ! ! For a regular grid, we want the filter to start at latitudes ! corresponding to lengths dx of the same size as dy (in terms ! of angles: dx=2*dy) => at colat0=0.5 (i.e. colatitude=30 degrees ! <=> latitude=60 degrees). ! Same idea for the zoomed grid: start filtering polewards as soon ! as length dx becomes of the same size as dy ! colat0 = MIN( 0.5, dymin/dxmin ) ! IF( .NOT.fxyhypb.AND.ysinus ) THEN colat0 = 0.6 ! ...... a revoir pour ysinus ! ....... alphax = 0. ENDIF ! PRINT 50, colat0,alphax 50 FORMAT(/15x,' Inifilr colat0 alphax ',2e16.7) ! IF(alphax.EQ.1. ) THEN PRINT *,' Inifilr alphax doit etre < a 1. Corriger ' STOP ENDIF ! lamdamax = iim / ( pi * colat0 * ( 1. - alphax ) ) ! ... Correction le 28/10/97 ( P.Le Van ) .. ! DO i = 2,iim rlamda( i ) = lamdamax/ SQRT( ABS( eignvl(i) ) ) ENDDO ! DO j = 1,jjm DO i = 1,iim coefilu( i,j ) = 0.0 coefilv( i,j ) = 0.0 coefilu2( i,j ) = 0.0 coefilv2( i,j ) = 0.0 ENDDO ENDDO ! ! ... Determination de jfiltnu,jfiltnv,jfiltsu,jfiltsv .... ! ......................................................... ! modemax = iim !!!! imx = modemax - 4 * (modemax/iim) imx = iim ! PRINT *,'inifilr: TRUNCATION AT ',imx ! ! Ehouarn: set up some defaults jfiltnu=2 ! avoid north pole jfiltsu=jjm ! avoid south pole (which is at jjm+1) jfiltnv=1 ! NB: no poles on the V grid jfiltsv=jjm DO j = 2, jjm/2+1 cof = COS( rlatu(j) )/ colat0 IF ( cof .LT. 1. ) THEN IF( rlamda(imx) * COS(rlatu(j) ).LT.1. ) THEN jfiltnu= j ENDIF ENDIF cof = COS( rlatu(jjp1-j+1) )/ colat0 IF ( cof .LT. 1. ) THEN IF( rlamda(imx) * COS(rlatu(jjp1-j+1) ).LT.1. ) THEN jfiltsu= jjp1-j+1 ENDIF ENDIF ENDDO ! DO j = 1, jjm/2 cof = COS( rlatv(j) )/ colat0 IF ( cof .LT. 1. ) THEN IF( rlamda(imx) * COS(rlatv(j) ).LT.1. ) THEN jfiltnv= j ENDIF ENDIF cof = COS( rlatv(jjm-j+1) )/ colat0 IF ( cof .LT. 1. ) THEN IF( rlamda(imx) * COS(rlatv(jjm-j+1) ).LT.1. ) THEN jfiltsv= jjm-j+1 ENDIF ENDIF ENDDO ! IF( jfiltnu.GT. jjm/2 +1 ) THEN PRINT *,' jfiltnu en dehors des valeurs acceptables ' ,jfiltnu STOP ENDIF IF( jfiltsu.GT. jjm +1 ) THEN PRINT *,' jfiltsu en dehors des valeurs acceptables ' ,jfiltsu STOP ENDIF IF( jfiltnv.GT. jjm/2 ) THEN PRINT *,' jfiltnv en dehors des valeurs acceptables ' ,jfiltnv STOP ENDIF IF( jfiltsv.GT. jjm ) THEN PRINT *,' jfiltsv en dehors des valeurs acceptables ' ,jfiltsv STOP ENDIF PRINT *,'inifilr: jfiltnv jfiltsv jfiltnu jfiltsu ' , & jfiltnv,jfiltsv,jfiltnu,jfiltsu IF(first_call_inifilr) THEN ALLOCATE(matriceun(iim,iim,jfiltnu)) ALLOCATE(matriceus(iim,iim,jjm-jfiltsu+1)) ALLOCATE(matricevn(iim,iim,jfiltnv)) ALLOCATE(matricevs(iim,iim,jjm-jfiltsv+1)) ALLOCATE( matrinvn(iim,iim,jfiltnu)) ALLOCATE( matrinvs(iim,iim,jjm-jfiltsu+1)) first_call_inifilr = .FALSE. ENDIF ! ! ... Determination de coefilu,coefilv,n=modfrstu,modfrstv .... !................................................................ ! ! DO j = 1,jjm !default initialization: all modes are retained (i.e. no filtering) modfrstu( j ) = iim modfrstv( j ) = iim ENDDO ! DO j = 2,jfiltnu DO k = 2,modemax cof = rlamda(k) * COS( rlatu(j) ) IF ( cof .LT. 1. ) GOTO 82 ENDDO GOTO 84 82 modfrstu( j ) = k ! kf = modfrstu( j ) DO k = kf , modemax cof = rlamda(k) * COS( rlatu(j) ) coefilu(k,j) = cof - 1. coefilu2(k,j) = cof*cof - 1. ENDDO 84 CONTINUE ENDDO ! ! DO j = 1,jfiltnv ! DO k = 2,modemax cof = rlamda(k) * COS( rlatv(j) ) IF ( cof .LT. 1. ) GOTO 87 ENDDO GOTO 89 87 modfrstv( j ) = k ! kf = modfrstv( j ) DO k = kf , modemax cof = rlamda(k) * COS( rlatv(j) ) coefilv(k,j) = cof - 1. coefilv2(k,j) = cof*cof - 1. ENDDO 89 CONTINUE ENDDO ! DO j = jfiltsu,jjm DO k = 2,modemax cof = rlamda(k) * COS( rlatu(j) ) IF ( cof .LT. 1. ) GOTO 92 ENDDO GOTO 94 92 modfrstu( j ) = k ! kf = modfrstu( j ) DO k = kf , modemax cof = rlamda(k) * COS( rlatu(j) ) coefilu(k,j) = cof - 1. coefilu2(k,j) = cof*cof - 1. ENDDO 94 CONTINUE ENDDO ! DO j = jfiltsv,jjm DO k = 2,modemax cof = rlamda(k) * COS( rlatv(j) ) IF ( cof .LT. 1. ) GOTO 97 ENDDO GOTO 99 97 modfrstv( j ) = k ! kf = modfrstv( j ) DO k = kf , modemax cof = rlamda(k) * COS( rlatv(j) ) coefilv(k,j) = cof - 1. coefilv2(k,j) = cof*cof - 1. ENDDO 99 CONTINUE ENDDO ! IF(jfiltnv.GE.jjm/2 .OR. jfiltnu.GE.jjm/2)THEN ! Ehouarn: and what are these for??? Trying to handle a limit case ! where filters extend to and meet at the equator? IF(jfiltnv.EQ.jfiltsv)jfiltsv=1+jfiltnv IF(jfiltnu.EQ.jfiltsu)jfiltsu=1+jfiltnu PRINT *,'jfiltnv jfiltsv jfiltnu jfiltsu' , & jfiltnv,jfiltsv,jfiltnu,jfiltsu ENDIF PRINT *,' Modes premiers v ' PRINT 334,modfrstv PRINT *,' Modes premiers u ' PRINT 334,modfrstu ! ! ................................................................... ! ! ... Calcul de la matrice filtre 'matriceu' pour les champs situes ! sur la grille scalaire ........ ! ................................................................... ! DO j = 2, jfiltnu DO i=1,iim coff = coefilu(i,j) IF( i.LT.modfrstu(j) ) coff = 0. DO k=1,iim eignft(i,k) = eignfnv(k,i) * coff ENDDO ENDDO ! of DO i=1,iim #ifdef CRAY CALL MXM( eignfnv,iim,eignft,iim,matriceun(1,1,j),iim ) #else #ifdef BLAS CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & eignfnv, iim, eignft, iim, 0.0, matriceun(1,1,j), iim) #else DO k = 1, iim DO i = 1, iim matriceun(i,k,j) = 0.0 DO ii = 1, iim matriceun(i,k,j) = matriceun(i,k,j) & + eignfnv(i,ii)*eignft(ii,k) ENDDO ENDDO ENDDO ! of DO k = 1, iim #endif #endif ENDDO ! of DO j = 2, jfiltnu DO j = jfiltsu, jjm DO i=1,iim coff = coefilu(i,j) IF( i.LT.modfrstu(j) ) coff = 0. DO k=1,iim eignft(i,k) = eignfnv(k,i) * coff ENDDO ENDDO ! of DO i=1,iim #ifdef CRAY CALL MXM(eignfnv,iim,eignft,iim,matriceus(1,1,j-jfiltsu+1),iim) #else #ifdef BLAS CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & eignfnv, iim, eignft, iim, 0.0, & matriceus(1,1,j-jfiltsu+1), iim) #else DO k = 1, iim DO i = 1, iim matriceus(i,k,j-jfiltsu+1) = 0.0 DO ii = 1, iim matriceus(i,k,j-jfiltsu+1) = matriceus(i,k,j-jfiltsu+1) & + eignfnv(i,ii)*eignft(ii,k) ENDDO ENDDO ENDDO ! of DO k = 1, iim #endif #endif ENDDO ! of DO j = jfiltsu, jjm ! ................................................................... ! ! ... Calcul de la matrice filtre 'matricev' pour les champs situes ! sur la grille de V ou de Z ........ ! ................................................................... ! DO j = 1, jfiltnv DO i = 1, iim coff = coefilv(i,j) IF( i.LT.modfrstv(j) ) coff = 0. DO k = 1, iim eignft(i,k) = eignfnu(k,i) * coff ENDDO ENDDO #ifdef CRAY CALL MXM( eignfnu,iim,eignft,iim,matricevn(1,1,j),iim ) #else #ifdef BLAS CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & eignfnu, iim, eignft, iim, 0.0, matricevn(1,1,j), iim) #else DO k = 1, iim DO i = 1, iim matricevn(i,k,j) = 0.0 DO ii = 1, iim matricevn(i,k,j) = matricevn(i,k,j) & + eignfnu(i,ii)*eignft(ii,k) ENDDO ENDDO ENDDO #endif #endif ENDDO ! of DO j = 1, jfiltnv DO j = jfiltsv, jjm DO i = 1, iim coff = coefilv(i,j) IF( i.LT.modfrstv(j) ) coff = 0. DO k = 1, iim eignft(i,k) = eignfnu(k,i) * coff ENDDO ENDDO #ifdef CRAY CALL MXM(eignfnu,iim,eignft,iim,matricevs(1,1,j-jfiltsv+1),iim) #else #ifdef BLAS CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & eignfnu, iim, eignft, iim, 0.0, & matricevs(1,1,j-jfiltsv+1), iim) #else DO k = 1, iim DO i = 1, iim matricevs(i,k,j-jfiltsv+1) = 0.0 DO ii = 1, iim matricevs(i,k,j-jfiltsv+1) = matricevs(i,k,j-jfiltsv+1) & + eignfnu(i,ii)*eignft(ii,k) ENDDO ENDDO ENDDO #endif #endif ENDDO ! of DO j = jfiltsv, jjm ! ................................................................... ! ! ... Calcul de la matrice filtre 'matrinv' pour les champs situes ! sur la grille scalaire , pour le filtre inverse ........ ! ................................................................... ! DO j = 2, jfiltnu DO i = 1,iim coff = coefilu(i,j)/ ( 1. + coefilu(i,j) ) IF( i.LT.modfrstu(j) ) coff = 0. DO k=1,iim eignft(i,k) = eignfnv(k,i) * coff ENDDO ENDDO #ifdef CRAY CALL MXM( eignfnv,iim,eignft,iim,matrinvn(1,1,j),iim ) #else #ifdef BLAS CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & eignfnv, iim, eignft, iim, 0.0, matrinvn(1,1,j), iim) #else DO k = 1, iim DO i = 1, iim matrinvn(i,k,j) = 0.0 DO ii = 1, iim matrinvn(i,k,j) = matrinvn(i,k,j) & + eignfnv(i,ii)*eignft(ii,k) ENDDO ENDDO ENDDO #endif #endif ENDDO ! of DO j = 2, jfiltnu DO j = jfiltsu, jjm DO i = 1,iim coff = coefilu(i,j) / ( 1. + coefilu(i,j) ) IF( i.LT.modfrstu(j) ) coff = 0. DO k=1,iim eignft(i,k) = eignfnv(k,i) * coff ENDDO ENDDO #ifdef CRAY CALL MXM(eignfnv,iim,eignft,iim,matrinvs(1,1,j-jfiltsu+1),iim) #else #ifdef BLAS CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & eignfnv, iim, eignft, iim, 0.0, matrinvs(1,1,j-jfiltsu+1), iim) #else DO k = 1, iim DO i = 1, iim matrinvs(i,k,j-jfiltsu+1) = 0.0 DO ii = 1, iim matrinvs(i,k,j-jfiltsu+1) = matrinvs(i,k,j-jfiltsu+1) & + eignfnv(i,ii)*eignft(ii,k) ENDDO ENDDO ENDDO #endif #endif ENDDO ! of DO j = jfiltsu, jjm #ifdef CPP_PARA IF (use_filtre_fft) THEN CALL Init_filtre_fft(coefilu,modfrstu,jfiltnu,jfiltsu, & coefilv,modfrstv,jfiltnv,jfiltsv) CALL Init_filtre_fft_loc(coefilu,modfrstu,jfiltnu,jfiltsu, & coefilv,modfrstv,jfiltnv,jfiltsv) ENDIF #endif ! ................................................................... ! 334 FORMAT(1x,24i3) 755 FORMAT(1x,6f10.3,i3) RETURN END SUBROUTINE inifilr END MODULE filtreg_mod