subroutine vdifc(ngrid,nlay,nq,ppopsk, & ptimestep,pcapcal,lecrit, & pplay,pplev,pzlay,pzlev,pz0, & pu,pv,ph,pq,ptsrf,pemis,pqsurf, & pdhfi,pdqfi,pfluxsrf, & pdudif,pdvdif,pdhdif,pdtsrf,sensibFlux,pq2, & pdqdif,pdqsdif,lastcall) use radcommon_h, only : sigma USE surfdat_h USE tracer_h use comcstfi_mod, only: g, r, cpp, rcp use callkeys_mod, only: tracer,nosurf implicit none !================================================================== ! ! Purpose ! ------- ! Turbulent diffusion (mixing) for pot. T, U, V and tracers ! ! Implicit scheme ! We start by adding to variables x the physical tendencies ! already computed. We resolve the equation: ! ! x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) ! ! Authors ! ------- ! F. Hourdin, F. Forget, R. Fournier (199X) ! R. Wordsworth, B. Charnay (2010) ! !================================================================== !----------------------------------------------------------------------- ! declarations ! ------------ ! arguments ! --------- INTEGER ngrid,nlay REAL ptimestep REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) REAL pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) REAL pu(ngrid,nlay),pv(ngrid,nlay),ph(ngrid,nlay) REAL ptsrf(ngrid),pemis(ngrid) REAL pdhfi(ngrid,nlay) REAL pfluxsrf(ngrid) REAL pdudif(ngrid,nlay),pdvdif(ngrid,nlay),pdhdif(ngrid,nlay) REAL pdtsrf(ngrid),sensibFlux(ngrid),pcapcal(ngrid) REAL pq2(ngrid,nlay+1) ! Arguments added for condensation REAL ppopsk(ngrid,nlay) logical lecrit REAL pz0 ! Tracers ! -------- integer nq real pqsurf(ngrid,nq) real pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) real pdqdif(ngrid,nlay,nq) real pdqsdif(ngrid,nq) ! local ! ----- integer ilev,ig,ilay,nlev REAL z4st,zdplanck(ngrid) REAL zkv(ngrid,nlay+1),zkh(ngrid,nlay+1) REAL zcdv(ngrid),zcdh(ngrid) REAL zcdv_true(ngrid),zcdh_true(ngrid) REAL zu(ngrid,nlay),zv(ngrid,nlay) REAL zh(ngrid,nlay) REAL ztsrf2(ngrid) REAL z1(ngrid),z2(ngrid) REAL za(ngrid,nlay),zb(ngrid,nlay) REAL zb0(ngrid,nlay) REAL zc(ngrid,nlay),zd(ngrid,nlay) REAL zcst1 REAL zu2!, a REAL zcq(ngrid,nlay),zdq(ngrid,nlay) REAL evap(ngrid) REAL zcq0(ngrid),zdq0(ngrid) REAL zx_alf1(ngrid),zx_alf2(ngrid) LOGICAL firstcall SAVE firstcall !$OMP THREADPRIVATE(firstcall) LOGICAL lastcall ! variables added for CO2 condensation ! ------------------------------------ REAL hh ! Tracers ! ------- INTEGER iq REAL zq(ngrid,nlay,nq) REAL zq1temp(ngrid) REAL rho(ngrid) ! near-surface air density REAL qsat(ngrid) DATA firstcall/.true./ REAL kmixmin real, parameter :: karman=0.4 real cd0, roughratio real masse, Wtot, Wdiff real dqsdif_total(ngrid) real zq0(ngrid) ! Coherence test ! -------------- IF (firstcall) THEN firstcall=.false. ENDIF !----------------------------------------------------------------------- ! 1. Initialisation ! ----------------- nlev=nlay+1 ! Calculate rho*dz and dt*rho/dz=dt*rho**2 g/dp ! with rho=p/RT=p/ (R Theta) (p/ps)**kappa ! --------------------------------------------- DO ilay=1,nlay DO ig=1,ngrid za(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/g ENDDO ENDDO zcst1=4.*g*ptimestep/(R*R) DO ilev=2,nlev-1 DO ig=1,ngrid zb0(ig,ilev)=pplev(ig,ilev)* s (pplev(ig,1)/pplev(ig,ilev))**rcp / s (ph(ig,ilev-1)+ph(ig,ilev)) zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/ s (pplay(ig,ilev-1)-pplay(ig,ilev)) ENDDO ENDDO DO ig=1,ngrid zb0(ig,1)=ptimestep*pplev(ig,1)/(R*ptsrf(ig)) ENDDO dqsdif_total(:)=0.0 !----------------------------------------------------------------------- ! 2. Add the physical tendencies computed so far ! ---------------------------------------------- DO ilev=1,nlay DO ig=1,ngrid zu(ig,ilev)=pu(ig,ilev) zv(ig,ilev)=pv(ig,ilev) zh(ig,ilev)=ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep ENDDO ENDDO if(tracer) then DO iq =1, nq DO ilev=1,nlay DO ig=1,ngrid zq(ig,ilev,iq)=pq(ig,ilev,iq) + & pdqfi(ig,ilev,iq)*ptimestep ENDDO ENDDO ENDDO end if !----------------------------------------------------------------------- ! 3. Turbulence scheme ! -------------------- ! ! Source of turbulent kinetic energy at the surface ! ------------------------------------------------- ! Formula is Cd_0 = (karman / log[1+z1/z0])^2 DO ig=1,ngrid roughratio = 1.E+0 + pzlay(ig,1)/pz0 cd0 = karman/log(roughratio) cd0 = cd0*cd0 zcdv_true(ig) = cd0 zcdh_true(ig) = cd0 if (nosurf) then zcdv_true(ig) = 0. !! disable sensible momentum flux zcdh_true(ig) = 0. !! disable sensible heat flux endif ENDDO DO ig=1,ngrid zu2=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) zcdv(ig)=zcdv_true(ig)*sqrt(zu2) zcdh(ig)=zcdh_true(ig)*sqrt(zu2) ENDDO ! Turbulent diffusion coefficients in the boundary layer ! ------------------------------------------------------ call vdif_kc(ngrid,nlay,ptimestep,g,pzlev,pzlay & ,pu,pv,ph,zcdv_true & ,pq2,zkv,zkh) ! Adding eddy mixing to mimic 3D general circulation in 1D ! R. Wordsworth & F. Forget (2010) if ((ngrid.eq.1)) then kmixmin = 1.0e-2 ! minimum eddy mix coeff in 1D do ilev=1,nlay do ig=1,ngrid !zkh(ig,ilev) = 1.0 zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) end do end do end if !----------------------------------------------------------------------- ! 4. Implicit inversion of u ! -------------------------- ! u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) ! avec ! /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) ! et ! dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) ! donc les entrees sont /zcdv/ pour la condition a la limite sol ! et /zkv/ = Ku CALL multipl((nlay-1)*ngrid,zkv(1,2),zb0(1,2),zb(1,2)) CALL multipl(ngrid,zcdv,zb0,zb) DO ig=1,ngrid z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) zc(ig,nlay)=za(ig,nlay)*zu(ig,nlay)*z1(ig) zd(ig,nlay)=zb(ig,nlay)*z1(ig) ENDDO DO ilay=nlay-1,1,-1 DO ig=1,ngrid z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) zc(ig,ilay)=(za(ig,ilay)*zu(ig,ilay)+ $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) zd(ig,ilay)=zb(ig,ilay)*z1(ig) ENDDO ENDDO DO ig=1,ngrid zu(ig,1)=zc(ig,1) ENDDO DO ilay=2,nlay DO ig=1,ngrid zu(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zu(ig,ilay-1) ENDDO ENDDO !----------------------------------------------------------------------- ! 5. Implicit inversion of v ! -------------------------- ! v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) ! avec ! /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) ! et ! dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) ! donc les entrees sont /zcdv/ pour la condition a la limite sol ! et /zkv/ = Kv DO ig=1,ngrid z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) zc(ig,nlay)=za(ig,nlay)*zv(ig,nlay)*z1(ig) zd(ig,nlay)=zb(ig,nlay)*z1(ig) ENDDO DO ilay=nlay-1,1,-1 DO ig=1,ngrid z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) zc(ig,ilay)=(za(ig,ilay)*zv(ig,ilay)+ $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) zd(ig,ilay)=zb(ig,ilay)*z1(ig) ENDDO ENDDO DO ig=1,ngrid zv(ig,1)=zc(ig,1) ENDDO DO ilay=2,nlay DO ig=1,ngrid zv(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zv(ig,ilay-1) ENDDO ENDDO !---------------------------------------------------------------------------- ! 6. Implicit inversion of h, not forgetting the coupling with the ground ! h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) ! avec ! /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) ! et ! dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) ! donc les entrees sont /zcdh/ pour la condition de raccord au sol ! et /zkh/ = Kh ! Using the wind modified by friction for lifting and sublimation ! --------------------------------------------------------------- DO ig=1,ngrid zu2 = zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) zcdv(ig) = zcdv_true(ig)*sqrt(zu2) zcdh(ig) = zcdh_true(ig)*sqrt(zu2) ENDDO CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) CALL multipl(ngrid,zcdh,zb0,zb) DO ig=1,ngrid z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) zc(ig,nlay)=za(ig,nlay)*zh(ig,nlay)*z1(ig) zd(ig,nlay)=zb(ig,nlay)*z1(ig) ENDDO DO ilay=nlay-1,2,-1 DO ig=1,ngrid z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ & zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) zc(ig,ilay)=(za(ig,ilay)*zh(ig,ilay)+ & zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) zd(ig,ilay)=zb(ig,ilay)*z1(ig) ENDDO ENDDO DO ig=1,ngrid z1(ig)=1./(za(ig,1)+zb(ig,1)+ & zb(ig,2)*(1.-zd(ig,2))) zc(ig,1)=(za(ig,1)*zh(ig,1)+ & zb(ig,2)*zc(ig,2))*z1(ig) zd(ig,1)=zb(ig,1)*z1(ig) ENDDO ! Calculate (d Planck / dT) at the interface temperature ! ------------------------------------------------------ z4st=4.0*sigma*ptimestep DO ig=1,ngrid zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) ENDDO ! Calculate temperature tendency at the interface (dry case) ! ---------------------------------------------------------- ! Sum of fluxes at interface at time t + \delta t gives change in T: ! radiative fluxes ! turbulent convective (sensible) heat flux ! flux (if any) from subsurface DO ig=1,ngrid z1(ig) = pcapcal(ig)*ptsrf(ig) + cpp*zb(ig,1)*zc(ig,1) & + zdplanck(ig)*ptsrf(ig) + pfluxsrf(ig)*ptimestep z2(ig) = pcapcal(ig) + cpp*zb(ig,1)*(1.-zd(ig,1)) & +zdplanck(ig) ztsrf2(ig) = z1(ig) / z2(ig) pdtsrf(ig) = (ztsrf2(ig) - ptsrf(ig))/ptimestep zh(ig,1) = zc(ig,1) + zd(ig,1)*ztsrf2(ig) ENDDO ! Recalculate temperature to top of atmosphere, starting from ground ! ------------------------------------------------------------------ DO ilay=2,nlay DO ig=1,ngrid hh = zh(ig,ilay-1) zh(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*hh ENDDO ENDDO !----------------------------------------------------------------------- ! TRACERS (no vapour) ! ------- if(tracer) then ! Calculate vertical flux from the bottom to the first layer (dust) ! ----------------------------------------------------------------- do ig=1,ngrid rho(ig) = zb0(ig,1) /ptimestep end do call zerophys(ngrid*nq,pdqsdif) ! Implicit inversion of q ! ----------------------- do iq=1,nq DO ig=1,ngrid z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) zcq(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) zdq(ig,nlay)=zb(ig,nlay)*z1(ig) ENDDO DO ilay=nlay-1,2,-1 DO ig=1,ngrid z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ & zb(ig,ilay+1)*(1.-zdq(ig,ilay+1))) zcq(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ & zb(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) zdq(ig,ilay)=zb(ig,ilay)*z1(ig) ENDDO ENDDO DO ig=1,ngrid z1(ig)=1./(za(ig,1)+ & zb(ig,2)*(1.-zdq(ig,2))) zcq(ig,1)=(za(ig,1)*zq(ig,1,iq)+ & zb(ig,2)*zcq(ig,2) & +(-pdqsdif(ig,iq))*ptimestep)*z1(ig) ! tracer flux from surface ! currently pdqsdif always zero here, ! so last line is superfluous enddo ! Starting upward calculations for simple tracer mixing (e.g., dust) do ig=1,ngrid zq(ig,1,iq)=zcq(ig,1) end do do ilay=2,nlay do ig=1,ngrid zq(ig,ilay,iq)=zcq(ig,ilay)+ $ zdq(ig,ilay)*zq(ig,ilay-1,iq) end do end do end do ! of do iq=1,nq endif ! traceur !----------------------------------------------------------------------- ! 8. Final calculation of the vertical diffusion tendencies ! ----------------------------------------------------------------- do ilev = 1, nlay do ig=1,ngrid pdudif(ig,ilev)=(zu(ig,ilev)- & (pu(ig,ilev)))/ptimestep pdvdif(ig,ilev)=(zv(ig,ilev)- & (pv(ig,ilev)))/ptimestep hh = ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep pdhdif(ig,ilev)=( zh(ig,ilev)- hh )/ptimestep enddo enddo DO ig=1,ngrid ! computing sensible heat flux (atm => surface) sensibFlux(ig)=cpp*zb(ig,1)/ptimestep*(zh(ig,1)-ztsrf2(ig)) ENDDO if (tracer) then do iq = 1, nq do ilev = 1, nlay do ig=1,ngrid pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)- & (pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep))/ & ptimestep enddo enddo enddo endif ! if(lastcall)then ! if(ngrid.eq.1)then ! print*,'Saving k.out...' ! OPEN(12,file='k.out',form='formatted') ! DO ilay=1,nlay ! write(12,*) zkh(1,ilay), pplay(1,ilay) ! ENDDO ! CLOSE(12) ! endif ! endif return end